Skip to main content
Log in

Yeast flocculation: what brewers should know

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

For many industrial applications in which the yeast Saccharomyces cerevisiae is used, e.g. beer, wine and alcohol production, appropriate flocculation behaviour is certainly one of the most important characteristics of a good production strain. Yeast flocculation is a very complex process that depends on the expression of specific flocculation genes such as FLO1, FLO5, FLO8 and FLO11. The transcriptional activity of the flocculation genes is influenced by the nutritional status of the yeast cells as well as other stress factors. Flocculation is also controlled by factors that affect cell wall composition or morphology. This implies that, during industrial fermentation processes, flocculation is affected by numerous parameters such as nutrient conditions, dissolved oxygen, pH, fermentation temperature, and yeast handling and storage conditions. Theoretically, rational use of these parameters offers the possibility of gaining control over the flocculation process. However, flocculation is a very strain-specific phenomenon, making it difficult to predict specific responses. In addition, certain genes involved in flocculation are extremely variable, causing frequent changes in the flocculation profile of some strains. Therefore, both a profound knowledge of flocculation theory as well as close monitoring and characterisation of the production strain are essential in order to gain maximal control over flocculation. In this review, the various parameters that influence flocculation in real-scale brewing are critically discussed. However, many of the conclusions will also be useful in various other industrial processes where control over yeast flocculation is desirable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Axcell BC, Van Nierop S, Vundla W (2000) Malt induced premature flocculation of yeast. In: Abstracts, World Brewing Congress, Orlando, Fla., 29 July–2 August 2000. ASBC St. Paul, Minn., pp 69

  • Barker MG, Smart KA (1996) Morphological changes associated with the cellular ageing of a brewing yeast strain. J Am Soc Brew Chem 54:121–126

    CAS  Google Scholar 

  • Barney MC, Jansen GP, Helber GR (1980) Use of genetic transformation for the introduction of flocculence into yeast. J Am Soc Brew Chem 38:71–74

    CAS  Google Scholar 

  • Barton AB, Bussey H, Storms RK, Kaback DB (1997) Molecular cloning of chromosome I DNA from Saccharomyces cerevisiae: characterization of the 54 kb right terminal CDC15-FLO1-PHO11 region. Yeast 13:1251–1263

    Article  CAS  Google Scholar 

  • Bendiak D, Van der Aar P, Barbero F, Benzing P, Berndt R, Carrick K, Dull C, Dunn S, Eto M, Gonzalez M, Hayashi N, Lawrence D, Miller J, Phare K, Pugh T, Rashel L, Rossmore K, Smart KA, Sobczak J, Speers A, Casey G (1996) Yeast flocculation by absorbance. J Am Soc Brew Chem 54:245–248

    Google Scholar 

  • Bidard F, Bony M, Blondin B, Dequin S, Barre P (1995) The Saccharomyces cerevisiae FLO1 flocculation gene encodes a cell surface protein. Yeast 11:809–822

    PubMed  Google Scholar 

  • Bony M, Thines-Sempoux D, Barre P, Blondin B (1997) Localisation and cell surface anchoring of the Saccharomyces cerevisiae flocculation protein Flo1p. J Bacteriol 179:4929–4936

    CAS  PubMed  Google Scholar 

  • Bony M, Thines-Sempoux D, Barre P, Blondin B (1998) Distribution of the flocculation protein, Flop, at the cell surface during yeast growth: the availability of Flop determines the flocculation level. Yeast 14:25–35

    Article  PubMed  Google Scholar 

  • Bossier P, Goethals P, Rodrigues-Pousada C (1997) Constitutive flocculation in Saccharomyces cerevisiae through overexpression of the GTS1 gene, coding for a 'Glo'-type Zn-finger-containing protein. Yeast 13:717–725

    Article  CAS  PubMed  Google Scholar 

  • Costa MJ, Moradas-Ferreira P (2001) S. cerevisiae flocculation: identification of specific cell wall proteins. Proc Congr Eur Brew Conv 24:283–290

    Google Scholar 

  • Deans K, Pinder A, Catley BJ, Hodgson JA (1997) Effects of cone cropping and serial re-pitch on the distribution of cell ages in brewery yeast. Proc Congr Eur Brew Conv 26:469–476

    Google Scholar 

  • De Clerck J (1984) Cours de brasserie, 2nd edn. Academic Press, Leuven

  • Dengis PB, Rouxhet PG (1997) Flocculation mechanism of top and bottom fermenting brewing yeast. J Inst Brew 103:257–261

    CAS  Google Scholar 

  • D'Hautcourt O, Smart KA (1999) Measurement of brewing yeast flocculation. J Am Soc Brew 57:123–128

    CAS  Google Scholar 

  • Eddy AA (1955) Flocculation characteristics of yeast II: sugars as dispersing agents. J Inst Brew 61:313–317

    Google Scholar 

  • Fleming AB, Pennings S (2001) Antagonistic remodelling by Swi-Snf and Tup1-Ssn6 of an extensive chromatin region forms the background for FLO1 gene regulation. EMBO J 20:5219–5231

    Article  CAS  PubMed  Google Scholar 

  • Gagiano M, van Dyk D, Bauer FF, Lambrechts MG, Pretorius IS (1999a) Divergent regulation of the evolutionary closely related promoters of the Saccharomyces cerevisiae STA2 and MUC1 genes. J Bacteriol 181:6497–6508

    CAS  PubMed  Google Scholar 

  • Gagiano M, van Dyk D, Bauer FF, Lambrechts MG, Pretorius IS (1999b) Msn1p/Mss10p, Mss11p and Muc1p/Flo11p are part of a signal transduction pathway downstream of Mep2p regulating invasive growth and pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Microbiol 31:103–116

    CAS  PubMed  Google Scholar 

  • Garsoux G, Haubursin S, Bilbault S, Dufour J-P (1993) Yeast flocculation: biochemical characterization of yeast cell wall components. Proc Congr Eur Brew Conv 24:275–282

    Google Scholar 

  • Gilliand R (1951) The flocculation characteristics of brewing yeast during fermentation. Proc Congr Eur Brew Conv 3:3557

    Google Scholar 

  • Gilliand R (1978) Deterioration and improvement of brewing yeast. Eur Brew Conv Monogr 5:51–65

    Google Scholar 

  • Gonzales MG, Fernandez S, Sierra JA (1996) Effect of temperature in the evaluation of yeast flocculation ability by the Helm's method. J Am Soc Brew Chem 54:29–31

    Google Scholar 

  • Hammond JRM (1991) The development of brewing processes: the impact of European biotechnology regulations. Proc Congr Eur Brew Conv 23:393–400

    Google Scholar 

  • Hammond JRM (1995) Genetically-modified brewing yeasts for the 21st century. Yeast 11:1613–1627

    CAS  PubMed  Google Scholar 

  • Heggart HM, Margaritis A, Pilkington H, Stewart RJ, Dowhanick TM, Russel I (1999) Factors affecting yeast viability and vitality characteristics: a review. Tech Q Master Brew Assoc Am 36:383–406

    CAS  Google Scholar 

  • Helm E, Nohr B, Thorne RSW (1953) The measurement of yeast flocculence and its significance in brewing. Wallerstein Lab Commun 16:315–325

    Google Scholar 

  • Herrera VE, Axcell BC (1989) The influence of barley lectins on yeast flocculation. J Am Soc Brew Chem. 47:29–34

    Google Scholar 

  • Herrera VE, Axcell BC (1991a) Induction of premature yeast flocculation caused by a polysaccharide fraction isolated from malt husk. J Inst Brew 97:359–366

    CAS  Google Scholar 

  • Herrera VE, Axcell BC (1991b) Studies on the binding between yeast and a malt polysaccharide that induces heavy yeast flocculation. J Inst Brew 97:367–373

    CAS  Google Scholar 

  • Ishida-Fujii K, Goto S, Sugiyama H, Takagi Y, Saiki T, Takagi M (1998) Breeding of flocculent industrial alcohol yeast strains by self-cloning of the flocculation gene FLO1 and repeated-batch fermentation by transformants. J Gen Appl Microbiol 44:347–353

    CAS  PubMed  Google Scholar 

  • Javadekar VS, Silvaraman H, Sainkar SR, Khan MI (2000) A mannose binding protein from the cell surface of flocculent Saccharomyces cerevisiae (NCIM 3528): its role in flocculation. Yeast 16:99–110

    Article  CAS  PubMed  Google Scholar 

  • Jibiki M, Ishibiki T, Yuuki T, Kagami N (2001) Application of polymerase chain reaction to determine the flocculation properties of brewer's lager yeast. J Am Soc Brew 59:107–110

    CAS  Google Scholar 

  • Jin Y-L, Speers A (2000) Effect of environmental conditions on the flocculation of Saccharomyces cerevisiae. J Am Soc Brew Chem 58:108–116

    CAS  Google Scholar 

  • Jin Y-L, Ritcey LL, Speers RAR, Dolphin PJ (2001) Effect of cell-surface hydrophobicity, charge and zymolectin density on the flocculation of Saccharomyces cerevisiae. J Am Soc Brew Chem 59:1–9

    CAS  Google Scholar 

  • Johnston JR, Reader HP (1983) Genetic control of flocculation. In: Spencer JFT, Spencer DM, Smith ARW (eds) Yeast genetics, fundamental and applied aspects. Springer, Berlin Heidelberg New York, pp 205–222

  • Kamada K, Murata M (1984) On the mechanism of brewer's yeast flocculation. Agric Biol Chem 48:2423–2433

    CAS  Google Scholar 

  • Kempers J, Van der Aar P, Krotjé J (1991) Flocculation of brewer's yeast during fermentation. Proc Congr Eur Brew Conv 23:249–256

    Google Scholar 

  • Kobayashi O, Hayashi N, Sone H (1995) The FLO1 genes determine two flocculation phenotypes distinguished by sugar inhibition. Proc Congr Eur Brew Conv 16:361–367

    Google Scholar 

  • Kobayashi O, Suda H, Ohtani T, Sone H (1996) Molecular cloning and analysis of the dominant flocculation gene FLO8 from Saccharomyces cerevisiae. Mol Gen Genet 251:707–715

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi O, Hayashi N, Kuroki R, Sone H (1998) Region of Flo1 proteins responsible for sugar recognition. J Bacteriol 180:6503–6510

    CAS  PubMed  Google Scholar 

  • Kobayashi O, Hiroyuki Y, Sone H (1999) Analysis of the genes activated by the FLO8 gene in Saccharomyces cerevisiae. Curr Genet 36:256–261

    CAS  PubMed  Google Scholar 

  • Lievens K, Devogel D, Iserentant D, Verachtert H (1994) Evidence for a factor produced by Saccharomyces cerevisiae which causes flocculation of Pediococcus damnosus 12A7 cells. Colloid Surface B Biointerfaces 2:189–198

    Article  Google Scholar 

  • Lipke PN, Hull-Pillsbury C (1984) Flocculation of Saccharomyces cerevisiae tup1 mutants. J Bacteriol 159:797–799

    PubMed  Google Scholar 

  • Masy CL, Henquinet A, Mestdagh MM (1992) Flocculation of Saccharomyces cerevisiae: inhibition by sugars. Can J Microbiol 38:1298–1306

    CAS  PubMed  Google Scholar 

  • Miki BLA, Poon NH, Seligy VL (1982) Repression and induction of flocculation interactions in Saccharomyces cerevisiae. J Bacteriol 150:890–899

    PubMed  Google Scholar 

  • Mochaba F, Cantrell I, Vundla W (2001) The use of concanavalin A to investigate the mechanism and onset of flocculation by a brewing yeast strain. Proc Congr Eur Brew Conv 28:397–406

    Google Scholar 

  • Nakamura T, Chiba K, Ashara Y, Tada S (1997) Prediction of barley which produces premature yeast flocculation. Proc Congr Eur Brew Conv 26:53–60

    Google Scholar 

  • Nishihara H, Kio K, Imamura M (2000) Possible mechanism of co-flocculation between non-flocculent yeasts. J Inst Brew 106:7–10

    CAS  Google Scholar 

  • Nishihara H, Miyake K, Kageyama Y (2002) Distinctly different characteristics of flocculation in yeast. J Inst Brew 108:187–192

    CAS  Google Scholar 

  • Pan XW, Heitman J (1999) Cyclic-AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol 19:4874–4887

    CAS  PubMed  Google Scholar 

  • Patelakis SJJ, Ritcey L, Speers RA (1998) Density of lectin-like receptors in the FLO1 phenotype of Saccharomyces cerevisiae. Lett Appl Microbiol 26:279–282

    Article  CAS  PubMed  Google Scholar 

  • Peng X, Sun J, Iserentant D, Michiels C, Verachtert H (2001a) Flocculation and coflocculation of bacteria by yeasts. Appl Microbiol Biotechnol 55:777–781

    Article  CAS  PubMed  Google Scholar 

  • Peng X, Sun J, Michiels C, Iserentant D, Verachtert H (2001b) Coflocculation of Escherichia coli and Schizosaccharomyces pombe. Appl Microbiol Biotechnol 57:175–181

    Article  CAS  PubMed  Google Scholar 

  • Powell CD, Van Zandycke SM, Quain DE, Smart KA (2000) Replicative ageing and senescence in Saccharomyces cerevisiae and the impact on brewing fermentations. Microbiology 146:1023–1034

    CAS  PubMed  Google Scholar 

  • Pretorius IS (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16:675–729

    CAS  PubMed  Google Scholar 

  • Quain DE, Powell CD, Hamilton A, Ruddlesden D, Box W (2001) Why warm cropping is best. Proc Congr Eur Brew Conv 28:388–395

    Google Scholar 

  • Reboredo NM, Siero C, Blanco P, Villa TG (1996) Isolation and characterization of a mutant of Saccharomyces cerevisiae affected in the FLO1 locus. FEMS Microbiol Lett 137:57–61

    Article  CAS  PubMed  Google Scholar 

  • Rhymes MR, Smart KA (2001) Effect of storage conditions on the flocculation and cell wall characteristics of an ale brewing yeast strain. J Am Soc Brew 59:32–38

    CAS  Google Scholar 

  • Robertson RS, Fink G (1998) The three yeast A kinases have specific signalling functions in pseudohyphal growth. Proc Natl Acad Sci USA 95:13783–13787

    CAS  PubMed  Google Scholar 

  • Rupp S, Summers E, Lo HJ, Madhani, H, Fink G (1999) MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO1 gene. EMBO J 18:1257–1269

    CAS  PubMed  Google Scholar 

  • Russel I, Stewart GG, Reader HP, Johnston JR, Martin PA (1980) Revised nomenclature of genes that control yeast flocculation. J Inst Brew 80:116–121

    Google Scholar 

  • Sato M, Watari J, Shinotsuka K (2001) Genetic instability in flocculation of bottom-fermenting yeast. J Am Soc Brew Chem 59:130–134

    CAS  Google Scholar 

  • Sato M, Maeba H, Watari J, Takashio M (2002) Analysis of an inactivated Lg-FLO1 gene present in bottom-fermenting yeast. J Biosci Bioeng 93:395–398

    Article  CAS  Google Scholar 

  • Sieiro C, Reboredo NM, Villa TG (1995) Flocculation of industrial and laboratory strains of Saccharomyces cerevisiae. J Ind Microbiol 14:461–466

    PubMed  Google Scholar 

  • Sieiro C, Reboredo NM, Blanco P, Villa TG (1997) Cloning of a new FLO gene from the flocculating Saccharomyces cerevisiae IM1–8b strain. FEMS Microbiol Lett 146:109–115

    Article  CAS  PubMed  Google Scholar 

  • Smart KA (1999) Ageing in brewing yeast. Brew Guardian 128:19–24

    Google Scholar 

  • Smart KA, Whisker S (1996) Effect of serial repitching on the fermentation properties and condition of brewing yeast. J Am Soc Brew 54:41–44

    CAS  Google Scholar 

  • Smit G, Straver MH, Lugtenberg JJ, Kijne JW (1992) Flocculence of Saccharomyces cerevisiae cells is induced by nutrient limitation, with cell surface hydrophobicity as a major determinant. Appl Environ Microbiol 58:3709–3714

    CAS  PubMed  Google Scholar 

  • Smith RL, Johnson AD (2000) Turning genes off by Tup1-Ssn6: a conserved system of transcriptional repression in eukaryotes. Trends Biochem Sci 25:325–330

    Article  CAS  PubMed  Google Scholar 

  • Soares EV, Mota M (1996) Flocculation onset, growth phase and genealogical age in Saccharomyces cerevisiae. Can J Microbiol 42:539–547

    CAS  PubMed  Google Scholar 

  • Soares EV, Texeira JA, Mota M (1994) Effect of cultural and nutritional conditions on the control of flocculation expression in Saccharomyces cerevisiae. Can J Microbiol 40:851–857

    PubMed  Google Scholar 

  • Stewart GG, Russel I (1986) The relevance of flocculation properties of yeast in today's brewing industry. Eur Brew Conv Monogr 7:53–68

    Google Scholar 

  • Stratford M (1989) Yeast flocculation: calcium specificity. Yeast 5:487–496

    CAS  Google Scholar 

  • Stratford M (1992) yeast flocculation: a new perspective. Adv Microbiol Physiol 33:2–71

    CAS  Google Scholar 

  • Stratford M, Assinder S (1991) Yeast flocculation: Flo1 and newFlo phenotypes and receptor structure. Yeast 7:559–574

    CAS  PubMed  Google Scholar 

  • Stratford M, Keenan MHJ (1988) Yeast flocculation: quantification. Yeast 4:107–115

    CAS  PubMed  Google Scholar 

  • Straver MH, Kijne JW (1996) A rapid and selective assay for measuring cell surface hydrophobicity of brewer's yeast cells. Yeast 12:207–213

    Article  CAS  PubMed  Google Scholar 

  • Straver MH, Aar PC, van der Smit G, Kijne JW (1993) Determinants of flocculence of brewer's yeast during fermentation in wort. Yeast 9:527–532

    CAS  PubMed  Google Scholar 

  • Straver MH, Smit G, Kijne JW (1994a) Purification and partial characterization of a flocculin from brewer's yeast. Appl Environ Microbiol 60:2754–2758

    CAS  PubMed  Google Scholar 

  • Straver MH, Traas VM, Smit G, Kijne JW (1994b) Isolation and partial purification of mannose-specific agglutinin from brewer's yeast involved in flocculation. Yeast 10:1183–1193

    CAS  PubMed  Google Scholar 

  • Tamaki H, Miwa T, Shinozaki M (2000) GPR1 regulates filamentous growth through FLO1 in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 267:164–168

    Article  CAS  PubMed  Google Scholar 

  • Taylor NW, Orton WI (1978) Aromatic compounds and sugars in flocculation of Saccharomyces cerevisiae. J Inst Brew 84:113–114

    CAS  Google Scholar 

  • Teunissen A, Holub E, Van Der Hucht J, Van Den Bergh JA, Steensma HY (1993a) Sequence of the open reading frame of the FLO1 gene from Saccharomyces cerevisiae. Yeast 9:423–427

    CAS  PubMed  Google Scholar 

  • Teunissen A, Van Den Bergh JA, Steensma HY (1993b) Physical localization of the flocculation gene FLO1 on chromosome I of Saccharomyces cerevisiae. Yeast 9:1–10

    CAS  Google Scholar 

  • Teunissen A, Van Den Bergh JA, Steensma HY (1995) Transcriptional regulation of the flocculation genes in Saccharomyces cerevisiae. Yeast 11:435–446

    CAS  PubMed  Google Scholar 

  • Texeira JM, Texeira JA, Mota M, Manuela M, Guerra B, Machado Cruz JM, S'Almeida AM (1991) The influence of cell wall composition of a brewer's flocculant lager yeast on sedimentation during successive industrial fermentations. Proc Congr Eur Brew Conv 23:241–248

    Google Scholar 

  • Van den Bremt K, Iserentant D, Verachtert H (1997a) Induction of flocculation in Pediococcus damnosus by different yeast strains. Biotechnol Tech 11:879–884

    Google Scholar 

  • Van den Bremt K, Nuyens F, Iserentant D, Verachtert H (1997b) Identification of a Saccharomyces cerevisiae factor inducing flocculation of Pediococcus damnosus. Med Fac Landbouww Univ Gent 62:1185–1192

    Google Scholar 

  • Van der Aar P, Straver MH, Teunissen A (1993) Flocculation of brewer's lager yeast. Proc Congr Eur Brew Conv 14:259–266

    Google Scholar 

  • Verhasselt P, Volckaert G (1997) Sequence analysis of a 37.6 kbp cosmid clone from the right arm of Saccharomyces cerevisiae chromosome XII, carrying YAP3, HOG1, SNR6, tRNA-Arg3 and 23 new open reading frames, among which several homologies to proteins involved in cell division control and to mammalian growth factors and other animal proteins are found. Yeast 13:241–250

    Article  CAS  PubMed  Google Scholar 

  • Verstrepen KJ, Bauer FF, Michiels C, Derdelinckx G, Delvaux FR, Pretorius IS (1999) Controlled expression of FLO1 in Saccharomyces cerevisiae. Eur Brew Conv Monogr 28:30–42

    Google Scholar 

  • Verstrepen KJ, Bauer FF, Winderickx J, Derdelinckx G, Dufour J-P, Thevelein JM, Pretorius IS, Delvaux FR (2001a) Genetic modification of Saccharomyces cerevisiae: fitting the modern brewer's needs. Cerevisia 26:89–97

    CAS  Google Scholar 

  • Verstrepen KJ, Michiels C, Derdelinckx G, Delvaux FR, Winderickx J, Thevelein JM, Bauer FF, Pretorius IS (2001b) Late fermentation expression of FLO1 in Saccharomyces cerevisiae. J Am Soc Brew Chem 59:69–76

    CAS  Google Scholar 

  • Watari J, Takata Y, Ogawa M, Nishikawa N, Kamimura M (1989) Molecular cloning of a flocculation gene in Saccharomyces cerevisiae. Agric Biol Chem 53:901–903

    CAS  Google Scholar 

  • Watari J, Kudo M, Nishikawa N, Kamimura M (1990) Construction of flocculent yeast cells (Saccharomyces cerevisiae) by mating or protoplast fusion using a yeast cell containing the flocculation gene FLO5. Agric Biol Chem 54:1677–1681

    CAS  Google Scholar 

  • Watari J, Nomura M, Sahara H, Koshino S, Keranen S (1994a) Construction of flocculent brewer's yeast by chromosomal integration of the yeast flocculation gene FLO1. J Inst Brew 100:73–77

    CAS  Google Scholar 

  • Watari J, Takata Y, Ogawa M, Sahara H, Koshino S, Onnela ML, Airaksinen U, Jaatinen R, Pentillä M, Keränen S (1994b) Molecular cloning and analysis of the yeast flocculation gene FLO1. Yeast 10:211–225

    CAS  PubMed  Google Scholar 

  • Watari J, Sato M, Ogawa M, Shinotsuka K (1999) Genetic and physiological instability of brewing yeast. Eur Brew Conv Monogr 28:148–160

    Google Scholar 

  • Wilcocks KL, Smart KA (1995) The effect of surface charge and hydrophobicity for the flocculation of chain-forming brewing yeast strains and resistance of these parameters to acid washing. FEMS Microbiol Lett 134:293–297

    Article  CAS  PubMed  Google Scholar 

  • Yamashita I, Fukui S (1983) Mating signals control expression of both starch fermentation genes and a novel flocculation gene FLO8 in the yeast Saccharomyces. Agric Biol Chem 47:2889–2896

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. F. Bauer, Prof. I.S. Pretorius, Prof. J.M. Thevelein and Prof. J. Winderickx for the many fruitful discussions on yeast flocculation. K.J. Verstrepen wishes to thank the Fund for Scientific Research Flanders (FWO-Vlaanderen) for the financial support of his work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. Verstrepen.

Additional information

Kevin Verstrepen is a Research Assistant of the Fund for Scientific Research Flanders (Belgium)(FWO-Vlaanderen)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verstrepen, K.J., Derdelinckx, G., Verachtert, H. et al. Yeast flocculation: what brewers should know. Appl Microbiol Biotechnol 61, 197–205 (2003). https://doi.org/10.1007/s00253-002-1200-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-002-1200-8

Keywords

Navigation