Skip to main content

Advertisement

Log in

Development of conductive poly (para-aminophenol)/zinc oxide nanocomposites for optoelectronic devices

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The use of novel metal oxide nanoparticles reinforced polymeric materials with superior optical properties, dielectric constant and electrical conductivities has sparked a lot of interest in optoelectronic device fabrication. Herein, zinc oxide (ZnO) reinforced poly(para-aminophenol) (PpAP) was prepared and characterized by UV–vis spectroscopy, X-ray diffraction (XRD), transmission electron microscope (TEM) and differential scanning calorimetry (DSC). The optical bandgap energy calculated using the Tauc equation displays a decreasing trend while that of the refractive index rises sharply with ZnO content up to 7 wt% loadings. The XRD and TEM results confirm the alteration in the structure of PpAP and uniform dispersion of nanoparticles in the nanocomposites, respectively. The DSC showed an increase in glass transition temperatures with the addition of ZnO. The temperature-dependent dielectric parameters and electrical conductivity of nanocomposites were also investigated. The dielectric properties significantly declined with frequency and increased with temperature, showing the presence of the Maxwell–Wagner-Sillars polarisation effect and space charge–discharge. The increasing trend of AC conductivity with frequency and temperature emphasises the thermally activated small polaron hopping mechanism. The activation energy calculated from the Arrhenius equation decreases with increasing frequency and minimum values obtained for 7 wt% loadings. The thermally triggered dielectric relaxations were implied by the electric modulus analysis and the decreasing radius of semicircles in the Nyquist plot with increasing temperature verifies the thermally activated conduction mechanism. Different theoretical models were used to correlate the increase in DC conductivity with filler concentrations, and the conductivity predicted by McCullough model was in good agreement with experimental DC conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Pu Z, Xia J, Zheng X, Wang Q, Liu J, Zhong J (2019) An efficient strategy for preparation of high-k poly (arylene ether nitrile)-based dielectrics with enhanced thermo-stability and good temperature independence. J Mater Sci Mater Electron 30:14736–14744. https://doi.org/10.1007/s10854-019-01845-5

    Article  CAS  Google Scholar 

  2. Feng Y, Peng C, Deng Q, Hu J, Li Y, Wu Q (2019) Finely depressed dielectric loss and conductivity achieved in high-kappa stannic oxide/polymer nanocomposites from surfactant-assisted electric percolation. J Mater Sci Mater Electron 30:2682–2692. https://doi.org/10.1007/s10854-018-0544-5

    Article  CAS  Google Scholar 

  3. Li L, Cheng J, Cheng Y, Han T, Liang X, Zhao Y, Zhao G, Dong L (2020) Polymer dielectrics exhibiting an anomalously improved dielectric constant simultaneously achieved high energy density and efficiency enabled by CdSe/Cd1−xZnxS quantum dots. J Mater Chem A 8:13659–13670. https://doi.org/10.1039/D0TA02760J

    Article  CAS  Google Scholar 

  4. Sun L, Wu N, Peng R (2020) Negative dielectric permittivity of PVDF nanocomposites induced by carbon nanofibers and polymer crystallization. J Appl Polym Sci 137:49582. https://doi.org/10.1002/app.49582

    Article  CAS  Google Scholar 

  5. Purty B, Choudhary RB, Biswas A, Udayabhanu G (2019) Chemically grown mesoporous f-CNT/α-MnO2/PIn nanocomposites as electrode materials for supercapacitor application. Polym Bull 76:1619–1640. https://doi.org/10.1007/s00289-018-2458-z

    Article  CAS  Google Scholar 

  6. Paul SJ, Gupta BK, Chandra P (2021) Probing the electrical and dielectric properties of polyaniline multi-walled carbon nanotubes nanocomposites doped in different protonic acids. Polym Bull 78:5667–5683. https://doi.org/10.1007/s00289-020-03399-7

    Article  CAS  Google Scholar 

  7. Wang J, Wei N, Wang F, Wu C, Li S (2012) High-dielectric constant percolative composite of P(VDF-TrFE) and modified multi-walled carbon-nanotubes. Polym Bull 68:2285–2297. https://doi.org/10.1007/s00289-012-0739-5

    Article  CAS  Google Scholar 

  8. Ridzuan MJM, Majid MSA, Khasri A, Cheng EM, Razlan ZM (2020) Effect of natural filler loading, multi-walled carbon nanotubes (MWCNTs), and moisture absorption on the dielectric constant of natural filled epoxy composites. Mater Sci Eng B 262:114744. https://doi.org/10.1016/j.mseb.2020.114744

    Article  CAS  Google Scholar 

  9. Liu C, Daneshvar F, Hawkins S, Kotaki M, Sue H-J (2021) High dielectric constant epoxy nanocomposites containing ZnO quantum dots decorated carbon nanotube. J Appl Polym Sci 138:49778. https://doi.org/10.1002/app.49778

    Article  CAS  Google Scholar 

  10. Assem Y, Khalaf AI, Rabia AM, Yehia AA, Zidan TA (2017) Poly(diallyldimethylammonium chloride)/clay nanocomposites: effect of molecular weight and concentration of polymer on the structural, thermal, and dielectric properties. Polym Bull 74:3015–3026. https://doi.org/10.1007/s00289-016-1873-2

    Article  CAS  Google Scholar 

  11. Nihamtah A, Ramesan MT (2021) Fabrication, characterization, dielectric properties, thermal stability flame retardancy and transport behavior of chlorinated nitrile rubber/ hydroxyapatite nanocomposites. Polym Bull 78:6999–7018. https://doi.org/10.1007/s00289-020-03469-w

    Article  CAS  Google Scholar 

  12. Parvathi K, Ramesan MT (2022) Natural rubber composites filled with zinc ferrite nanoparticles: focus on structural, morphological, curing, thermal and mechanical properties. Res Chem Intermed 48:129–144. https://doi.org/10.1007/s11164-021-04586-5

    Article  CAS  Google Scholar 

  13. Kar P, Pradhan NC, Adhikari B (2008) A novel route for the synthesis of processable conducting poly (m-aminophenol). Mater Chem Phys 111:59–64. https://doi.org/10.1016/j.matchemphys.2008.03.012

    Article  CAS  Google Scholar 

  14. Ramesan MT, Dilsha K (2019) Structural properties, conductivity, dielectric behaviour and gas sensing application of polyaniline/ phenothiazine/ copper sulphide blend nanocomposites. Mater Res Express 6:105328. https://doi.org/10.1088/2053-1591/ab399d

    Article  CAS  Google Scholar 

  15. Esmaeily Z, Madrakian T, Afkhami A, Ghoorchian A, Mohammadi VG (2021) Electropolymerization as an electrochemical preconcentration approach for the determination of melamine in milk samples. Electrochim Acta 390:138897. https://doi.org/10.1016/j.electacta.2021.138897

    Article  CAS  Google Scholar 

  16. Thenmozhi G, Arockiasamy P, Santhi RJ (2014) Isomers of poly aminophenol: chemical synthesis, characterization, and its corrosion protection aspect on mild steel in 1 M HCl. Int J Electrochem 2014:1–11. https://doi.org/10.1155/2014/961617

    Article  CAS  Google Scholar 

  17. Godarzi F, Shi H, Arjomandi J (2021) Novel poly (p-aminophenol-o-phenylenediamine)/zinc oxide nanocomposites growth on gold electrode: In-situ spectro-electrochemistry and kinetic study. Synth Met 274:116722. https://doi.org/10.1016/j.synthmet.2021.116722

    Article  CAS  Google Scholar 

  18. Karabiberoğlu SU, Koçak ÇC, Dursun Z (2019) Electrochemical determination of dicofol at nickel nanowire modified poly (p-aminophenol) film electrode. Electroanalysis 31:1304–1310. https://doi.org/10.1002/elan.201900095

    Article  CAS  Google Scholar 

  19. Ismail HK, Ali LIA, Alesary HF, Nile BK, Barton S (2022) Synthesis of a poly (p-aminophenol)/starch/graphene oxide ternary nanocomposite for removal of methylene blue dye from aqueous solution. J Polym Res. https://doi.org/10.1007/s10965-022-03013-6

    Article  Google Scholar 

  20. Ghoshal T, Morris MA (2021) Size controlled fabrication of ordered monodispersed iron, cobalt and cobalt iron composite oxides nanoparticles arrays: a common block copolymer methodology. Mater Sci Eng B 269:115142. https://doi.org/10.1016/j.mseb.2021.115142

    Article  CAS  Google Scholar 

  21. Parvathi K, Ramesan MT (2022) Compliant materials based on nickel oxide/ chlorinated natural rubber nanocomposites. Polym Compos 43:2628–2637. https://doi.org/10.1002/pc.26562

    Article  CAS  Google Scholar 

  22. Parvathi K, Ramesan MT (2022) High performance chlorinated natural rubber/ zinc ferrite nanocomposite prepared through industrial compounding Technique. Polym Bull. https://doi.org/10.1007/s00289-022-04201-6

    Article  Google Scholar 

  23. Mihalache V, Secu M, Negrila C, Bercu V, Mercioniu I, Leca A (2020) Temperature dependence and defect related structure, photoluminescence (ferro) magnetism and ammonia sensitivity of un-doped nanocrystalline ZnO. Mater Sci Eng B 262:114748. https://doi.org/10.1016/j.mseb.2020.114748

    Article  CAS  Google Scholar 

  24. Skoda D, Urbanek P, Sevcik J, Munster L, Antos J, Kuritka I (2018) Microwave-assisted synthesis of colloidal ZnO nanocrystals and their utilization in improving polymer light emitting diodes efficiency. Mater Sci Eng B 232–235:22–32. https://doi.org/10.1016/j.mseb.2018.10.013

    Article  CAS  Google Scholar 

  25. Talebzadeh S, Queffélec C, Knight DA (2019) Surface modification of plasmonic noble metal–metal oxide core–shell nanoparticles. Nanoscale Adv 1:4578–4591. https://doi.org/10.1039/C9NA00581A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yousefi SR, Ghanbari D, Salavati NM, Hassanpour M (2016) Photo-degradation of organic dyes: simple chemical synthesis of Ni(OH)2 nanoparticles, Ni/Ni(OH)2 and Ni/NiO magnetic nanocomposites. J Mater Sci Mater Electron 27:1244–1253. https://doi.org/10.1007/s10854-015-3882-6

    Article  CAS  Google Scholar 

  27. Pachaiappan R, Rajendran S, Show PL, Manavalan K, Naushad M (2021) Metal/metal oxide nanocomposites for bactericidal effect: a review. Chemosphere 272:128607. https://doi.org/10.1016/j.chemosphere.2020.128607

    Article  CAS  PubMed  Google Scholar 

  28. Yousefi SR, Alshamsi HA, Amiri O, Salavati NM (2021) Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. J Mol Liq 337:116405. https://doi.org/10.1016/j.molliq.2021.116405

    Article  CAS  Google Scholar 

  29. Baladi M, Valian M, Ghiyasiyan-Arani M, Salavati NM (2021) Role of morphology in electrochemical hydrogen storage using binary DyFeO3-ZnO nanocomposites as electrode materials. Int J Hydrog Energy 46:21026–21039. https://doi.org/10.1016/j.ijhydene.2020.12.222

    Article  CAS  Google Scholar 

  30. Mahdi MA, Yousefi SR, Jasim LS, Salavati NM (2022) Green synthesis of DyBa2Fe3O7.988/DyFeO3 nanocomposites using almond extract with dual eco-friendly applications: photocatalytic and antibacterial activities. Int J Hydrog Energy 47:14319–14330. https://doi.org/10.1016/j.ijhydene.2022.02.175

    Article  CAS  Google Scholar 

  31. Suhailath K, Ramesan MT (2020) Effect of ceria nanoparticles on mechanical properties, thermal and dielectric properties of poly (butyl methacrylate) nanocomposites. Polym Compos 41:2344–2354. https://doi.org/10.1002/pc.25542

    Article  CAS  Google Scholar 

  32. Taherian R, Hadianfard MJ, Golikand AN (2013) A new equation for predicting electrical conductivity of carbon-filled polymer composites used for bipolar plates of fuel cells. J Appl Polym Sci 128:1497–1509. https://doi.org/10.1002/app.38295

    Article  CAS  Google Scholar 

  33. Radzuan NAM, Sulong AB, Sahari J (2017) A review of electrical conductivity models for conductive polymer composite. Int J Hydrog Energy 42:9262–9273. https://doi.org/10.1016/j.ijhydene.2016.03.045

    Article  CAS  Google Scholar 

  34. Rahaman M, Chaki TK, Khastgir D (2012) Modeling of DC conductivity for ethylene vinyl acetate (EVA)/polyaniline conductive composites prepared through insitu polymerization of aniline in EVA matrix. Compos Sci Technol 72:1575–1580. https://doi.org/10.1016/j.compscitech.2012.06.005

    Article  CAS  Google Scholar 

  35. Gopalasamy T, Gopalswamy M, Gopichand M, Raj J (2014) Poly Meta-Aminophenol: chemical synthesis, characterization and AC impedance study. J Polym 2014:1–11. https://doi.org/10.1155/2014/827043

    Article  Google Scholar 

  36. Suhailath K, Bahuleyan BK, Ramesan MT (2021) Synthesis, characterization, thermal properties and temperature-dependent AC conductivity studies of poly (butyl methacrylate)/neodymium oxide nanocomposites. J Inorg Organomet Polym 31:365–374. https://doi.org/10.1007/s10904-020-01665-9

    Article  CAS  Google Scholar 

  37. Hassanien AS, Radaf IME, Akl AA (2020) Physical and optical studies of the novel non-crystalline CuxGe20-xSe40Te40 bulk glasses and thin films. J Alloys Compd 849:156718. https://doi.org/10.1016/j.jallcom.2020.156718

    Article  CAS  Google Scholar 

  38. Bhunia AK, Pradhan SS, Bhunia K, Pradhan AK, Saha S (2021) Study of the optical properties and frequency-dependent electrical modulus spectrum to the analysis of electric relaxation and conductivity effect in zinc oxide nanoparticles. J Mater Sci Mater Electron 32:22561–22578. https://doi.org/10.1007/s10854-021-06742-4

    Article  CAS  Google Scholar 

  39. Parvathi K, Bahuleyan BK, Ramesan MT (2022) Enhanced optical, thermal and electrical properties of chlorinated natural rubber/zinc ferrite nanocomposites for flexible electrochemical devices. J Macromol Sci Pure Appl Chem. https://doi.org/10.1080/10601325.2022.2080076

    Article  Google Scholar 

  40. Almasi MJ, Sheikholeslami TF, Naghdi MR (2016) Band gap study of polyaniline and polyaniline/MWNT nanocomposites with in situ polymerization method. Compos B: Eng 96:63–68. https://doi.org/10.1016/j.compositesb.2016.04.032

    Article  CAS  Google Scholar 

  41. Yassin AY, Mohamed A-R, Abdelrazek EM, Morsi MA, Abdelghany AM (2019) Structural investigation and enhancement of optical, electrical and thermal properties of poly (vinyl chloride-co-vinyl acetate-co-2-hydroxypropyl acrylate)/graphene oxide nanocomposites. J Mater Res Technol 8:1111–1120. https://doi.org/10.1016/j.jmrt.2018.08.005

    Article  CAS  Google Scholar 

  42. El-Khiyami SS, Ismail AM, Hafez RS (2021) Characterization, optical and conductivity study of nickel oxide based nanocomposites of polystyrene. J Inorg Organomet Polym Mater 31:4313–4325. https://doi.org/10.1007/s10904-021-02041-x

    Article  CAS  Google Scholar 

  43. Abdelghany AM, Morsi MA, Abdelrazek A, Ahmed MT (2018) Role of silica nanoparticles on structural, optical and morphological properties of poly (vinyl chloride-co-vinyl acetate-co-2-hydroxypropyl acrylate) copolymer. SILICON 10:519–524. https://doi.org/10.1007/s12633-016-9483-z

    Article  CAS  Google Scholar 

  44. Maji P, Pande PP, Choudhary RB (2015) Effect of Zn(NO3)2 filler on the dielectric permittivity and electrical modulus of PMMA. Bull Mater Sci 38:417–424. https://doi.org/10.1007/s12034-015-0886-z

    Article  CAS  Google Scholar 

  45. Abdelhamied MM, Abdelreheem AM, Atta A (2022) Influence of ion beam and silver nanoparticles on dielectric properties of flexible PVA/PANI polymer composite films. Plast Rubber Compos 51:1–12. https://doi.org/10.1080/14658011.2021.1928998

    Article  CAS  Google Scholar 

  46. Khan RAA, Chen X, Qi H-K, Huang J-H, Luo M-B (2021) A novel shift in the glass transition temperature of polymer nanocomposites: a molecular dynamics simulation study. Phys Chem Chem Phys 23:12216–12225. https://doi.org/10.1039/D1CP00321F

    Article  CAS  PubMed  Google Scholar 

  47. Zangina T, Hassan J, Matori KA, Ahmadu U, See A (2016) Sintering behavior, ac conductivity and dielectric relaxation of Li1.3Ti1.7Al0.3(PO4)3 NASICON compound. Results Phys 6:719–725. https://doi.org/10.1016/j.rinp.2016.10.003

    Article  Google Scholar 

  48. Mannu P, Palanisamy M, Bangaru G, Ramakrishnan S, Kandasami A, Kumar P (2019) Temperature-dependent AC conductivity and dielectric and impedance properties of ternary In–Te–Se nanocomposite thin films. Appl Phys A 125:458. https://doi.org/10.1007/s00339-019-2751-1

    Article  CAS  Google Scholar 

  49. Sahoo R, Mishra S, Ramadoss A, Mohanty S, Mahapatra S, Nayak SK (2020) Temperature-dependent dielectric properties of metal-doped ZnO nanofiller reinforced PVDF nanocomposites. Mater Res Bull 132:111005. https://doi.org/10.1016/j.materresbull.2020.111005

    Article  CAS  Google Scholar 

  50. Verma ML, Sahu HD (2015) Ionic conductivity and dielectric behavior of PEO-based silver ion conducting nanocomposite polymer electrolytes. Ionics 21:3223–3231. https://doi.org/10.1007/s11581-015-1517-9

    Article  CAS  Google Scholar 

  51. Purohit V, Choudhary RNP (2020) Structural, dielectric and electrical properties of BiFeO3 and BaTiO3 modified Bi(Mg0.5Ti0.5)O3. Mater Chem Phys 256:123732

    Article  CAS  Google Scholar 

  52. Zhou Y, Chen S, Wu D, Liu L, Luo H, Zhang D (2019) Enhanced dielectric properties of poly (vinylidene fluoride-co-hexafluoropropylene) nanocomposites using oriented nickel nanowires. Compos Commun 16:11–19. https://doi.org/10.1016/j.coco.2019.08.004

    Article  Google Scholar 

  53. Shehata MM, Abdelhady K (2018) Temperature and frequency dependence of dielectric relaxation and AC electrical conductivity in p-Si/CuPc hybrid photodiode. Appl Phys A 124:1–13. https://doi.org/10.1007/s00339-018-2006-6

    Article  CAS  Google Scholar 

  54. Dhatarwal P, Sengwa RJ (2020) Structural and dielectric characterization of (PVP/PEO)/Al2O3 nanocomposites for biodegradable nanodielectric applications. Adv Compo Mater 3:344–353. https://doi.org/10.1007/s42114-020-00168-y

    Article  CAS  Google Scholar 

  55. Abdelrazek EM, Abdelghany AM, Tarabiah AE, Zidan HM (2019) AC conductivity and dielectric characteristics of PVA/PVP nanocomposite filled with MWCNTs. J Mater Sci Mater Electron 30:15521–15533. https://doi.org/10.1007/s10854-019-01929-2

    Article  CAS  Google Scholar 

  56. Vijayalakshmi S, Kumar E, Ganeshbabu M, Venkatesh PS, Rathnakumar K (2021) Structural, electrical, and photocatalytic investigations of PANI/ZnO nanocomposites. Ionics 27:2967–2977. https://doi.org/10.1007/s11581-021-04041-w

    Article  CAS  Google Scholar 

  57. Suhailath K, Thomas M, Ramesan MT (2021) Studies on mechanical Properties, dielectric behavior and DC conductivity of neodymium oxide/ poly (butyl methacrylate). Polym Polym Compos 29:1200–1211. https://doi.org/10.1177/0967391120960658

    Article  CAS  Google Scholar 

  58. Suhailth K, Thomas M, Ramesan MT (2020) Effect of temperature on AC Conductivity of poly (butyl methacrylate)/cerium dioxide nanocomposites and applicability of different conductivity modeling studies. Res Chem Intermed 46:2579–2594

    Article  CAS  Google Scholar 

  59. Devi M, Kumar A (2018) Thermal, electrical, and dielectric properties of reduced graphene oxide–polyaniline nanotubes hybrid nanocomposites synthesized by in situ reduction and varying graphene oxide concentration. J Appl Polym Sci 135:45883. https://doi.org/10.1002/app.45883

    Article  CAS  Google Scholar 

  60. Sugumaran T, Silvaraj DS, Saidi NM, Farhana NK, Ramesh S, Ramesh K, Ramesh S (2019) The conductivity and dielectric studies of polymer electrolytes based on iota-carrageenan with sodium iodide and 1-butyl-3-methylimidazolium iodide for the dye-sensitized solar cells. Ionics 25:763–771. https://doi.org/10.1007/s11581-018-2756-3

    Article  CAS  Google Scholar 

  61. Najar MH, Majid K, Dar MA (2017) Electric modulus based relaxation dynamics, ac-conductivity and I-V characteristics in PTh/[Co(EDTA)NH3Cl] H2O nanocomposite prepared by chemical oxidation method. J Mater Sci Mater Electron 28:11243–11252. https://doi.org/10.1007/s10854-017-6913-7

    Article  CAS  Google Scholar 

  62. Dhahri A, Dhahri E, Hlil EK (2018) Electrical conductivity and dielectric behaviour of nanocrystalline La0.6Gd0.1Sr0.3Mn0.75Si0.25O3. Rsc Adv 8:9103–9111. https://doi.org/10.1039/C8RA00037A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hameed ST, Qahtan TF, Abdelghany AM, Oraby AH (2022) Structural, optical, and dielectric characteristics of copper oxide nanoparticles loaded CMC/PEO matrix. J Mater Sci 57:7556–7569. https://doi.org/10.1007/s10853-022-07134-7

    Article  CAS  Google Scholar 

  64. Parvathi K, Bahuleyan BK, Ramesan MT (2022) Flexible conductive nanocomposites for electrochemical devices based on chlorinated natural rubber/ nickel oxide nanoparticles. J Inorg Organomet Polym. https://doi.org/10.1007/s10904-022-02307-y

    Article  Google Scholar 

  65. Suhailath K, Ramesan MT (2019) Theoretical and experimental studies on DC conductivity and temperature dependent AC conductivity of poly (butyl methacrylate)/Nd-TiO2 nanocomposites. J Thermoplast Compos Mater 33:1061–1077. https://doi.org/10.1177/0892705718817350

    Article  CAS  Google Scholar 

  66. Sohi NJS, Bhadra S, Khastgir D (2011) The efect of diferent carbon fllers on the electrical conductivity of ethylene vinyl acetate copolymer-based composites and the applicability of different conductivity models. Carbon 49:1349–1361. https://doi.org/10.1016/j.carbon.2010.12.001

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Ramesan.

Ethics declarations

Conflict of interest

The authors of this article have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furhan, Ramesan, M.T. Development of conductive poly (para-aminophenol)/zinc oxide nanocomposites for optoelectronic devices. Polym. Bull. 80, 6405–6432 (2023). https://doi.org/10.1007/s00289-022-04373-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04373-1

Keywords

Navigation