Skip to main content
Log in

A molecular dynamics simulation of wear mechanism of diamond tool in nanoscale cutting of copper beryllium

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In the present study, molecular dynamics simulation (MDS) is employed to study the wear mechanism of single crystal diamond tool during nanocutting of copper beryllium (CuBe). Two edge configurations, i.e., both sharp and worn out tools, are chosen to study the tool and workpiece interaction during the nanocutting of CuBe. Further, the study involves the experimental characterization techniques viz. scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and Raman spectroscopy to confirm the simulation results. The results of the molecular dynamics simulation (MDS) show that the presence of Be as a hard particle in workpiece material influences the cutting forces which subsequently causes degradation of the sharp edge of the diamond tool. Furthermore, the carbon (C) atoms removed from the tool react with Be particles and as a result, it causes the formation of beryllium carbide (BeC). Beryllium interaction with the blunt edge configuration of the tool causes amorphization at the tool edge. Raman spectroscopy of the used diamond tool on CuBe reveals the similar phenomena of amorphization of the diamond at the tool edge. Moreover, surface generation is dependent on the tool edge condition as blunt edge tool leads to smoother surface compared to the surface generated by sharp edge configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balasubramaniam R, Sarepaka RV, Subbiah S (2017) Diamond turn machining: theory and practice. CRC Press 1:27–45

  2. Zhang SJ, To S, Zhang GQ (2017) Diamond tool wear in ultra-precision machining. Int J Adv Manuf Technol 88:613–641

    Article  Google Scholar 

  3. Crone WC (2000) Compositional variation and precipitate structures of copper–beryllium single crystals grown by the Bridgman technique. J Cryst Growth 218:381–389

    Article  Google Scholar 

  4. Hung NP, Zhong ZW, Lee KK, Chai CF (1999) Precision grinding and facing of copper-beryllium alloys. Precis Eng 23:293–304

    Article  Google Scholar 

  5. Wada R, Kodama H, Nakamura K, Mizutani Y, Shimura Y, Takenaka N (1980) Wear characteristics of single crystal diamond tool. CIRP Ann - Manuf Technol 29:47–52

    Article  Google Scholar 

  6. Paul E, Evans CJ, Mangamelli A, McGlauflin ML, Polvani RS (1996) Chemical aspects of tool wear in single point diamond turning. Precis Eng 18:4–19

    Article  Google Scholar 

  7. Shimada S, Tanaka H, Higuchi M, Yamaguchi T, Honda S, Obata K (2004) Thermo-chemical wear mechanism of diamond tool in machining of ferrous metals. CIRP Ann - Manuf Technol 53:57–60

    Article  Google Scholar 

  8. Zhou M, Ngoi BKA, Yusoff MN, Wang XJ (2006) Tool wear and surface finish in diamond cutting of optical glass. J Mater Process Technol 174:29–33

    Article  Google Scholar 

  9. Li XP, He T, Rahman M (2005) Tool wear characteristics and their effects on nanoscale ductile mode cutting of silicon wafer. Wear 259:1207–1214

    Article  Google Scholar 

  10. Han XS, Lin B, Yu SY, Wang SX (2002) Investigation of tool geometry in nanometric cutting by molecular dynamics simulation. J Mater Process Technol 129:105–108

    Article  Google Scholar 

  11. Narulkar R, Bukkapatnam S, Raff LM, Komanduri R (2009) Graphitization as a precursor to wear of diamond in machining pure iron: a molecular dynamics investigation. Comput Mater Sci 45:358–366

    Article  Google Scholar 

  12. Zhang Z, Yan J, Kuriyagawa T (2011) Study on tool wear characteristics in diamond turning of reaction-bonded silicon carbide. Int J Adv Manuf Technol 57:117–125

    Article  Google Scholar 

  13. Zareena AR, Veldhuis SC (2012) Tool wear mechanisms and tool life enhancement in ultra-precision machining of titanium. J Mater Process Technol 212:560–570

    Article  Google Scholar 

  14. Ding X, Rahman M (2012) A study of the performance of cutting polycrystalline Al 6061 T6 with single crystalline diamond micro-tools. Precis Eng 36:593–603

    Article  Google Scholar 

  15. Zou L, Dong G, Zhou M (2013) Investigation on frictional wear of single crystal diamond against ferrous metals. Int J Refract Met Hard Mater 41:174–179

    Article  Google Scholar 

  16. Zou L, Huang Y, Zhou M, Xiao G (2017) Thermochemical wear of single crystal diamond catalyzed by ferrous materials at elevated temperature. Crystals 7:1–10

    Article  Google Scholar 

  17. Otieno T, Abou-El-Hossein K (2017) Molecular dynamics analysis of nanomachining of rapidly solidified aluminium. Int J Adv Manuf Technol:121–131

  18. Lai M, Zhang X, Fang F, Wang Y, Feng M, Tian W (2013) Study on nanometric cutting of germanium by molecular dynamics simulation. Nanoscale Res Lett 8:13

    Article  Google Scholar 

  19. Evans C, Bryan JB (1991) Cryogenic diamond turning of stainless steel. CIRP Ann - Manuf Technol 40:571–575

    Article  Google Scholar 

  20. Mir A, Luo X, Cheng K, Cox A (2017) Investigation of influence of tool rake angle in single point diamond turning of silicon. Int J Adv Manuf Technol:1–13

  21. Foiles SM, Baskes MI, Daw MS (1986) Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33:7983–7991

    Article  Google Scholar 

  22. Erhart P, Albe K (2005) Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide. Phys Rev B:1–14

  23. Björkas C, Juslin N, Timko H, Vörtler K, Nordlund K, Henriksson K et al (2009) Interatomic potentials for the Be–C–H system. J Phys Condens Matter 21(44):1–16

    Article  Google Scholar 

  24. Sharma A, Datta D, Balasubramaniam R (2018) An investigation of tool and hard particle interaction in nanoscale cutting of copper beryllium. Comput Mater Sci 145:208–223

    Article  Google Scholar 

  25. Inamura T, Takezawa N (1992) Atomic-scale cutting in a computer using crystal models of copper and diamond. CIRP Ann - Manuf Technol 41:121–124

    Article  Google Scholar 

  26. Lin Z-C, Huang J-C (2004) A nano-orthogonal cutting model based on a modified molecular dynamics technique. Nanotechnology 15:510–519

    Article  Google Scholar 

  27. Shi J, Wang Y, Yang X (2013) Nano-scale machining of polycrystalline coppers—effects of grain size and machining parameters. Nanoscale Res Lett 8:1–18

    Article  Google Scholar 

  28. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  MATH  Google Scholar 

  29. Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool. Model Simul Mater Sci Eng 18(15012):1–7

    Google Scholar 

  30. Tsai DH (1979) The virial theorem and stress calculation in molecular dynamics. J Chem Phys 70:1375–1382

    Article  Google Scholar 

  31. Zhou M (2003) A new look at the atomic level virial stress: on continuum-molecular system equivalence. Proc R Soc London A: Math Phys Eng Sci 459:2347–2392

    Article  MATH  Google Scholar 

  32. Zimmerman JA, WebbIII EB, Hoyt JJ, Jones RE, Klein PA, Bammann DJ (2004) Calculation of stress in atomistic simulation. Model Simul Mater Sci Eng 12:S319–S332

    Article  Google Scholar 

  33. Xu F, Fang F, Zhang X (2017) Hard particle effect on surface generation in nano-cutting. Appl Surf Sci 425:1020–1027

    Article  Google Scholar 

  34. Li J, Fang Q, Liu B, Liu Y (2016) Applied surface science the effects of pore and second-phase particle on the mechanical properties of machining copper matrix from molecular dynamic simulation. Appl Surf Sci 384:419–431

    Article  Google Scholar 

  35. Wang Z, Chen J, Wang G, Bai Q, Liang Y (2017) Anisotropy of single-crystal silicon in nanometric cutting. Nanoscale Res Lett 12(300):1–11

    Google Scholar 

  36. Dychalska A, Popielarski P, Franków W, Fabisiak K, Paprocki K, Szybowicz M (2015) Study of CVD diamond layers with amorphous carbon admixture by Raman scattering spectroscopy. Mater Sci 33:799–805

    Google Scholar 

  37. Oomen JM, Eisses J (1992) Wear of monocrystalline diamond tools during ultraprecision machining of nonferrous metals. Precis Eng 14:206–218

    Article  Google Scholar 

  38. Tanaka H, Shimada S, Higuchi M, Yamaguchi T, Kaneeda T, Obata K (2005) Mechanism of cutting edge chipping and its suppression in diamond turning of copper. CIRP Ann - Manuf Technol 54:51–54

    Article  Google Scholar 

  39. Zong WJ, Sun T, Li D, Cheng K, Liang YC (2008) XPS analysis of the groove wearing marks on flank face of diamond tool in nanometric cutting of silicon wafer. Int J Mach Tools Manuf 48:1678–1687

    Article  Google Scholar 

  40. Goel S, Luo X, Reuben RL, Pen H (2012) Influence of temperature and crystal orientation on tool wear during single point diamond turning of silicon. Wear 284–285:65–72

    Article  Google Scholar 

  41. Goel S, Luo X, Reuben RL (2012) Molecular dynamics simulation model for the quantitative assessment of tool wear during single point diamond turning of cubic silicon carbide. Comput Mater Sci 51:402–408

    Article  Google Scholar 

  42. Cheng X, Zong WJ (2000) Diamond polishing : the dependency of friction and wear on load and crystal orientation. J Phys D Appl Phys 33(8):985–990

    Article  Google Scholar 

  43. Pastewka L, Moser S, Gumbsch P, Moseler M (2010) Anisotropic mechanical amorphization drives wear in diamond. Nat Mater 10:34–38

    Article  Google Scholar 

  44. Yang N, Zong W, Li Z, Sun T (2014) Amorphization anisotropy and the internal of amorphous layer in diamond nanoscale friction. Comput Mater Sci 95:551–556

    Article  Google Scholar 

  45. Zong WJ, Cheng X, Zhang JJ (2016) Atomistic origins of material removal rate anisotropy in mechanical polishing of diamond crystal. Carbon 99:186–194

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Datta, D. & Balasubramaniam, R. A molecular dynamics simulation of wear mechanism of diamond tool in nanoscale cutting of copper beryllium. Int J Adv Manuf Technol 102, 731–745 (2019). https://doi.org/10.1007/s00170-018-03246-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-03246-0

Keywords

Navigation