Abstract
Fungi possess extraordinary strength in attachment to biotic and abiotic surfaces. This review focuses on adhesion mechanisms of yeast and filamentous fungi and the proposed combination of the adhesive forces of both organisms in an immobilization system called yeast biocapsules, whereby Saccharomyces cerevisiae cells are attached to the hyphae of Penicillium chrysogenum. The natural adherent properties of each organism, one multicellular and another unicellular, allow yeast to be fixated securely on the filamentous fungi and complete alcoholic fermentation. Following alcoholic fermentation, the hyphae become an inert support for yeast cells while maintaining shape and integrity. Biocapsules have been used successfully in both wine and bioethanol production. Investigation of the potential genes involved in fungal-yeast fusion suggests that natural hydrophobic interactions of both organisms play a major role. Analysis of the possible mechanisms involved in fungus and yeast adhesion, future perspectives on improving yeast immobilization, and proposed applications of the biocapsules are explored.


Similar content being viewed by others
References
Amory DE, Rouxhet PG (1988) Surface properties of Saccharomyces cerevisiae and Saccharomyces carlbergensis: chemical composition, electrostatic charge and hydrophobicity. Biochim Biophys Acta Biomembr 938:61–70. https://doi.org/10.1016/0005-2736(88)90122-8
Barrales RR, Jimenez J, Ibeas JI (2008) Identification of novel activation mechanisms for FLO11 regulation in Saccharomyces cerevisiae. Genetics 178:145–156. https://doi.org/10.1534/genetics.107.081315
Bonfante P, Anca I-A (2009) Plants, mycorrhizal fungi and bacteria: a network of interactions. Annu Rev Micobiol 63:363–383. https://doi.org/10.1146/annurev.micro.091208.073504
Brückner S, Mösch H-U (2012) Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae. FEMS Microbiol Rev 36:25–58. https://doi.org/10.1111/j.1574-6976.2011.00275.x
Calam CT (1987) Process development in antibiotic fermentations. Cambridge University Press. https://doi.org/10.1016/0005-2736(88)90122-8
de Groot PWJ, Bader O, de Boer AD, Weig M, Chauhan N (2013) Adhesions in human fungal pathogenesis: glue with plenty of stick. Euk Cell 12:470–481. https://doi.org/10.1128/EC.00364-12
Di Gianvito P, Tesnière C, Suzzi G, Blondin B, Tofalo R (2017) FLO 5 gene controls flocculation phenotype and adhesive properties in a Saccharomyces cerevisiae sparkling wine strain. Sci Rep 7:10786. https://doi.org/10.1038/s41598-017-09990-9
Doyle RJ (2000) Contribution of the hydrophobic effect to microbial infection. Microbes Infect 2:391–400. https://doi.org/10.1016/S1286-4579(00)00328-2
Eisenman HC, Casadevall A (2012) Synthesis and assembly of fungal melanin. Appl Microbiol Biotechnol 93:931–940. https://doi.org/10.1007/s00253-011-3777-2
El-Kirat-Chatel S, Beaussart A, Vincent SP, Flos MA, Hols P, Lipke PN, Dufrêne YF (2015) Forces in yeast flocculation. Nanoscale 7:1760–1767. https://doi.org/10.1039/c4nr06315e
Epstein L, Nicholson R (2016) Adhesion and adhesives of fungi and oomycetes. In: Smith AM (ed) Biological adhesion, 2nd edn, Cham, pp 25–55
Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59:1115–1126. https://doi.org/10.1093/jxb/ern059
Fontaine T, Beauvais A, Loussert C, Thevenard B, Fulgsang CC, Ohno N, Clavaud C, Prevost MC, Latgé JP (2010) Cell wall α1-3glucans induce the aggregation of germinating conidia of Aspergillus fumigatus. Fungal Genet Biol 47:707–712. https://doi.org/10.1016/j.fgb.2010.04.006
García-Martínez T, Peinado RA, Moreno J, García-García I, Mauricio JC (2011) Co-culture of Penicillium chrysogenum and Saccharomyces cerevisiae leading to the immobilization of yeast. J Chem Technol Biotechnol 86:812–817. https://doi.org/10.1002/jctb.2593
García-Martínez T, Puig-Pujol A, Peinado RA, Moreno J, Mauricio JC (2012) Potential use of wine yeasts immobilized on Penicillium chrysogenum for ethanol production. J Chem Technol Biotechnol 87:351–359. https://doi.org/10.1002/jctb.2725
García-Martínez T, López de Lerma N, Moreno J, Peinado RA, Millán MC, Mauricio JC (2013) Sweet wine production by two osmotolerant Saccharomyces cerevisiae strains. J Food Sci 78:M874–M879. https://doi.org/10.1111/1750-3841.12124
García-Martínez T, Moreno J, Mauricio JC, Peinado R (2015) Natural sweet wine production by repeated use of yeast cells immobilized on Penicillium chrysogenum. LWT Food Sci Technol 61:503–509. https://doi.org/10.1016/j.lwt.2014.12.029
Gerin PA, Dufrêne Y, Bellon-Fontaine MN, Asther M, Rouxhet PG (1993) Surface properties of the conidiospores of Phanerochaete chrysosporium and their relevance to pellet formation. J Bacteriol 175:5135–5144. https://doi.org/10.1128/jb.175.16.5135-5144.1993
González-Barreiro C, Rial-Otero R, Cancho-Grande B, Simal-Gándara J (2015) Wine aroma compounds in grapes: a critical review. Crit Rev Food Sci Nutr 55:202–218. https://doi.org/10.1080/10408398.2011.650336
Herker E, Jungwirth H, Lehmann KA, Maldener C, Fröhlich KU, Wissing S, Büttner S, Fehr M, Sigrist S, Madeo F (2004) Chronological aging leads to apoptosis in yeast. J Cell Biol 164:501–507. https://doi.org/10.1083/jcb.200310014
Hermersdörfer H, Leuchtenberger A, Wardsack C, Ruttloff H (1987) Influence of culture conditions on mycelial structure and polygalacturonase synthesis of Aspergillus niger. J Basic Microbiol 27:309–315. https://doi.org/10.1002/jobm.3620270604
Hernández-Oñate MA, Esquivel-Naranjo EU, Mendoza-Mendoza A, Stewart A, Herrera-Estrella AH (2012) An injury-response mechanism conserved across kingdoms determines entry of the fungus Trichoderma atroviride into development. Proc Natl Acad Sci U S A 109:14918–14923. https://doi.org/10.1073/pnas.1209396109
Hodge A (2014) Interactions between arbuscular mycorrhizal fungi and organic material substrates. Adv Appl Microbiol 89:47–99. https://doi.org/10.1016/B978-0-12-800259-9.00002-0
Ishigami M, Nakagawa Y, Hayakawa M, Iimura Y (2006) FLO11 is the primary factor in flor formation caused by cell surface hydrophobicity in wild-type flor yeast. Biosci Biotechnol Biochem 70:660–666. https://doi.org/10.1271/bbb.70.660
Jin YL, Ritcey LL, Speers RA, Dolphin PJ (2001) Effect of cell surface hydrophobicity, charge, and zymolectin density on the flocculation of Saccharomyces cerevisiae. J Am Soc Brew Chem 59:1–9. https://doi.org/10.1002/jib.186
Kobayashi O, Hayashi N, Kuroki R, Sone H (1998) Region of Flo1 proteins responsible for sugar recognition. J Bacteriol 180:6503–6510
Kourkoutas Y, Bekatorou A, Banat IM, Marchant R, Koutinas AA (2004) Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol 21:377–397. https://doi.org/10.1016/j.fm.2003.10.005
Kraushaar T, Brückner S, Veelders M, Rhinow D, Schreiner F, Birke R, Pagenstecher A, Mösch HU, Essen LO (2015) Interactions by the fungal Flo11 adhesin depend on a fibronectin type III-like adhesin domain girdled by aromatic bands. Structure 23:1005–1017. https://doi.org/10.1016/j.str.2015.03.021
Kuchin S, Vyas VK, Carlson M (2002) Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol Cell Biol 22:3994–4000. https://doi.org/10.1128/MCB.22.12.3994-4000.2002
Lambrechts MG, Bauer FF, Marmur J, Pretorius IS (1996) Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Proc Natl Acad Sci 93:8419–8424. https://doi.org/10.1073/pnas.93.16.8419
Leveau JH, Preston GM (2008) Bacterial mycophagy: definition and diagnosis of a unique bacterial-fungal interaction. New Phytol 177:859–876
Li B, Peng H, Tian S (2016) Attachment capability of Rhodotorula glutinis to Botrytis cinereal contributes to biocontrol efficacy. Front Microbiol. https://doi.org/10.3389/fmicb.2016.00601
Linder MB (2009) Hydrophobins: proteins that self assemble at interfaces. Curr Opin Colloid Interface Sci (5):356–363. https://doi.org/10.1016/j.cocis.2009.04.001
Linder MB, Szilvay GR, Nakari-Setälä T, Penttilä ME (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29:877–896. https://doi.org/10.1016/j.femsre.2005.01.004
López de Lerma N, García-Martínez T, Moreno J, Mauricio JC, Peinado RA (2012) Sweet wines with great aromatic complexity obtained by partial fermentation of must from Tempranillo dried grapes. Eur Food Res Technol 234:695–701. https://doi.org/10.1007/s00217-012-1680-4
López de Lerma N, Peinado RA, Puig-Pujol A, Mauricio JC, Moreno J, García-Martínez T (2018) Influence of two yeast strains in free, bioimmobilized or immobilized with alginate forms on the aromatic profile of long aged sparkling wines. Food Chem 250:22–29. https://doi.org/10.1016/j.foodchem.2018.01.036
Lytle DA, Johnson CH, Rice EW (2002) A systematic comparison of the electrokinetic properties of environmentally important microorganisms in water. Colloid Surf B 24:91–101. https://doi.org/10.1016/S0927-7765(01)00219-3
Madhani HD, Fink GR (1998) The control of filamentous differentiation and virulence in fungi. Trends Cell Biol 8:348–353. https://doi.org/10.1016/S0962-8924(98)01298-7
Miki BL, Poon NH, Seligy VL (1982) Repression and induction of flocculation interactions in Saccharomyces cerevisiae. J Bacteriol 150:890–899
Moreno-García J, García-Martínez T, Mauricio JC, Moreno J (2018a) Yeast immobilization systems for alcoholic wine fermentations: actual trends and future perspectives. Front Microbiol 9:241. https://doi.org/10.3389/fmicb.2018.00241
Moreno-García J, Martín-García FJ, Ogawa M, Garcia-Martinez T, Moreno J, Mauricio JC, Bisson LF (2018b) FLO1, FLO5 and FLO11 flocculation gene expression impacts Saccharomyces cerevisiae attachment to Penicillium chrysogenum in a co-immobilization technique. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.02586
Moreno-García J, García-Martinez T, Moreno J, Mauricio JC, Ogawa M, Luong P, Bisson LF (2018c) Impact of yeast flocculation and biofilm formation on yeast-fungus coadhesion in a novel immobilization system. Am J Enol Vitic 69:278–288. https://doi.org/10.5344/ajev.2018.17067
Moreno-García J, Coi AL, Zara G, García-Martínez T, Mauricio JC, Budroni M (2018d) Study of the role of the covalently linked cell wall protein (Ccw14p) and yeast glycoprotein (Ygp1p) within biofilm formation in a flor yeast strain. FEMS Yeast Res 18. https://doi.org/10.1093/femsyr/foy005
Nakari-Setälä T, Azeredo J, Henriques M, Oliveira R, Teixeira J, Linder M, Penttilä M (2002) Expression of a fungal hydrophobin in the Saccharomyces cerevisiae cell wall: effect on cell surface properties and immobilization. Appl Environ Microbiol 68:3385–3391. https://doi.org/10.1128/AEM.68.7.3385-3391.2002
Nyman J, Lacintra MG, Westman JO, Berglin M, Lundin M, Lennartsson PR, Taherzadeh MJ (2013) Pellet formation of zygomycetes and immobilization of yeast. New Biotechnol 30:516–522. https://doi.org/10.1016/j.nbt.2013.05.007
Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22:189–259. https://doi.org/10.1016/j.biotechadv.2003.09.005
Peinado RA, Mauricio JC, Moreno J, Ortega JM, Medina M, Mérida J (2004) Method of obtaining yeast biocapsules, biocapsules thus obtained and applications of same. World International Property Organization. Patent WO2004029240 A, 1
Peinado RA, Moreno JJ, Maestre O, Mauricio JC (2005) Use of a novel immobilization yeast system for winemaking. Biotechnol Lett 27:1421–1424. https://doi.org/10.1007/s10529-005-0939-2
Peinado RA, Moreno JJ, Villalba JM, González-Reyes JA, Ortega JM, Mauricio JC (2006) Yeast biocapsules: a new immobilization method and their applications. Enzym Microb Technol 40:79–84. https://doi.org/10.1016/j.enzmictec.2005.10.040
Puig-Pujol A, Bertran E, García-Martínez T, Capdevila F, Mínguez S, Mauricio JC (2013) Application of a new organic yeast immobilization method for sparkling wine production. Am J Enol Vitic (3):386–394. https://doi.org/10.5344/ajev.2013.13031
Reboredo-Rodríguez P, González-Barreiro C, Rial-Otero R, Cancho-Grande B, Simal-Gándara J (2015) Effects of sugar concentration processes in grapes and wine aging on aroma compounds of sweet wines—a review. Crit Rev Food Sci Nutr 55:1053–1073. https://doi.org/10.1080/10408398.2012.680524
Smit G, Straver MH, Lugtenberg BJ, Kijne JW (1992) Flocculence of Saccharomyces cerevisiae cells is induced by nutrient limitation, with cell surface hydrophobicity as a major determinant. Appl Environ Microbiol 58:3709–3714
Soares EV (2011) Flocculation in Saccharomyces cerevisiae: a review. J Appl Microbiol 110:1–18. https://doi.org/10.1111/j.1365-2672.2010.04897
Speers RA, Wan YQ, Jin YL, Stewart RJ (2006) Effects of fermentation parameters and cell wall properties on yeast flocculation 1. J Inst Brew 112:246–254. https://doi.org/10.1002/j.2050-0416.2006.tb00720.x
Stanley CE, Stöckli M, van Swaay D, Sabotič J, Kallio PT, Künzler M, de Mallo AJ, Aebi M (2014) Probing bacterial-fungal interactions at the single cell level. Integr Biol (Camb) 6:935–945. https://doi.org/10.1039/c4ib00154k
Stratford M (1989) Yeast flocculation: calcium specificity. Yeast 5:487–496. https://doi.org/10.1002/yea.320050608
Stratford M (1992) Yeast flocculation: a new perspective. Adv Microb Physiol 33:1–71. https://doi.org/10.1016/S0065-2911(08)60215-5
Straver MH, Aar PC, Smit G, Kijne JW (1993) Determinants of flocculence of brewer’s yeast during fermentation in wort. Yeast 9:527–532. https://doi.org/10.1002/yea.320090509
Talbot NJ, Ebbole DJ, Hamer JE (1993) Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5:1575–1590. https://doi.org/10.1105/tpc.5.11.1575
Toljander JF, Artursson V, Paul LR, Jansson JK, Finlay RD (2006) Attachment of different soil bacteria to arbuscular mycorrhizal fungi extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiol Lett 254:34–40. https://doi.org/10.1111/j.1574-6968.2005.00003.x
Tunlid A, Jansson H-B, Nordbring-Hertz B (1992) Fungal attachment to nematodes. Mycol Res 96:401–412. https://doi.org/10.1016/S0953-7562(09)81082-4
Vallejo JA, Sánchez-Pérez A, Martínez JP, Villa TG (2013) Cell aggregations in yeasts and their applications. Appl Microbiol Biotechnol 97:2305–2318. https://doi.org/10.1007/s00253-013-4735-y
Van Mulders SE, Christianen E, Saerens SM, Daenen L, Verbelen PJ, Willaert R, Verstrepen KJ, Delvaux FR (2009) Phenotypic diversity of Flo protein family-mediated adhesion in Saccharomyces cerevisiae. FEMS Yeast Res 9:178–190. https://doi.org/10.1111/j.1567-1364.2008.00462.x
Verstrepen KJ, Klis FM (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60:5–15. https://doi.org/10.1111/j.1365-2958.2006.05072.x
Verstrepen KJ, Derdelinckx G, Verachtert H, Delvaux FR (2003) Yeast flocculation: what brewers should know. Appl Microbiol Biotechnol 61:197–205. https://doi.org/10.1007/s00253-002-1200-8
Verstrepen KJ, Reynolds TB, Fink GR (2004) Origins of variation in the fungal cell surface. Nat Rev Microbiol 2:533. https://doi.org/10.1038/nrmicro927
Vidgren V, Londesborough J (2011) 125th anniversary review: yeast flocculation and sedimentation in brewing. J Inst Brew 117:475–487. https://doi.org/10.1002/j.2050-0416.2011.tb00495.x
Warmink JA, Nazir R, Corten B, van Elsas JD (2011) Hitchhikers on the fungal highway: the helper effect for bacterial migration via fungal hyphae. Soil Biol Biochem 43:760–765. https://doi.org/10.1016/j.soilbio.2010.12.009
Wessels JGH (1994) Developmental regulation of fungal cell wall formation. Annu Rev Phytopathol 32:413–437. https://doi.org/10.1146/annurev.py.32.090194.002213
Zhang J, Zhang J (2016) The filamentous fungal pellet and forces driving its formation. Crit Rev Biotechnol 36:1066–1077. https://doi.org/10.3109/07388551.2015.1084262
Funding
This study was funded by XXIII Programa Propio de Fomento de la Investigación 2018 (MOD. 4.2. SINERGIAS, Ref. XXIII PP Mod. 4.2) from the University of Cordoba (Spain).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ogawa, M., Bisson, L.F., García-Martínez, T. et al. New insights on yeast and filamentous fungus adhesion in a natural co-immobilization system: proposed advances and applications in wine industry. Appl Microbiol Biotechnol 103, 4723–4731 (2019). https://doi.org/10.1007/s00253-019-09870-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-019-09870-4