Skip to main content

Advertisement

Log in

Mechanistic insights of neuronal calcium and IP3 signaling system regulating ATP release during ischemia in progression of Alzheimer’s disease

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The mechanisms of calcium ([Ca2+]) signaling in various human cells have been widely analyzed by scientists due to its crucial role in human organs like the heartbeat, muscle contractions, bone activity, brain functionality, etc. No study is reported for interdependent [Ca2+] and IP3 mechanics regulating the release of ATP in neuron cells during Ischemia in Alzheimer’s disease advancement. In the present investigation, a finite element method (FEM) is framed to explore the interdependence of spatiotemporal [Ca2+] and IP3 signaling mechanics and its role in ATP release during Ischemia as well as in the advancement of Alzheimer’s disorder in neuron cells. The results provide us insights of the mutual spatiotemporal impacts of [Ca2+] and IP3 mechanics as well as their contributions to ATP release during Ischemia in neuron cells. The results obtained for the mechanics of interdependent systems differ significantly from the results of simple independent system mechanics and provide new information about the processes of the two systems. From this study, it is concluded that neuronal disorders cannot only be simply attributed to the disturbance caused directly in the processes of calcium signaling mechanics, but also to the disturbances caused in IP3 regulation mechanisms impacting the calcium regulation in the neuron cell and ATP release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Not Applicable.

References

Download references

Funding

Not Available.

Author information

Authors and Affiliations

Authors

Contributions

We both authors contributed equally to this paper in terms of problem formulation, solution, data correction/literature review, and interpretation of the findings. Author (1) developed the Matlab program.

Corresponding author

Correspondence to Anand Pawar.

Ethics declarations

Conflict of interest

The authors of this work state that they have no competing interests.

Ethical approval

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Model equations summary

Appendix: Model equations summary

The FEM is a numerical-cum-analytical technique for solving boundary value problems. It involves the discretization of the domain into a finite number of sub-regions and then the solution of each sub-region is obtained by substituting an interpolation function. The solution of each sub-region is assembled to obtain the solution for the whole region. Here, Galerkin’s approach is used to obtain the variational form. The unsteady state models of [Ca2+] and IP3 diffusion concerning the one-dimensional case in neuron cells are constructed. The present problem is to get the solutions of Eq. (7) coupled with Eqs. (23, 25 and 26) concerning [Ca2+] and Eq. (17) coupled with Eqs. (24, 27 and 28) concerning IP3. The length of the region is considered to be 5 µm, and divided into 40 elements from the source location to 5 µm. The initial and boundary conditions were constructed in light of biophysical conditions. The model equations for [Ca2+] and IP3 dynamics are transformed into the variational form and Galerkin’s finite element procedure was utilized to get the solution. Conveniently, the notations ‘u’ and ‘v’ are used instead of [Ca2+] and IP3 and e = 1, 2, 3,…, 40. Also, e depicts the eth element and xi and xi+1 depict the initial and terminal nodes of the eth element.

For [Ca2+] and IP3 distribution, shape functions for each element is considered as,

$${\text{u}}^{{\text{(e)}}} {\text{ = q}}_{{1}}^{{\text{(e)}}} {\text{ + q}}_{{2}}^{{\text{(e)}}} {\text{ x}}$$
(32)
$${\text{v}}^{{\text{(e)}}} {\text{ = r}}_{{1}}^{{\text{(e)}}} {\text{ + r}}_{{2}}^{{\text{(e)}}} {\text{ x}}$$
(33)
$${\text{u}}^{{\text{(e)}}} {\text{ = S}}^{{\text{T}}} {\text{q}}^{{\text{(e)}}} {\text{, v}}^{{\text{(e)}}} {\text{ = S}}^{{\text{T}}} {\text{r}}^{{\text{(e)}}}$$
(34)
$$S^{{\text{T}}} { = [}\begin{array}{*{20}c} {1} & {\text{x}} \\ \end{array} {\text{], q}}^{{{\text{(e)}}^{{\text{T}}} }} { = [}\begin{array}{*{20}c} {{\text{q}}_{{1}}^{{\text{(e)}}} } & {{\text{q}}_{{2}}^{{\text{(e)}}} } \\ \end{array} {\text{], r}}^{{{\text{(e)}}^{{\text{T}}} }} { = [}\begin{array}{*{20}c} {{\text{r}}_{{1}}^{{\text{(e)}}} } & {{\text{r}}_{{2}}^{{\text{(e)}}} } \\ \end{array} {]}$$
(35)

Putting nodal conditions in Eq. (34),

$$\overline{u}^{(e)} \, = \,S^{(e)} q^{(e)} {, }\overline{v}^{(e)} \, = \,S^{(e)} r^{(e)} ,$$
(36)

where,

$$\overline{{\text{u}}} ^{{{\text{(e)}}}} = \left[ {\begin{array}{*{20}c} {{\text{u}}_{{\text{i}}} } \\ {{\text{u}}_{{\text{j}}} } \\ \end{array} } \right],{\mkern 1mu} \overline{{\text{v}}} ^{{{\text{(e)}}}} = \left[ {\begin{array}{*{20}c} {{\text{v}}_{{\text{i}}} } \\ {{\text{v}}_{{\text{j}}} } \\ \end{array} } \right]{\mkern 1mu} {\mkern 1mu} {\text{and}}{\mkern 1mu} {\mkern 1mu} S^{{{\text{(e)}}}} = \left[ {\begin{array}{*{20}c} 1 & {{\text{x}}_{{\text{i}}} } \\ 1 & {{\text{x}}_{{\text{j}}} } \\ \end{array} } \right]$$
(37)

From Eq. (36), we get

$$q^{(e)} \, = \,R^{(e)} \, \overline{u}^{(e)} , \, r^{(e)} \, = \,R^{(e)} \, \overline{v}^{(e)}$$
(38)

And

$${\text{R}}^{{\text{(e)}}} {\text{ = S}}^{{{\text{(e)}}^{{ - 1}} }}$$
(39)

Substituting \({\text{q}}^{{\text{(e)}}}\) and \({\text{r}}^{{\text{(e)}}}\) from Eq. (38) in (34),

$${\text{u}}^{{\text{(e)}}} {\text{ = S}}^{{\text{T}}} {\text{ R}}^{{\text{(e)}}} {\overline{\text{u}}}^{{\text{(e)}}} {\text{, v}}^{{\text{(e)}}} {\text{ = S}}^{{\text{T}}} {\text{ R}}^{{\text{(e)}}} {\overline{\text{v}}}^{{\text{(e)}}}$$
(40)

The integrals \({\text{I}}_{{1}}^{{\text{(e)}}}\) and \({\text{I}}_{{2}}^{{\text{(e)}}}\) represent discretized variational forms of Eqs. (7) and (17). These forms are given below;

$$I_{{1}}^{{\text{(e)}}} \, = \, I_{{{\text{a1}}}}^{{\text{(e)}}} - I_{{{\text{b1}}}}^{{\text{(e)}}} + \, I_{{{\text{c1}}}}^{{\text{(e)}}} - I_{{{\text{d1}}}}^{{\text{(e)}}} + \, I_{{{\text{e1}}}}^{{\text{(e)}}} + \, I_{{{\text{f1}}}}^{{\text{(e)}}} - I_{{{\text{g1}}}}^{{\text{(e)}}} + \, I_{{{\text{h1}}}}^{{\text{(e)}}} - I_{{{\text{i1}}}}^{{\text{(e)}}}$$
(41)

where

$${\text{I}}_{{{\text{a1}}}}^{{\text{(e)}}} { = }\int\limits_{{x_{i} }}^{{x_{j} }} {\left\{ {\left( {\frac{{\partial {\text{u}}^{{\text{(e)}}} }}{{\partial {\text{x}}}}} \right)^{2} } \right\}{\text{dx}}}$$
(42)
$${\text{I}}_{{{\text{b1}}}}^{(e)} = \frac{d}{dt}\int\limits_{{x_{i} }}^{{x_{j} }} {\left[ {\frac{{({\text{u}}^{(e)} )}}{{{\text{D}}_{{{\text{Ca}}}} }}} \right] \, dx}$$
(43)
$${\text{I}}_{{{\text{c1}}}}^{{\text{(e)}}} = \frac{{{\text{V}}_{{{\text{IPR}}}} }}{{{\text{D}}_{{{\text{ca}}}} {\text{F}}_{{\text{c}}} }}\int\limits_{{x_{i} }}^{{x_{j} }} {\left[ {\alpha_{1} {\text{u}}^{{\text{(e)}}} + \, \alpha_{2} {\text{v}}^{{\text{(e)}}} + \, \alpha_{3} } \right] \, dx}$$
(44)
$${\text{I}}_{{{\text{d1}}}}^{{\text{(e)}}} = \frac{{{\text{V}}_{{{\text{SERCA}}}} }}{{{\text{D}}_{{{\text{ca}}}} {\text{F}}_{{\text{c}}} }}\int\limits_{{x_{i} }}^{{x_{j} }} {\left[ {\beta_{1} {\text{u}}^{{\text{(e)}}} + \, \beta_{2} } \right] \, dx}$$
(45)
$${\text{I}}_{{{\text{e1}}}}^{{\text{(e)}}} \, = \,\frac{{{\text{V}}_{{{\text{LEAK}}}} }}{{{\text{D}}_{{{\text{ca}}}} {\text{F}}_{{\text{c}}} }}\int\limits_{{{\text{x}}_{{\text{i}}} }}^{{{\text{x}}_{{\text{j}}} }} {\left[ {{\text{[Ca}}^{{2 + }} {]}_{{{\text{ER}}}} \, - \,{\text{u}}^{{\text{(e)}}} } \right]{\text{dx}}}$$
(46)
$${\text{I}}_{{{\text{f1}}}}^{{\text{(e)}}} = \frac{{{\text{V}}_{{{\text{RyR}}}} {\text{P}}_{{0}} }}{{{\text{D}}_{{{\text{ca}}}} {\text{F}}_{{\text{c}}} }}\int\limits_{{{\text{x}}_{{\text{i}}} }}^{{{\text{x}}_{{\text{j}}} }} {\left[ {{\text{[Ca}}^{{2 + }} {]}_{{{\text{ER}}}} - \,{\text{u}}^{{\text{(e)}}} } \right]{\text{dx}}}$$
(47)
$${\text{I}}_{{{\text{g1}}}}^{{\text{(e)}}} \,{ = }\,\frac{{{\text{K}}^{ + } }}{{{\text{D}}_{{{\text{ca}}}} }}\int\limits_{{{\text{x}}_{{\text{i}}} }}^{{{\text{x}}_{{\text{j}}} }} {\left[ {{\text{u}}^{{\text{(e)}}} {\text{ - [Ca}}^{{2 + }} ]_{\infty } } \right]{\text{ dx}}}$$
(48)
$$I_{{{\text{h1}}}}^{{\text{(e)}}} \,{ = }\,\frac{{1}}{{{\text{D}}_{{{\text{ca}}}} }}\int\limits_{{{\text{x}}_{{\text{i}}} }}^{{{\text{x}}_{{\text{j}}} }} {\left[ {{\uptheta }_{{1}} {\text{u}}^{{\text{(e)}}} - {\uptheta }_{{2}} } \right]{\text{ dx}}}$$
(49)
$${\text{I}}_{{{\text{i1}}}}^{{\text{(e)}}} {\text{ = f}}^{{\text{(e)}}} \left( {\frac{{{\upsigma }_{{{\text{Ca}}}} }}{{{\text{D}}_{{{\text{ca}}}} }} - \frac{{{\upsigma }_{{{\text{NCX}}}} }}{{{\text{D}}_{{{\text{ca}}}} }}} \right)_{{\text{ x = 0}}}$$
(50)
$${\text{I}}_{{2}}^{{\text{(e)}}} \, = \,{\text{I}}_{{{\text{a2}}}}^{{\text{(e)}}} - {\text{I}}_{{{\text{b2}}}}^{{\text{(e)}}} \, + {\text{ I}}_{{{\text{c2}}}}^{{\text{(e)}}} - {\text{I}}_{{{\text{d2}}}}^{{\text{(e)}}}$$
(51)
$${\text{I}}_{{{\text{a2}}}}^{{\text{(e)}}} \,{ = }\,\int\limits_{{x_{i} }}^{{x_{j} }} {\left\{ {\left( {\frac{{\partial {\text{v}}^{{\text{(e)}}} }}{{\partial {\text{x}}}}} \right)^{2} } \right\}{\text{ dx}}}$$
(52)
$${\text{I}}_{{{\text{b2}}}}^{{\text{(e)}}} = \frac{d}{dt}\int\limits_{{x_{i} }}^{{x_{j} }} {\left[ {\frac{{{\text{v}}^{{\text{(e)}}} }}{{{\text{D}}_{{\text{i}}} }}} \right]\,dx}$$
(53)
$${\text{I}}_{{{\text{c2}}}}^{{\text{(e)}}} = \frac{{{\text{V}}_{{{\text{PROD}}}} }}{{{\text{D}}_{{\text{i}}} {\text{F}}_{{\text{c}}} }}\int\limits_{{x_{i} }}^{{x_{j} }} {\left[ {\mu_{1} {\text{u}}^{{\text{(e)}}} + \, \mu_{2} } \right] \, dx}$$
(54)
$$I_{d2}^{{\text{(e)}}} = \frac{\lambda }{{{\text{F}}_{{\text{c}}} {\text{D}}_{i} }}\int\limits_{{x_{i} }}^{{x_{j} }} {\left[ {\delta_{1} {\text{u}}^{{\text{(e)}}} \, + \, \delta_{2} {\text{v}}^{{\text{(e)}}} \, + \, \delta_{3} )} \right] \, dx}$$
(55)

The various coefficients \(\alpha _{1} ,{\text{ }}\alpha _{2} ,{\text{ }}\alpha _{3} ,{\text{ }}\beta _{1} ,{\text{ }}\beta _{2} ,{\text{ }}\theta _{1} ,{\text{ }}\theta _{2} ,{\text{ }}\mu _{1} ,{\text{ }}\mu _{2} ,{\text{ }}\delta _{1} ,{\text{ }}\delta _{2} ,{\text{ and}},{\text{ }}\delta _{3}\) are determined by the linearization procedure for nonlinear terms of [Ca2+] and IP3 distributions. The boundary conditions are incorporated in the analyzed equations to provide the system of equations as follows.

$$\frac{{dI_{1} }}{{d\overline{u}^{{\text{(e)}}} }} = \sum\limits_{e = 1}^{N} {\overline{Q}^{{\text{(e)}}} } \frac{{dI_{{1}}^{{\text{(e)}}} }}{{d\overline{u}^{{\text{(e)}}} }}\overline{Q}^{{{\text{(e)}}^{{\text{T}}} }} = 0$$
(56)
$$\frac{{dI_{2} }}{{d\overline{v}^{{\text{(e)}}} }} = \sum\limits_{e = 1}^{N} {\overline{Q}^{{\text{(e)}}} } \frac{{dI_{2}^{{\text{(e)}}} }}{{d\overline{v}^{{\text{(e)}}} }}\overline{Q}^{{{\text{(e)}}^{{\text{T}}} }} = 0$$
(57)

where,

$$\overline{Q}^{{\text{(e)}}} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ {\begin{array}{*{20}c} . \\ {\begin{array}{*{20}c} 0 \\ 1 \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} . \\ 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } & {\begin{array}{*{20}c} 0 \\ {\begin{array}{*{20}c} . \\ {\begin{array}{*{20}c} 0 \\ 0 \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 1 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} . \\ 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right]\,\,{\text{and}}\,\,\overline{u}\, = \,\left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} {u_{1} } \\ {u_{2} } \\ \end{array} } \\ {u_{3} } \\ \end{array} } \\ {\begin{array}{*{20}c} . \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} . \\ {u_{39} } \\ \end{array} } \\ {u_{40} } \\ \end{array} } \\ {u_{41} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right],\,\,\overline{v}\, = \,\left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} {v_{1} } \\ {v_{2} } \\ \end{array} } \\ {v_{3} } \\ \end{array} } \\ {\begin{array}{*{20}c} . \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} . \\ {v_{39} } \\ \end{array} } \\ {v_{40} } \\ \end{array} } \\ {v_{41} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right]$$
(58)
$$\frac{{dI_{{1}}^{{\text{(e)}}} }}{{d\overline{u}^{{\text{(e)}}} }} = \frac{{dI_{{{\text{a1}}}}^{{\text{(e)}}} }}{{d\overline{u}^{{\text{(e)}}} }} + \frac{d}{dt}\frac{{dI_{{{\text{b1}}}}^{{\text{(e)}}} }}{{d\overline{u}^{{\text{(e)}}} }} + \frac{{dI_{{{\text{c1}}}}^{{\text{(e)}}} }}{{d\overline{u}^{{\text{(e)}}} }} - \frac{{dI_{{d{1}}}^{{\text{(e)}}} }}{{d\overline{u}^{{\text{(e)}}} }} + \frac{{dI_{{{\text{e1}}}}^{{\text{(e)}}} }}{{d\overline{u}^{{\text{(e)}}} }} + \frac{{dI_{{{\text{f1}}}}^{{\text{(e)}}} }}{{d\overline{u}^{{\text{(e)}}} }} - \frac{{dI_{{{\text{g1}}}}^{{\text{(e)}}} }}{{d\overline{u}^{{\text{(e)}}} }} + \frac{{dI_{{{\text{h1}}}}^{{\text{(e)}}} }}{{d\overline{u}^{{\text{(e)}}} }} - \frac{{dI_{{{\text{i1}}}}^{{\text{(e)}}} }}{{d\overline{u}^{{\text{(e)}}} }}$$
(59)
$$\frac{{dI_{{2}}^{{\text{(e)}}} }}{{d\overline{v}^{{\text{(e)}}} }} = \frac{{dI_{{{\text{a2}}}}^{{\text{(e)}}} }}{{d\overline{v}^{{\text{(e)}}} }} + \frac{d}{dt}\frac{{dI_{{{\text{b2}}}}^{{\text{(e)}}} }}{{d\overline{v}^{{\text{(e)}}} }} + \frac{{dI_{{{\text{c2}}}}^{{\text{(e)}}} }}{{d\overline{v}^{{\text{(e)}}} }} - \frac{{dI_{{{\text{d2}}}}^{{\text{(e)}}} }}{{d\overline{v}^{{\text{(e)}}} }}$$
(60)
$$\left[ {\text{A}} \right]_{82 \times 82} \left[ {\begin{array}{*{20}c} {\left[ {\frac{{\partial \overline{u}}}{\partial t}} \right]_{41 \times 1} } \\ {\left[ {\frac{{\partial \overline{v}}}{\partial t}} \right]_{41 \times 1} } \\ \end{array} } \right] + \left[ {\text{B}} \right]_{82 \times 82} \left[ {\begin{array}{*{20}c} {\left[ {\overline{u}} \right]_{41 \times 1} } \\ {\left[ {\overline{v}} \right]_{41 \times 1} } \\ \end{array} } \right] = [{\text{F}}]_{82 \times 1}$$
(61)

Here, A and B are system matrices with F as system vectors. The numerically stable Crank–Nicolson technique is utilized in FEM for time derivatives solution.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, A., Pardasani, K.R. Mechanistic insights of neuronal calcium and IP3 signaling system regulating ATP release during ischemia in progression of Alzheimer’s disease. Eur Biophys J 52, 153–173 (2023). https://doi.org/10.1007/s00249-023-01660-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-023-01660-1

Keywords

Navigation