Skip to main content
Log in

Effects of bismuth nanoparticles on the nano-cutting properties of single-crystal iron materials: a molecular dynamics study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The aim of the current research was to explore the influence of bismuth (Bi) nanoparticles on the single-crystal iron (Fe) nano-cutting process using molecular dynamics (MD) simulations. The existence of Bi nanoparticles in the workpiece affected the variation of cutting force, Von_mises stress distribution and dislocation generation during nano-cutting process. Thus, based on the study of one nanoparticle presence in this paper, the influences of different cutting depths and nanoparticle distribution were also considered separately. The results demonstrated that when the tool cut through Bi nanoparticles, the cutting force and Von_mises stress in the cutting zone were both decreased owing to the smaller hardness of Bi nanoparticles than Fe substrate and the nanoparticles undergo deformation. Dislocation Analysis (DXA) analysis revealed that the presence of Bi soft nanoparticles hindered the dislocation generation, which is unlike the presence of hard nanoparticles, and the BCC Defect Analysis (BDA) analysis showed dislocations, twins and vacancy defects in the workpiece. In addition, the cutting force, workpiece temperature and Von_mises stress increased with the cutting depth, yet the cutting force still decreased when the tool cut through the upper surface of the Bi nanoparticles without contacting the Bi nanoparticles, which was caused by the deformation of Bi nanoparticles under the stress of the shear deformation zone. When two Bi nanoparticles were present in the Fe matrix, the second Bi nanoparticle impedes the movements of the generated dislocations and the cutting force would be reduced when the tool cut over two nanoparticles. This research contributes to understanding the role of Bi nanoparticles in free-cutting steels from the nano perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on request.

References

  1. Y.N. Wang, Y.P. Bao, M. Wang, L.C. Zhang, Precipitation and control of BN inclusions in 42CrMo steel and their effect on machinability. Int. J. Miner. Metall. Mater. (2013). https://doi.org/10.1007/s12613-013-0805-5

    Article  Google Scholar 

  2. T. Akasawa, H. Sakurai, M. Nakamura, T. Tanaka, K. Takano, Effects of free-cutting additives on the machinability of austenitic stainless steels. J. Mater. Process. Technol. (2003). https://doi.org/10.1016/S0924-0136(03)00321-2

    Article  Google Scholar 

  3. Y. Li, T. Suzuki, N. Tang, Y. Koizumi, A. Chiba, Microstructure evolution of SUS303 free-cutting steel during hot compression process. Mater. Sci. Eng. A. (2013). https://doi.org/10.1016/j.msea.2013.06.069

    Article  Google Scholar 

  4. N. Ånmark, A. Karasev, P.G. Jönsson, The effect of different non-metallic inclusions on the machinability of steels. Materials (Basel). (2015). https://doi.org/10.3390/ma8020751

    Article  Google Scholar 

  5. Z. Li, D. Wu, W. Lv, Low environmental impact machining processes of free cutting austenitic stainless steels without lead addition. Adv. Mater. Res. (2012). https://doi.org/10.4028/www.scientific.net/AMR.512-515.1923

    Article  Google Scholar 

  6. J. Yu Liu, C. Song Liu, R. Juan Bai, W. Wang, Q. Bo Wang, H. Zhang, H. Wei Ni, Morphological transformation of elongated MnS inclusions in non-quenched and tempered steel during isothermal heating. J. Iron Steel Res. Int. (2023). https://doi.org/10.1007/s42243-022-00829-w

    Article  Google Scholar 

  7. S. Guei Lin, H. Hua Yang, Y. Hao Su, K. Ling Chang, C. Han Yang, S. Kang Lin, CALPHAD-assisted morphology control of manganese sulfide inclusions in free-cutting steels. J. Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2018.11.290

    Article  Google Scholar 

  8. N. Liu, J. Xie, P. Shen, X. Xu, J. Fu, In-situ study of microstructures and sulphides and machinability of Bi-bearing free-cutting steels, Ironmak. Steelmak. (2023). https://doi.org/10.1080/03019233.2022.2108245

    Article  Google Scholar 

  9. Z. Li, D. Wu, Effect of free-cutting additives on machining characteristics of austenitic stainless steels. J. Mater. Sci. Technol. (2010). https://doi.org/10.1016/S1005-0302(10)60134-X

    Article  Google Scholar 

  10. J. Bo Xie, T. Fan, Z. Qi Zeng, H. Sun, J. Xun Fu, Bi-sulfide existence in 0Cr18Ni9 steel: correlation with machinability and mechanical properties. J. Mater. Res. Technol. (2020). https://doi.org/10.1016/j.jmrt.2020.06.043

    Article  Google Scholar 

  11. X. Wang, H. Zhang, J. Wang, R. Zhu, Y. Zhu, F. Lu, J. Li, Z. Jiang, Effect of bismuth and telluride on the inclusions of sulfur free-cutting steel. Metals (Basel). (2023). https://doi.org/10.3390/met13030486

    Article  Google Scholar 

  12. X. Kong, W. Wang, M. Wang, L. Yang, Influence of temperature on the cutting performance of single-crystal beryllium: a molecular dynamics simulation investigation. Appl. Phys. A Mater. Sci. Process. (2021). https://doi.org/10.1007/s00339-021-04943-6

    Article  Google Scholar 

  13. P.M. Agrawal, L.M. Raff, S. Bukkapatnam, R. Komanduri, Molecular dynamics investigations on polishing of a silicon wafer with a diamond abrasive. Appl. Phys. A Mater. Sci. Process. (2010). https://doi.org/10.1007/s00339-010-5570-y

    Article  Google Scholar 

  14. H. Dai, G. Chen, Q. Fang, J. Yin, The effect of tool geometry on subsurface damage and material removal in nanometric cutting single-crystal silicon by a molecular dynamics simulation. Appl. Phys. A Mater. Sci. Process. (2016). https://doi.org/10.1007/s00339-016-0319-x

    Article  Google Scholar 

  15. Y. Wang, F. Wang, Z. Qi, Y. Wang, W. Yu, Thermal behavior of Bi-Ni core-shell nanoparticles with different Ni shell thicknesses: a molecular dynamics study. Comput. Mater. Sci. (2022). https://doi.org/10.1016/j.commatsci.2022.111557

    Article  Google Scholar 

  16. Y. Wang, F. Wang, W. Yu, Y. Wang, Z. Qi, Y. Wang, Effects of pressure on volatilisation of pure Bi nanoparticles and Bi–Fe core–shell nanoparticles during continuous heating: a molecular dynamics study. Mol. Phys. (2022). https://doi.org/10.1080/00268976.2022.2121232

    Article  Google Scholar 

  17. A. Sharma, D. Datta, R. Balasubramaniam, A molecular dynamics simulation of wear mechanism of diamond tool in nanoscale cutting of copper beryllium. Int. J. Adv. Manuf. Technol. (2019). https://doi.org/10.1007/s00170-018-03246-0

    Article  Google Scholar 

  18. F. Xu, F. Fang, X. Zhang, Hard particle effect on surface generation in nano-cutting. Appl. Surf. Sci. (2017). https://doi.org/10.1016/j.apsusc.2017.07.089

    Article  Google Scholar 

  19. P. Zhao, Q. Zhang, Y. Guo, H. Liu, Z. Deng, Atomistic simulation study of nanoparticle effect on nano-cutting mechanisms of single-crystalline materials. Micromachines. (2020). https://doi.org/10.3390/mi11030265

    Article  Google Scholar 

  20. M. Wang, F. Wang, J. Zhang, H. Wang, Y. Wang, H. Wu, Effects of h-BN additives on tensile mechanical behavior of Fe matrix: a molecular dynamics study. Comput. Mater. Sci. 223, 112136 (2023). https://doi.org/10.1016/j.commatsci.2023.112136

    Article  Google Scholar 

  21. N. Vu-Bac, T. Lahmer, H. Keitel, J. Zhao, X. Zhuang, T. Rabczuk, Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations. Mech. Mater. (2014). https://doi.org/10.1016/j.mechmat.2013.07.021

    Article  Google Scholar 

  22. N. Vu-Bac, P.M.A. Areias, T. Rabczuk, A multiscale multisurface constitutive model for the thermo-plastic behavior of polyethylene. Polymer (Guildf). (2016). https://doi.org/10.1016/j.polymer.2016.10.039

    Article  Google Scholar 

  23. N. Vu-Bac, M.A. Bessa, T. Rabczuk, W.K. Liu, A multiscale model for the quasi-static thermo-plastic behavior of highly cross-linked glassy polymers. Macromolecules (2015). https://doi.org/10.1021/acs.macromol.5b01236

    Article  Google Scholar 

  24. M.B. Cai, X.P. Li, M. Rahman, Study of the temperature and stress in nanoscale ductile mode cutting of silicon using molecular dynamics simulation. J. Mater. Process. Technol. (2007). https://doi.org/10.1016/j.jmatprotec.2007.04.028

    Article  Google Scholar 

  25. F. Shimizu, S. Ogata, J. Li, Theory of shear banding in metallic glasses and molecular dynamics calculations. Mater. Trans. (2007). https://doi.org/10.2320/matertrans.MJ200769

    Article  Google Scholar 

  26. A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, P.J. in’t Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, M.J. Stevens, J. Tranchida, C. Trott, S.J. Plimpton, LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. (2022). https://doi.org/10.1016/j.cpc.2021.108171

    Article  MATH  Google Scholar 

  27. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Model. Simul. Mater. Sci. Eng. (2010). https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  28. P. Hirel, Atomsk: a tool for manipulating and converting atomic data files. Comput. Phys. Commun. (2015). https://doi.org/10.1016/j.cpc.2015.07.012

    Article  Google Scholar 

  29. M.I. Mendelev, S. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun, M. Asta, Development of new interatomic potentials appropriate for crystalline and liquid iron. Philos. Mag. (2003). https://doi.org/10.1080/14786430310001613264

    Article  Google Scholar 

  30. H. Zhou, D.E. Dickel, M.I. Baskes, S. Mun, M.A. Zaeem, A modified embedded-atom method interatomic potential for bismuth. Model. Simul. Mater. Sci. Eng. (2021). https://doi.org/10.1088/1361-651X/ac095c

    Article  Google Scholar 

  31. J. Tersoff, Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B. (1989). https://doi.org/10.1103/PhysRevB.39.5566

    Article  Google Scholar 

  32. V.P. Filippova, S.A. Kunavin, M.S. Pugachev, Calculation of the parameters of the Lennard-Jones potential for pairs of identical atoms based on the properties of solid substances. Inorg. Mater. Appl. Res. (2015). https://doi.org/10.1134/S2075113315010062

    Article  Google Scholar 

  33. A. Arkundato, Z. Su’ud, M. Abdullah, W. Sutrisno, Molecular dynamic simulation on iron corrosion-reduction in high temperature molten lead-bismuth eutectic. Turkish J. Phys. (2013). https://doi.org/10.3906/fiz-1112-12

    Article  Google Scholar 

  34. B. Xue, D.B. Harwood, J.L. Chen, J.I. Siepmann, Monte Carlo simulations of fluid phase equilibria and interfacial properties for Water/Alkane mixtures: an assessment of nonpolarizable water models and of departures from the Lorentz-Berthelot combining rules. J. Chem. Eng. Data. (2018). https://doi.org/10.1021/acs.jced.8b00757

    Article  Google Scholar 

  35. J.Y. Xie, N.X. Chen, J. Shen, L. Teng, S. Seetharaman, Atomistic study on the structure and thermodynamic properties of Cr 7C3, Mn7C3, Fe7C 3. Acta Mater. (2005). https://doi.org/10.1016/j.actamat.2005.02.039

    Article  Google Scholar 

  36. S. Hao, N.X. Chen, Atomistic simulation on the phase stability, site preference and lattice parameters for Nd(Fe, T)12with Nd(Fe, Ti)12Nx. Phys. Lett. Sect. A Gen. At. Solid State Phys. (2002). https://doi.org/10.1016/S0375-9601(02)00371-7

    Article  Google Scholar 

  37. T.Y. Lai, T.H. Fang, T.H. Chen, Mechanical and thermal conductivity properties of BiSbTe nanofilms using molecular dynamics. Phys. E Low-Dimensional Syst. Nanostruct. (2020). https://doi.org/10.1016/j.physe.2020.114300

    Article  Google Scholar 

  38. J. Wang, X. Zhang, F. Fang, F. Xu, R. Chen, Z. Xue, Study on nano-cutting of brittle material by molecular dynamics using dynamic modeling. Comput. Mater. Sci. (2020). https://doi.org/10.1016/j.commatsci.2020.109851

    Article  Google Scholar 

  39. K. Maekawa, A. Itoh, Friction and tool wear in nano-scale machining-a molecular dynamics approach. Wear (1995). https://doi.org/10.1016/0043-1648(95)06633-0

    Article  Google Scholar 

  40. J.J. Möller, E. Bitzek, BDA: A novel method for identifying defects in body-centered cubic crystals. MethodsX. 3, 279–288 (2016). https://doi.org/10.1016/j.mex.2016.03.013

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Research and Development Projects of Shaanxi Province Project of Shaanxi Province, China [Grant number 2022GY-399].

Author information

Authors and Affiliations

Authors

Contributions

MGW, HBW, and JCZ are involved in the simulation, calculation, verification, and writing the paperwork; XNZ visualized the post-processing; FZW guided the writing; HW supervised the funding support.

Corresponding author

Correspondence to Fazhan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Wang, F., Wang, H. et al. Effects of bismuth nanoparticles on the nano-cutting properties of single-crystal iron materials: a molecular dynamics study. Appl. Phys. A 129, 687 (2023). https://doi.org/10.1007/s00339-023-06953-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06953-y

Keywords

Navigation