Skip to main content

Advertisement

Log in

The role of macrophages in the tumor microenvironment and tumor metabolism

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

The complexity and plasticity of the tumor microenvironment (TME) make it difficult to fully understand the intratumoral regulation of different cell types and their activities. Macrophages play a crucial role in the signaling dynamics of the TME. Among the different subtypes of macrophages, tumor-associated macrophages (TAMs) are often associated with poor prognosis, although some subtypes of TAMs can at the same time improve treatment responsiveness and lead to favorable clinical outcomes. TAMs are key regulators of cancer cell proliferation, metastasis, angiogenesis, extracellular matrix remodeling, tumor metabolism, and importantly immunosuppression in the TME by modulating various chemokines, cytokines, and growth factors. TAMs have been identified as a key contributor to resistance to chemotherapy and cancer immunotherapy. In this review article, we aim to discuss the mechanisms by which TAMs regulate innate and adaptive immune signaling in the TME and summarize recent preclinical research on the development of therapeutics targeting TAMs and tumor metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vitale I, Manic G, Coussens LM, Kroemer G, Galluzzi L (2019) Macrophages and metabolism in the tumor microenvironment. Cell Metab 30(1):36–50

    Article  CAS  PubMed  Google Scholar 

  2. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Christofides A, Strauss L, Yeo A, Cao C, Charest A, Boussiotis VA (2022) The complex role of tumor-infiltrating macrophages. Nat Immunol 23(8):1148–1156

    Article  CAS  PubMed  Google Scholar 

  4. Xiang X, Wang J, Lu D, Xu X (2021) Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct Target Ther 6(1):75

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fu LQ, Du WL, Cai MH, Yao JY, Zhao YY, Mou XZ (2020) The roles of tumor-associated macrophages in tumor angiogenesis and metastasis. Cell Immunol 353:104119

    Article  CAS  PubMed  Google Scholar 

  6. Dehne N, Mora J, Namgaladze D, Weigert A, Brüne B (2017) Cancer cell and macrophage cross-talk in the tumor microenvironment. Curr Opin Pharmacol 35:12–19

    Article  CAS  PubMed  Google Scholar 

  7. Wu K, Lin K, Li X, Yuan X, Xu P, Ni P et al (2020) Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment. Front Immunol 11:1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hinshaw DC, Shevde LA (2019) The tumor microenvironment innately modulates cancer progression. Cancer Res 79(18):4557–4566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li S, Yu J, Huber A, Kryczek I, Wang Z, Jiang L et al (2022) Metabolism drives macrophage heterogeneity in the tumor microenvironment. Cell Rep 39(1):110609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pan Y, Yu Y, Wang X, Zhang T (2020) Tumor-associated macrophages in tumor immunity. Front Immunol 11:583084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nakamura K, Smyth MJ (2020) Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cell Mol Immunol 17(1):1–12

    Article  CAS  PubMed  Google Scholar 

  12. Tamura R, Tanaka T, Yamamoto Y, Akasaki Y, Sasaki H (2018) Dual role of macrophage in tumor immunity. Immunotherapy 10(10):899–909

    Article  CAS  PubMed  Google Scholar 

  13. Lechner M, Lirk P, Rieder J (2005) Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Semin Cancer Biol 15(4):277–289

    Article  CAS  PubMed  Google Scholar 

  14. Wu T, Yang W, Sun A, Wei Z, Lin Q (2023) The Role of CXC Chemokines in Cancer Progression. Cancers 15(1):167

  15. Kashfi K, Kannikal J, Nath N (2021) Macrophage reprogramming and cancer therapeutics: Role of iNOS-derived NO. Cells 10(11):3194

  16. Zhou X, Liu Q, Wang X, Yao X, Zhang B, Wu J et al (2023) Exosomal ncRNAs facilitate interactive ‘dialogue’ between tumor cells and tumor-associated macrophages. Cancer Lett 552:215975

    Article  CAS  PubMed  Google Scholar 

  17. Boutilier AJ, Elsawa SF (2021) Macrophage polarization states in the tumor microenvironment. Int J Mol Sci 22(13):6995

  18. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14(7):399–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mills CD, Lenz LL, Harris RA (2016) A breakthrough: macrophage-directed cancer immunotherapy. Cancer Res 76(3):513–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555

    Article  CAS  PubMed  Google Scholar 

  21. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14(7):399–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA (2013) Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 13(11):759–771

    Article  CAS  PubMed  Google Scholar 

  23. DeNardo DG, Ruffell B (2019) Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol 19(6):369–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444

    Article  CAS  PubMed  Google Scholar 

  25. Candido J, Hagemann T (2013) Cancer-related inflammation. J Clin Immunol 33(Suppl 1):S79-84

    Article  PubMed  Google Scholar 

  26. Qu X, Tang Y, Hua S (2018) Immunological approaches towards cancer and inflammation: a cross talk. Front Immunol 9:563

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tang X (2013) Tumor-associated macrophages as potential diagnostic and prognostic biomarkers in breast cancer. Cancer Lett 332(1):3–10

    Article  CAS  PubMed  Google Scholar 

  28. Cassetta L, Pollard JW (2018) Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov 17(12):887–904

    Article  CAS  PubMed  Google Scholar 

  29. Locati M, Curtale G, Mantovani A (2020) Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol 15:123–147

    Article  CAS  PubMed  Google Scholar 

  30. Rigoni TS, Vellozo NS, Guimarães-Pinto K, Cabral-Piccin M, Fabiano-Coelho L, Matos-Silva TC et al (2022) Axl receptor induces efferocytosis, dampens M1 macrophage responses and promotes heart pathology in Trypanosoma cruzi infection. Commun Biol 5(1):1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nakagawa M, Karim MR, Izawa T, Kuwamura M, Yamate J (2021) Immunophenotypical characterization of M1/M2 macrophages and lymphocytes in cisplatin-induced rat progressive renal fibrosis. Cells 10(2):257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yunna C, Mengru H, Lei W, Weidong C (2020) Macrophage M1/M2 polarization. Eur J Pharmacol 877:173090

    Article  PubMed  Google Scholar 

  33. Kerneur C, Cano CE, Olive D (2022) Major pathways involved in macrophage polarization in cancer. Front Immunol 13:1026954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou J, Tang Z, Gao S, Li C, Feng Y, Zhou X (2020) Tumor-associated macrophages: recent insights and therapies. Front Oncol 10:188

    Article  PubMed  PubMed Central  Google Scholar 

  35. Schweer D, McAtee A, Neupane K, Richards C, Ueland F, Kolesar J (2022) Tumor-associated macrophages and ovarian cancer: implications for therapy. Cancers (Basel) 14(9):2220

  36. Brown JM, Recht L, Strober S (2017) The promise of targeting macrophages in cancer therapy. Clin Cancer Res 23(13):3241–3250

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pathria P, Louis TL, Varner JA (2019) Targeting tumor-associated macrophages in cancer. Trends Immunol 40(4):310–327

    Article  CAS  PubMed  Google Scholar 

  38. Li X, Liu R, Su X, Pan Y, Han X, Shao C et al (2019) Harnessing tumor-associated macrophages as aids for cancer immunotherapy. Mol Cancer 18(1):177

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang SY, Song XY, Li Y, Ye LL, Zhou Q, Yang WB (2020) Tumor-associated macrophages: a promising target for a cancer immunotherapeutic strategy. Pharmacol Res 161:105111

    Article  CAS  PubMed  Google Scholar 

  40. Laviron M, Boissonnas A (2019) Ontogeny of tumor-associated macrophages. Front Immunol 10:1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang R, Wang S, Wang N, Zheng Y, Zhou J, Yang B et al (2020) CCL5 derived from tumor-associated macrophages promotes prostate cancer stem cells and metastasis via activating β-catenin/STAT3 signaling. Cell Death Dis 11(4):1–20

    Article  Google Scholar 

  42. Pan Y, Yu Y, Wang X, Zhang T (2020) Tumor-associated macrophages in tumor immunity. Front Immunol 11:583084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang Y-f, Yu L, Hu Z-l, Fang Y-f, Shen Y-y, Song M-f et al (2022) Regulation of CCL2 by EZH2 affects tumor-associated macrophages polarization and infiltration in breast cancer. Cell Death Dis 13(8):1–15

    Article  Google Scholar 

  44. Boutilier AJ, Elsawa SF (2021) Macrophage polarization states in the tumor microenvironment. Int J Mol Sci 22(13):6995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Valeta-Magara A, Gadi A, Volta V, Walters B, Arju R, Giashuddin S et al (2019) Inflammatory breast cancer promotes development of M2 tumor-associated macrophages and cancer mesenchymal cells through a complex chemokine networkchemokines and macrophages in inflammatory breast cancer. Can Res 79(13):3360–3371

    Article  CAS  Google Scholar 

  46. Reyes ME, de La Fuente M, Hermoso M, Ili CG, Brebi P (2020) Role of CC chemokines subfamily in the platinum drugs resistance promotion in cancer. Front Immunol 11:901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu M, Tong Z, Ding C, Luo F, Wu S, Wu C et al (2020) Transcription factor c-Maf is a checkpoint that programs macrophages in lung cancer. J Clin Investig 130(4):2081–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pathria P, Louis TL, Varner JA (2019) Targeting tumor-associated macrophages in cancer. Trends Immunol 40(4):310–327

    Article  CAS  PubMed  Google Scholar 

  49. Oshi M, Tokumaru Y, Asaoka M, Yan L, Satyananda V, Matsuyama R et al (2020) M1 macrophage and M1/M2 ratio defined by transcriptomic signatures resemble only part of their conventional clinical characteristics in breast cancer. Sci Rep 10(1):1–12

    Article  Google Scholar 

  50. Macciò A, Gramignano G, Cherchi MC, Tanca L, Melis L, Madeddu C (2020) Role of M1-polarized tumor-associated macrophages in the prognosis of advanced ovarian cancer patients. Sci Rep 10(1):1–8

    Article  Google Scholar 

  51. Nath N, Kashfi K (2020) Tumor associated macrophages and ‘NO.’ Biochem Pharmacol 176:113899

    Article  CAS  PubMed  Google Scholar 

  52. Gao J, Liang Y, Wang L (2022) Shaping polarization of tumor-associated macrophages in cancer immunotherapy. Front Immunol 13:888713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Choi J-N, Sun EG, Cho S-H (2019) IL-12 enhances immune response by modulation of myeloid derived suppressor cells in tumor microenvironment. Chonnam Med J 55(1):31–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Qi L, Chen J, Yang Y, Hu W (2020) Hypoxia correlates with poor survival and M2 macrophage infiltration in colorectal cancer. Front Oncol 10:566430

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sadhukhan P, Feng M, Illingworth E, Sloma I, Ugurlu MT, Sille F et al (2021) Abstract P174: YAP1 drives immune suppression in urothelial carcinoma of bladder. Mol Cancer Ther 20(12_Supplement):P174-P

  56. Kobatake K, Ikeda K-i, Nakata Y, Yamasaki N, Ueda T, Kanai A et al (2020) Kdm6a deficiency activates inflammatory pathways, promotes M2 macrophage polarization, and causes bladder cancer in cooperation with p53 dysfunctionKdm6a deficiency in bladder cancer. Clin Cancer Res 26(8):2065–79

    Article  CAS  PubMed  Google Scholar 

  57. Kang J, Lee D, Lee KJ, Yoon JE, Kwon J-H, Seo Y et al (2022) Tumor-suppressive effect of metformin via the regulation of M2 macrophages and myeloid-derived suppressor cells in the tumor microenvironment of colorectal cancer. Cancers 14(12):2881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Najafi M, Farhood B, Mortezaee K (2019) Contribution of regulatory T cells to cancer: a review. J Cell Physiol 234(6):7983–7993

    Article  CAS  PubMed  Google Scholar 

  59. Zhang J, Zhou X, Hao H (2022) Macrophage phenotype-switching in cancer. Eur J Pharmacol 21:175229

  60. Yang Y, Hou J, Liu J, Bhushan S, Wu G (2022) The origins of resident macrophages in mammary gland influence the tumorigenesis of breast cancer. Int Immunopharmacol 110:109047

    Article  CAS  PubMed  Google Scholar 

  61. Xu J, Liu X-Y, Zhang Q, Liu H, Zhang P, Tian Z-B et al (2022) Crosstalk among YAP, LncRNA, and tumor-associated macrophages in tumorigenesis development. Front Oncol 11:5627

    Article  Google Scholar 

  62. Christofides A, Strauss L, Yeo A, Cao C, Charest A, Boussiotis VA (2022) The complex role of tumor-infiltrating macrophages. Nat Immunol 23(8):1148–1156

    Article  CAS  PubMed  Google Scholar 

  63. Liu L, Li H, Wang J, Zhang J, Liang X-J, Guo W et al (2022) Leveraging macrophages for cancer theranostics. Adv Drug Deliv Rev 183:114136

  64. Kumari N, Choi SH (2022) Tumor-associated macrophages in cancer: recent advancements in cancer nanoimmunotherapies. J Exp Clin Cancer Res 41(1):1–39

    Article  Google Scholar 

  65. Yaping W, Zhe W, Zhuling C, Ruolei L, Pengyu F, Lili G et al (2022) The soldiers needed to be awakened: tumor-infiltrating immune cells. Front Gen 13

  66. Franco PIR, Rodrigues AP, de Menezes LB, Miguel MP (2020) Tumor microenvironment components: allies of cancer progression. Pathol Res Prac 216(1):152729

    Article  Google Scholar 

  67. Ran S, Montgomery KE (2012) Macrophage-mediated lymphangiogenesis: the emerging role of macrophages as lymphatic endothelial progenitors. Cancers (Basel) 4(3):618–657

    Article  CAS  PubMed  Google Scholar 

  68. Rao S, Lobov IB, Vallance JE, Tsujikawa K, Shiojima I, Akunuru S et al (2007) Obligatory participation of macrophages in an angiopoietin 2-mediated cell death switch. Development 134(24):4449–4458

    Article  CAS  PubMed  Google Scholar 

  69. Stefater JA 3rd, Lewkowich I, Rao S, Mariggi G, Carpenter AC, Burr AR et al (2011) Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells. Nature 474(7352):511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zerlin M, Julius MA, Kitajewski J (2008) Wnt/frizzled signaling in angiogenesis. Angiogenesis 11(1):63–69

    Article  CAS  PubMed  Google Scholar 

  71. Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8(8):618–631

    Article  CAS  PubMed  Google Scholar 

  73. De Palma M, Biziato D, Petrova TV (2017) Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer 17(8):457–474

    Article  PubMed  Google Scholar 

  74. Jeong H, Kim S, Hong BJ, Lee CJ, Kim YE, Bok S et al (2019) Tumor-associated macrophages enhance tumor hypoxia and aerobic glycolysis. Cancer Res 79(4):795–806

    Article  CAS  PubMed  Google Scholar 

  75. Albini A, Bruno A, Noonan DM, Mortara L (2018) Contribution to tumor angiogenesis from innate immune cells within the tumor microenvironment: implications for immunotherapy. Front Immunol 9:527

    Article  PubMed  PubMed Central  Google Scholar 

  76. Yeo EJ, Cassetta L, Qian BZ, Lewkowich I, Li JF, Stefater JA 3rd et al (2014) Myeloid WNT7b mediates the angiogenic switch and metastasis in breast cancer. Cancer Res 74(11):2962–2973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ramirez-Pedraza M, Fernández M (2019) Interplay between macrophages and angiogenesis: a double-edged sword in liver disease. Front Immunol 10:2882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Squadrito ML, De Palma M (2011) Macrophage regulation of tumor angiogenesis: implications for cancer therapy. Mol Aspects Med 32(2):123–145

    Article  CAS  PubMed  Google Scholar 

  79. Mazzieri R, Pucci F, Moi D, Zonari E, Ranghetti A, Berti A et al (2011) Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 19(4):512–526

    Article  CAS  PubMed  Google Scholar 

  80. Belgiovine C, D’Incalci M, Allavena P, Frapolli R (2016) Tumor-associated macrophages and anti-tumor therapies: complex links. Cell Mol Life Sci 73(13):2411–2424

    Article  CAS  PubMed  Google Scholar 

  81. Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496(7446):445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lan J, Sun L, Xu F, Liu L, Hu F, Song D et al (2019) M2 macrophage-derived exosomes promote cell migration and invasion in colon cancer. Cancer Res 79(1):146–158

    Article  CAS  PubMed  Google Scholar 

  83. Yin Z, Ma T, Huang B, Lin L, Zhou Y, Yan J et al (2019) Macrophage-derived exosomal microRNA-501-3p promotes progression of pancreatic ductal adenocarcinoma through the TGFBR3-mediated TGF-β signaling pathway. J Exp Clin Cancer Res 38(1):310

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zhou J, Li X, Wu X, Zhang T, Zhu Q, Wang X et al (2018) Exosomes released from tumor-associated macrophages transfer miRNAs that induce a Treg/Th17 cell imbalance in epithelial ovarian cancer. Cancer Immunol Res 6(12):1578–1592

    Article  CAS  PubMed  Google Scholar 

  85. Sun D, Luo T, Dong P, Zhang N, Chen J, Zhang S et al (2020) M2-polarized tumor-associated macrophages promote epithelial-mesenchymal transition via activation of the AKT3/PRAS40 signaling pathway in intrahepatic cholangiocarcinoma. J Cell Biochem 121(4):2828–2838

    Article  CAS  PubMed  Google Scholar 

  86. Dudas J, Ladanyi A, Ingruber J, Steinbichler TB, Riechelmann H (2020) Epithelial to mesenchymal transition: a mechanism that fuels cancer radio/chemoresistance. Cells 9(2)

  87. Zheng P, Chen L, Yuan X, Luo Q, Liu Y, Xie G et al (2017) Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells. J Exp Clin Cancer Res 36(1):53

    Article  PubMed  PubMed Central  Google Scholar 

  88. Halbrook CJ, Pontious C, Kovalenko I, Lapienyte L, Dreyer S, Lee HJ et al (2019) Macrophage-released pyrimidines inhibit gemcitabine therapy in pancreatic cancer. Cell Metab 29(6):1390–1399

  89. Kimura Y, Inoue A, Hangai S, Saijo S, Negishi H, Nishio J et al (2016) The innate immune receptor dectin-2 mediates the phagocytosis of cancer cells by Kupffer cells for the suppression of liver metastasis. Proc Natl Acad Sci U S A 113(49):14097–14102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Quaranta V, Rainer C, Nielsen SR, Raymant ML, Ahmed MS, Engle DD et al (2018) Macrophage-derived granulin drives resistance to immune checkpoint inhibition in metastatic pancreatic cancer. Cancer Res 78(15):4253–4269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fu SY, Chen FH, Wang CC, Yu CF, Chiang CS, Hong JH (2021) Role of myeloid-derived suppressor cells in high-dose-irradiated TRAMP-C1 tumors: a therapeutic target and an index for assessing tumor microenvironment. Int J Radiat Oncol Biol Phys 109(5):1547–1558

    Article  PubMed  Google Scholar 

  92. Chiang CS, Fu SY, Wang SC, Yu CF, Chen FH, Lin CM et al (2012) Irradiation promotes an m2 macrophage phenotype in tumor hypoxia. Front Oncol 2:89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Locati M, Curtale G, Mantovani A (2020) Diversity, mechanisms and significance of macrophage plasticity. Annu Rev Pathol 15:123

    Article  CAS  PubMed  Google Scholar 

  94. Bercovici N, Guérin MV, Trautmann A, Donnadieu E (2019) The remarkable plasticity of macrophages: a chance to fight cancer. Front Immunol 10:1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhuang X, Zhang H, Hu G (2019) Cancer and microenvironment plasticity: double-edged swords in metastasis. Trends Pharmacol Sci 40(6):419–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hasan MN, Capuk O, Patel SM, Sun D (2022) The role of metabolic plasticity of tumor-associated macrophages in shaping the tumor microenvironment immunity. Cancers 14(14):3331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jeong H, Kim S, Hong B-J, Lee C-J, Kim Y-E, Bok S et al (2019) Tumor-associated macrophages enhance tumor hypoxia and aerobic glycolysis. Can Res 79(4):795–806

    Article  CAS  Google Scholar 

  98. Puthenveetil A, Dubey S (2020) Metabolic reprograming of tumor-associated macrophages. Ann Transl Med 8(16):1030

  99. Mehla K, Singh PK (2019) Metabolic regulation of macrophage polarization in cancer. Trends Cancer 5(12):822–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Soto‐Heredero G, Gomez de las Heras MM, Gabandé‐Rodríguez E, Oller J, Mittelbrunn M (2020) Glycolysis–a key player in the inflammatory response. FEBS J 287(16):3350–69

  101. Pearce E, Pearce E (2013) Metabolic pathways in immune cell activation and quiescence. Immunity 38(4):633–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chen Y, Song Y, Du W, Gong L, Chang H, Zou Z (2019) Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci 26(1):1–13

    Article  Google Scholar 

  103. Ge T, Yang J, Zhou S, Wang Y, Li Y, Tong X (2020) The role of the pentose phosphate pathway in diabetes and cancer. Front Endocrinol 11:365

    Article  Google Scholar 

  104. Wu L, Zhang X, Zheng L, Zhao H, Yan G, Zhang Q et al (2020) RIPK3 orchestrates fatty acid metabolism in tumor-associated macrophages and hepatocarcinogenesisRIPK3 regulates immunometabolism in hepatocarcinogenesis. Cancer Immunol Res 8(5):710–721

    Article  CAS  PubMed  Google Scholar 

  105. Jayasingam SD, Citartan M, Thang TH, Mat Zin AA, Ang KC, Ch’ng ES (2020) Evaluating the polarization of tumor-associated macrophages into M1 and M2 phenotypes in human cancer tissue: technicalities and challenges in routine clinical practice. Front Oncol 9:1512

    Article  PubMed  PubMed Central  Google Scholar 

  106. Huynh J, Chand A, Gough D, Ernst M (2019) Therapeutically exploiting STAT3 activity in cancer—using tissue repair as a road map. Nat Rev Cancer 19(2):82–96

    Article  CAS  PubMed  Google Scholar 

  107. Wang S, Liu R, Yu Q, Dong L, Bi Y, Liu G (2019) Metabolic reprogramming of macrophages during infections and cancer. Cancer Lett 452:14–22

    Article  CAS  PubMed  Google Scholar 

  108. Chen C-L, Hsu S-C, Ann DK, Yen Y, Kung H-J (2021) Arginine signaling and cancer metabolism. Cancers 13(14):3541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lee YS, Song SJ, Hong HK, Oh BY, Lee WY, Cho YB (2020) The FBW7-MCL-1 axis is key in M1 and M2 macrophage-related colon cancer cell progression: validating the immunotherapeutic value of targeting PI3Kγ. Exp Mol Med 52(5):815–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Miyazaki T, Ishikawa E, Matsuda M, Sugii N, Kohzuki H, Akutsu H et al (2020) Infiltration of CD163-positive macrophages in glioma tissues after treatment with anti-PD-L1 antibody and role of PI3Kγ inhibitor as a combination therapy with anti-PD-L1 antibody in in vivo model using temozolomide-resistant murine glioma-initiating cells. Brain Tumor Pathol 37(2):41–49

    Article  CAS  PubMed  Google Scholar 

  111. Sheida F, Razi S, Keshavarz-Fathi M, Rezaei N (2022) The role of myeloid-derived suppressor cells in lung cancer and targeted immunotherapies. Expert Rev Anticancer Ther 22(1):65–81

    Article  CAS  PubMed  Google Scholar 

  112. Borek B, Gajda T, Golebiowski A, Blaszczyk R (2020) Boronic acid-based arginase inhibitors in cancer immunotherapy. Bioorg Med Chem 28(18):115658

    Article  CAS  PubMed  Google Scholar 

  113. Yang J, Zhang Q, Wang J, Lou Y, Hong Z, Wei S et al (2022) Dynamic profiling of immune microenvironment during pancreatic cancer development suggests early intervention and combination strategy of immunotherapy. EBioMedicine 78:103958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Penta D, Natesh J, Mondal P, Meeran SM (2022) Dietary diindolylmethane enhances the therapeutic effect of centchroman in breast cancer by inhibiting neoangiogenesis. Nutr Cancer 75:734–749

  115. Baci D, Bruno A, Cascini C, Gallazzi M, Mortara L, Sessa F et al (2019) Acetyl-L-carnitine downregulates invasion (CXCR4/CXCL12, MMP-9) and angiogenesis (VEGF, CXCL8) pathways in prostate cancer cells: rationale for prevention and interception strategies. J Exp Clin Cancer Res 38(1):1–17

    Article  CAS  Google Scholar 

  116. Asokan S, Bandapalli OR (2021) CXCL8 signaling in the tumor microenvironment. Tumor Microenviron 1302:25–39

  117. Vitale I, Manic G, Coussens LM, Kroemer G, Galluzzi L (2019) Macrophages and metabolism in the tumor microenvironment. Cell Metab 30(1):36–50

    Article  CAS  PubMed  Google Scholar 

  118. Wang N, Wang S, Wang X, Zheng Y, Yang B, Zhang J et al (2021) Research trends in pharmacological modulation of tumor-associated macrophages. Clin Transl Med 11(1):e288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Galván-Peña S, Carroll RG, Newman C, Hinchy EC, Palsson-McDermott E, Robinson EK et al (2019) Malonylation of GAPDH is an inflammatory signal in macrophages. Nat Commun 10(1):1–11

    Article  Google Scholar 

  120. Penny HL, Sieow JL, Adriani G, Yeap WH, See Chi Ee P, San Luis B et al (2016) Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma. Oncoimmunology 5(8):e1191731

    Article  PubMed  PubMed Central  Google Scholar 

  121. Zhao Q, Chu Z, Zhu L, Yang T, Wang P, Liu F et al (2017) 2-Deoxy-d-glucose treatment decreases anti-inflammatory M2 macrophage polarization in mice with tumor and allergic airway inflammation. Front Immunol 8:637

    Article  PubMed  PubMed Central  Google Scholar 

  122. Liu D, Chang C, Lu N, Wang X, Lu Q, Ren X et al (2017) Comprehensive proteomics analysis reveals metabolic reprogramming of tumor-associated macrophages stimulated by the tumor microenvironment. J Proteome Res 16(1):288–297

    Article  CAS  PubMed  Google Scholar 

  123. Menga A, Favia M, Spera I, Vegliante MC, Gissi R, De Grassi A et al (2021) N-acetylaspartate release by glutaminolytic ovarian cancer cells sustains protumoral macrophages. EMBO Rep 22(9):e51981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hinshaw DC, Hanna A, Lama-Sherpa T, Metge B, Kammerud SC, Benavides GA et al (2021) Hedgehog signaling regulates metabolism and polarization of mammary tumor-associated macrophages. Can Res 81(21):5425–5437

    Article  CAS  Google Scholar 

  125. Hu B, Lin JZ, Yang XB, Sang XT (2020) Aberrant lipid metabolism in hepatocellular carcinoma cells as well as immune microenvironment: a review. Cell Prolif 53(3):e12772

    Article  PubMed  PubMed Central  Google Scholar 

  126. Dubey S, Ghosh S, Goswami D, Ghatak D, De R (2022) Immunometabolic attributes and mitochondria-associated signaling of tumor-associated macrophages in tumor microenvironment modulate cancer progression. Biochem Phar 208:115369

  127. Ramesh A, Malik V, Brouillard A, Kulkarni A (2022) Supramolecular nanotherapeutics enable metabolic reprogramming of tumor‐associated macrophages to inhibit tumor growth. J Biomed Mater Res Part A 110(8):1448–1159

  128. Wang J, Mi S, Ding M, Li X, Yuan S (2022) Metabolism and polarization regulation of macrophages in the tumor microenvironment. Cancer Lett 543:215766

    Article  CAS  PubMed  Google Scholar 

  129. Chen T-W, Hung W-Z, Chiang S-F, Chen WT-L, Ke T-W, Liang J-A et al (2022) Dual inhibition of TGFβ signaling and CSF1/CSF1R reprograms tumor-infiltrating macrophages and improves response to chemotherapy via suppressing PD-L1. Cancer Lett 543:215795

    Article  CAS  PubMed  Google Scholar 

  130. Zhou Y, Su W, Liu H, Chen T, Höti N, Pei H et al (2020) Fatty acid synthase is a prognostic marker and associated with immune infiltrating in gastric cancers precision medicine. Biomark Med 14(3):185–199

    Article  CAS  PubMed  Google Scholar 

  131. Malfitano AM, Pisanti S, Napolitano F, Di Somma S, Martinelli R, Portella G (2020) Tumor-associated macrophage status in cancer treatment. Cancers 12(7):1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Huang T, Song C, Zheng L, Xia L, Li Y, Zhou Y (2019) The roles of extracellular vesicles in gastric cancer development, microenvironment, anti-cancer drug resistance, and therapy. Mol Cancer 18(1):1–11

    Article  CAS  Google Scholar 

  133. Baba Y, Nomoto D, Okadome K, Ishimoto T, Iwatsuki M, Miyamoto Y et al (2020) Tumor immune microenvironment and immune checkpoint inhibitors in esophageal squamous cell carcinoma. Cancer Sci 111(9):3132–3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Huang Q, Lei Y, Li X, Guo F, Liu M (2020) A highlight of the mechanisms of immune checkpoint blocker resistance. Front Cell Dev Biol 8:580140

    Article  PubMed  PubMed Central  Google Scholar 

  135. Kashfi K, Kannikal J, Nath N (2021) Macrophage reprogramming and cancer therapeutics: role of iNOS-derived NO. Cells 10(11):3194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lopez-Yrigoyen M, Cassetta L, Pollard JW (2021) Macrophage targeting in cancer. Ann N Y Acad Sci 1499(1):18–41

    Article  PubMed  Google Scholar 

  137. Wang Y-C, Wang X, Yu J, Ma F, Li Z, Zhou Y et al (2021) Targeting monoamine oxidase A-regulated tumor-associated macrophage polarization for cancer immunotherapy. Nat Commun 12(1):1–17

    Google Scholar 

  138. Kadomoto S, Izumi K, Mizokami A (2021) Roles of CCL2-CCR2 Axis in the tumor microenvironment. Int J Mol Sci 22(16):8530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Xu M, Wang Y, Xia R, Wei Y, Wei X (2021) Role of the CCL2-CCR2 signalling axis in cancer: mechanisms and therapeutic targeting. Cell Prolif 54(10):e13115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gautam SK, Basu S, Aithal A, Dwivedi NV, Gulati M, Jain M (2022) Regulation of pancreatic cancer therapy resistance by chemokines. Semin Cancer Biol 86:69–80

  141. Deng D, Patel R, Chiang C-Y, Hou P (2022) Role of the tumor microenvironment in regulating pancreatic cancer therapy resistance. Cells 11(19):2952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Chen Y, Jin H, Song Y, Huang T, Cao J, Tang Q et al (2021) Targeting tumor-associated macrophages: a potential treatment for solid tumors. J Cell Physiol 236(5):3445–3465

    Article  CAS  PubMed  Google Scholar 

  143. Zhang S-Y, Song X-Y, Li Y, Ye L-L, Zhou Q, Yang W-B (2020) Tumor-associated macrophages: a promising target for a cancer immunotherapeutic strategy. Pharmacol Res 161:105111

    Article  CAS  PubMed  Google Scholar 

  144. Karagiannis GS, Rivera-Sanchez L, Duran CL, Oktay MH, Condeelis JS (2020) Emerging roles of Cxcl12/Cxcr4 signaling axis in breast cancer metastasis. Am Assoc Immnol 204:90–94

  145. Tang C, Lei X, Xiong L, Hu Z, Tang B (2021) HMGA1B/2 transcriptionally activated-POU1F1 facilitates gastric carcinoma metastasis via CXCL12/CXCR4 axis-mediated macrophage polarization. Cell Death Dis 12(5):1–15

    Article  Google Scholar 

  146. Braoudaki M, Ahmad MS, Mustafov D, Seriah S, Siddiqui MN, Siddiqui SS (2022) Chemokines and chemokine receptors in colorectal cancer; multifarious roles and clinical impact. Semin Cancer Biol 86:436–449

  147. Kielbassa K, Vegna S, Ramirez C, Akkari L (2019) Understanding the origin and diversity of macrophages to tailor their targeting in solid cancers. Front Immunol 10:2215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Fujiwara T, Yakoub MA, Chandler A, Christ AB, Yang G, Ouerfelli O et al (2021) CSF1/CSF1R signaling inhibitor pexidartinib (PLX3397) reprograms tumor-associated macrophages and stimulates T-cell infiltration in the sarcoma microenvironment. Mol Cancer Ther 20(8):1388–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Uddin M, Wang X (2022) Identification of key tumor stroma-associated transcriptional signatures correlated with survival prognosis and tumor progression in breast cancer. Breast Cancer 29(3):541–561

    Article  PubMed  Google Scholar 

  150. Babaeijandaghi F, Cheng R, Kajabadi N, Soliman H, Chang C-K, Smandych J et al (2022) Metabolic reprogramming of skeletal muscle by resident macrophages points to CSF1R inhibitors as muscular dystrophy therapeutics. Sci Transl Med 14(651):eabg7504

    Article  CAS  PubMed  Google Scholar 

  151. Taylor MH, Leong S, Tan G, Leary CB, Li X, Kuida K et al (2019) Phase 1 study of DCC-3014, an oral inhibitor of CSF1R, to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics in patients with advanced solid tumors, including diffuse-type tenosynovial giant cell tumor. Prostate 3:8

    Google Scholar 

  152. Autio KA, Klebanoff CA, Schaer D, Kauh JSW, Slovin SF, Adamow M et al (2020) Immunomodulatory activity of a colony-stimulating factor-1 receptor inhibitor in patients with advanced refractory breast or prostate cancer: a phase I studyCSF-1R inhibition for advanced breast or prostate cancer. Clin Cancer Res 26(21):5609–5620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Bissinger S, Hage C, Wagner V, Maser I-P, Brand V, Schmittnaegel M et al (2021) Macrophage depletion induces edema through release of matrix-degrading proteases and proteoglycan deposition. Sci Transl Med 13(598):eabd4550

    Article  CAS  PubMed  Google Scholar 

  154. Sharma A, Liaw K, Sharma R, Spriggs T, Appiani La Rosa S, Kannan S et al (2020) Dendrimer-mediated targeted delivery of rapamycin to tumor-associated macrophages improves systemic treatment of glioblastoma. Biomacromolecules 21(12):5148–61

    Article  CAS  PubMed  Google Scholar 

  155. Keenan TE, Guerriero JL, Barroso-Sousa R, Li T, O’Meara T, Giobbie-Hurder A et al (2021) Molecular correlates of response to eribulin and pembrolizumab in hormone receptor-positive metastatic breast cancer. Nat Commun 12(1):1–13

    Article  Google Scholar 

  156. Sanchez LR, Borriello L, Entenberg D, Condeelis JS, Oktay MH, Karagiannis GS (2019) The emerging roles of macrophages in cancer metastasis and response to chemotherapy. J Leukoc Biol 106(2):259–274

    Article  CAS  PubMed  Google Scholar 

  157. Ries CH, Cannarile MA, Hoves S, Benz J, Wartha K, Runza V et al (2014) Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25(6):846–859

    Article  CAS  PubMed  Google Scholar 

  158. Pradel LP, Ooi CH, Romagnoli S, Cannarile MA, Sade H, Rüttinger D et al (2016) Macrophage susceptibility to emactuzumab (RG7155) treatment. Mol Cancer Ther 15(12):3077–3086

    Article  CAS  PubMed  Google Scholar 

  159. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF et al (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19(10):1264–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Seton-Rogers S (2013) Tumour microenvironment: teaching old macrophages new tricks. Nat Rev Cancer 13(11):753

    Article  CAS  PubMed  Google Scholar 

  161. Barca C, Foray C, Hermann S, Herrlinger U, Remory I, Laoui D et al (2021) The colony stimulating factor-1 receptor (CSF-1R)-mediated regulation of microglia/macrophages as a target for neurological disorders (glioma, stroke). Front Immunol 12:787307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Quail DF, Bowman RL, Akkari L, Quick ML, Schuhmacher AJ, Huse JT et al (2016) The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352(6288):aad3018

    Article  PubMed  PubMed Central  Google Scholar 

  163. Seoane J (2016) The taming of the TAMs. Trends Cell Biol 26(8):562–563

    Article  PubMed  Google Scholar 

  164. Lamhamedi-Cherradi SE, Menegaz BA, Ramamoorthy V, Vishwamitra D, Wang Y, Maywald RL et al (2016) IGF-1R and mTOR blockade: novel resistance mechanisms and synergistic drug combinations for Ewing sarcoma. J Natl Cancer Inst 108(12)

  165. Kaneda MM, Messer KS, Ralainirina N, Li H, Leem CJ, Gorjestani S et al (2016) PI3Kγ is a molecular switch that controls immune suppression. Nature 539(7629):437–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zheng W, Pollard JW (2016) Inhibiting macrophage PI3Kγ to enhance immunotherapy. Cell Res 26(12):1267–1268

    Article  PubMed  PubMed Central  Google Scholar 

  167. Kaneda MM, Cappello P, Nguyen AV, Ralainirina N, Hardamon CR, Foubert P et al (2016) Macrophage PI3Kγ drives pancreatic ductal adenocarcinoma progression. Cancer Discov 6(8):870–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. De Vera AA, Gupta P, Lei Z, Liao D, Narayanan S, Teng Q et al (2019) Immuno-oncology agent IPI-549 is a modulator of P-glycoprotein (P-gp, MDR1, ABCB1)-mediated multidrug resistance (MDR) in cancer: in vitro and in vivo. Cancer Lett 442:91–103

    Article  PubMed  Google Scholar 

  169. Barclay AN, Van den Berg TK (2014) The interaction between signal regulatory protein alpha (SIRPα) and CD47: structure, function, and therapeutic target. Annu Rev Immunol 32:25–50

    Article  CAS  PubMed  Google Scholar 

  170. Logtenberg MEW, Scheeren FA, Schumacher TN (2020) The CD47-SIRPα immune checkpoint. Immunity 52(5):742–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Grottoli M, Carrega P, Zullo L, Dellepiane C, Rossi G, Parisi F et al (2022) Immune checkpoint blockade: a strategy to unleash the potential of natural killer cells in the anti-cancer therapy. Cancers 14(20):5046

  172. Gholamin S, Mitra SS, Feroze AH, Liu J, Kahn SA, Zhang M et al (2017) Disrupting the CD47-SIRPα anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors. Sci Transl Med 9(381)

  173. Villanueva MT (2017) Anticancer therapy: re-educating macrophages. Nat Rev Drug Discov 16(5):313

    Article  CAS  PubMed  Google Scholar 

  174. Feng M, Jiang W, Kim BYS, Zhang CC, Fu YX, Weissman IL (2019) Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat Rev Cancer 19(10):568–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lentz RW, Colton MD, Mitra SS, Messersmith WA (2021) Innate immune checkpoint inhibitors: the next breakthrough in medical oncology? Mol Cancer Ther 20(6):961–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Barkal AA, Weiskopf K, Kao KS, Gordon SR, Rosental B, Yiu YY et al (2018) Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat Immunol 19(1):76–84

    Article  CAS  PubMed  Google Scholar 

  177. Zhang CC, Fu YX (2018) Another way to not get eaten. Nat Immunol 19(1):6–7

    Article  CAS  PubMed  Google Scholar 

  178. Siu LL, Wang D, Hilton J, Geva R, Rasco D, Perets R, Abraham AK, Wilson DC, Markensohn JF, Lunceford J, Suttner L, Siddiqi S, Altura RA, Maurice-Dror C (2022) Correction: first-in-class anti-immunoglobulin-like transcript 4 myeloid-specific antibody MK-4830 abrogates a PD-1 resistance mechanism in patients with advanced solid tumors. Clin Cancer Res 28(18):4158

    Article  PubMed  PubMed Central  Google Scholar 

  179. Chen HM, van der Touw W, Wang YS, Kang K, Mai S, Zhang J et al (2018) Blocking immunoinhibitory receptor LILRB2 reprograms tumor-associated myeloid cells and promotes antitumor immunity. J Clin Invest 128(12):5647‒5662

  180. Sharma N, Atolagbe OT, Ge Z, Allison JP (2021) LILRB4 suppresses immunity in solid tumors and is a potential target for immunotherapy. J Exp Med 218(7)

  181. Deng M, Gui X, Kim J, Xie L, Chen W, Li Z et al (2018) LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature 562(7728):605–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Guerriero JL, Sotayo A, Ponichtera HE, Castrillon JA, Pourzia AL, Schad S et al (2017) Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Nature 543(7645):428–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Reichman H, Munitz A (2017) Harnessing class II histone deacetylases in macrophages to combat breast cancer. Cell Mol Immunol 14(7):575–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W et al (2011) CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331(6024):1612–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Nanda S (2011) Cancer: CD40 agonists—a promising new treatment for pancreatic cancer? Nat Rev Gastroenterol Hepatol 8(6):300

    Article  PubMed  Google Scholar 

  186. Baumann D, Hägele T, Mochayedi J, Drebant J, Vent C, Blobner S et al (2020) Proimmunogenic impact of MEK inhibition synergizes with agonist anti-CD40 immunostimulatory antibodies in tumor therapy. Nat Commun 11(1):2176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Baumann D, Offringa R (2020) Targeting immune-checkpoint inhibitor resistance mechanisms by MEK inhibitor and agonist anti-CD40 antibody combination therapy. Cell Stress 4(10):248–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Ji N, Mukherjee N, Morales EE, Tomasini ME, Hurez V, Curiel TJ et al (2019) Percutaneous BCG enhances innate effector antitumor cytotoxicity during treatment of bladder cancer: a translational clinical trial. Oncoimmunology 8(8):e1614857

  189. Ji N, Mukherjee N, Reyes RM, Gelfond J, Javors M, Meeks JJ et al (2021) Rapamycin enhances BCG-specific γδ T cells during intravesical BCG therapy for non-muscle invasive bladder cancer: a randomized, double-blind study. J Immunother Cancer 9(3)

  190. Mullins SR, Vasilakos JP, Deschler K, Grigsby I, Gillis P, John J et al (2019) Intratumoral immunotherapy with TLR7/8 agonist MEDI9197 modulates the tumor microenvironment leading to enhanced activity when combined with other immunotherapies. J Immunother Cancer 7(1):244

    Article  PubMed  PubMed Central  Google Scholar 

  191. Fakhari A, Nugent S, Elvecrog J, Vasilakos J, Corcoran M, Tilahun A et al (2017) Thermosensitive gel-based formulation for intratumoral delivery of toll-like receptor 7/8 dual agonist, MEDI9197. J Pharm Sci 106(8):2037–2045

    Article  CAS  PubMed  Google Scholar 

  192. Li B, Ren M, Zhou X, Han Q, Cheng L (2020) Targeting tumor associated macrophages in head and neck squamous cell carcinoma. Oral Oncol 106:104723

  193. Zawit M, Swami U, Awada H, Arnouk J, Milhem M, Zakharia Y (2021) Current status of intralesional agents in treatment of malignant melanoma. Ann Transl Med 9(12)

  194. Agrawal S, Kandimalla ER (2019) Intratumoural immunotherapy: activation of nucleic acid sensing pattern recognition receptors. Immuno-Oncol Technol 3:15–23

    Article  Google Scholar 

  195. Olingy CE, Dinh HQ, Hedrick CC (2019) Monocyte heterogeneity and functions in cancer. J Leukoc Biol 106(2):309–322

    Article  CAS  PubMed  Google Scholar 

  196. Anderson NM, Simon MC (2020) The tumor microenvironment. Curr Biol 30(16):R921–R925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Tang T, Huang X, Zhang G, Hong Z, Bai X, Liang T (2021) Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy. Signal Transduct Target Ther 6(1):1–13

    Google Scholar 

  198. van de Wall S, Santegoets KC, van Houtum EJ, Büll C, Adema GJ (2020) Sialoglycans and siglecs can shape the tumor immune microenvironment. Trends Immunol 41(4):274–285

    Article  PubMed  Google Scholar 

  199. Liu Y, Cao X (2015) The origin and function of tumor-associated macrophages. Cell Mol Immunol 12(1):1–4

    Article  PubMed  Google Scholar 

  200. Cassetta L, Pollard JW (2020) Tumor-associated macrophages. Curr Biol 30(6):R246–R248

    Article  CAS  PubMed  Google Scholar 

  201. Xiang X, Wang J, Lu D, Xu X (2021) Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct Target Ther 6(1):1–12

    CAS  Google Scholar 

  202. Hoeksema MA, de Winther MP (2016) Epigenetic regulation of monocyte and macrophage function. Antioxid Redox Signal 25(14):758‒774

  203. Porta C, Riboldi E, Ippolito A, Sica A (eds) (2015) Molecular and epigenetic basis of macrophage polarized activation. Semin Immunol 27(4):237–248

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanguy Y. Seiwert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a contribution to the special issue on: Novel immunotherapeutic combinations moving forward: The modulation of the immunosuppressive microenvironment - Guest Editor: Mads Hald

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadhukhan, P., Seiwert, T.Y. The role of macrophages in the tumor microenvironment and tumor metabolism. Semin Immunopathol 45, 187–201 (2023). https://doi.org/10.1007/s00281-023-00988-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-023-00988-2

Keywords

Navigation