Skip to main content
Log in

Modelling the transition from simple to complex Ca2+oscillations in pancreatic acinar cells

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

A mathematical model is proposed which systematically investigates complex calcium oscillations in pancreatic acinar cells. This model is based on calcium-induced calcium release via inositol trisphosphate receptors (IPR) and ryanodine receptors (RyR) and includes calcium modulation of inositol (1,4,5) trisphosphate (IP3) levels through feedback regulation of degradation and production. In our model, the apical and the basal regions are separated by a region containing mitochondria, which is capable of restricting Ca2+ responses to the apical region. We were able to reproduce the observed oscillatory patterns, from baseline spikes to sinusoidal oscillations. The model predicts that calcium-dependent production and degradation of IP3 is a key mechanism for complex calcium oscillations in pancreatic acinar cells. A partial bifurcation analysis is performed which explores the dynamic behaviour of the model in both apical and basal regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Albrecht MA, Colegrove SL and Friel DD 2002 Differential regulation of ER Ca2+ uptake and release rates accounts for multiple modes of Ca2+ -induced Ca2+ release. J. Gen. Physiol. 119 211–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Almaraz CC, Salido GM, Pariente JA and Camello PJ 2002 Role of mitochondria in Ca2+ oscillations and shape of Ca2+ signals in pancreatic acinar cell. Biochem. Pharmacol. 63 283–292

    Article  Google Scholar 

  • Ashby MC, Craske M, Park MK, Gerasimenko OV, Burgoyne RD, Petersen OH, et al. 2002 Localized Ca2+ uncaging reveals polarized distribution of Ca2+sensitive Ca2+ release sites: mechanism of unidirectional Ca2+ waves. J. Cell Biol. 158 283–292

  • Ashby MC, Petersen OH and Tepikin AV 2003 Spatial characterisation of ryanodine-induced calcium release in mouse pancreatic acinar cells. J. BioChem. 369 441–445

    Article  CAS  Google Scholar 

  • Ashby MC and Tepikin AV 2002 Polarized calcium and calmodulin signalling in secretory epithelia. Physiol. Rev. 82 701–734

    CAS  PubMed  Google Scholar 

  • Atanasova KT, Shuttleworth TJ, Yule DI, Thomas JI and Sneyd J 2005a Calcium oscillations and membrane transport: the importance of two time scales. Multiscale Model. Simul. 3 245–264

  • Atanasova KT, Yule DI and Sneyd J 2005b Calcium oscillations in a triplet of pancreatic acinar cells. Biophy. J. 88 1535–1551

    Article  Google Scholar 

  • Atri A, Amundson J, Clapham D and Sneyd J 1993 A Single-pool model for intracellular calcium oscillations and waves in the xenopus laevis oocyte. Biophys. J. 65 1727–1739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baker HL, Errington RJ, Davies SC and Campbell AK 2002 A Mathematical Model predicts that calreticulin interacts with the Enoplasmic Reticulum Ca2+-ATPase. Biophys. J. 82 582–590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berridge MJ 1995 Capacitative calcium entry. Biochem. J 312 1–11

  • Berridge MJ 1997 Elementry and global aspects of calcium signalling. J. Physiol. 499 291–306

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berridge MJ, Bootman MD and Roderick HL 2003 Calcium signallings: dynamics, homeostasis and remodelling. Nature Rev. Mol. Cell Biol. 4 517–529

  • Borghans JAM, Dupont G and Goldbeter A 1997 Complex intracellular calcium oscillations: A theoretical exploration of possible mechanism. Biophys. Chem. 66 25–41

    Article  CAS  PubMed  Google Scholar 

  • Chen XF, Li C, Wang PY, Li M and Wang W 2009 Dynamic simulation of the effect of calcium-release activated calcium channel on cytoplasmic Ca2+ oscillation. Biophys. Chem. 136 87–95

    Article  Google Scholar 

  • Colegrove SL, Albrecht MA and Friedman DD 2000 Quantitative analysis of mitochodrial Ca2+ uptake and release pathways in sympathetic neurons. Reconstruction of the recovery after depolarization evoked Ca2+ elevation. J. Gen. Physiol. 115 371–388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Criddle DN, Gerasimenko JV, Baumgartner HK, Jaffer M, Voronina S, Sutton R, et al. 2007 Calcium signalling and pancreatic cell death:apotosis or necrosis. Cell Death Differ. 14 1285–1294

  • Doedel EJ, Champneys EJ, Fairgrieve AR, Kuznetsov YA, Sandstede B, Wang X, et al. 2002 Continuation and bifurcation software for ordinary differential equations (with HomCont).

  • Dufour JF, Arias IM and Turner TJ 1997 Inositol 1,4,5- trisphosphate and calcium regulate the calcium channel function of the hepatic inositol 1,4,5-trisphosphate receptor. J. Biol. Chem. 272 2675–2681

    Article  CAS  PubMed  Google Scholar 

  • Dupont G and Combettes L 2006 Modelling the effect of specific insositol 1,4,5- trisphosphate receptor isoform on cellular Ca2+ signals. Biol. Cell. 98 171–182

    Article  CAS  PubMed  Google Scholar 

  • Dupont G, Combettes L and Leybaer L 2007 Calcium dynamics: spatio-temporal organization from the Subcellular to the organ level. Int. Rev. Cytol. 261 193–245

    Article  CAS  PubMed  Google Scholar 

  • Dupont G and Croisier H 2010 Spatiotemporal organization of Ca2+ dynamics: a modeling-based approach. HFSP J 4 43–51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ermentrout B 2002 Simulating, analyzing, and animating dynamical systems: A guide to XP-PAUT for researcher and students. SIAM.

  • Favre CJ, Schrenzel J, Jacquet J, Lew DP and Krause KH 1996 Highly supralinear feedback inhibition of Ca2+ uptake by the Ca2+ load of intracellular stores. J. Biol. Chem. 271 14925–14930

    Article  CAS  PubMed  Google Scholar 

  • Feske SR, Giltane J, Dolmetsch R, Staudt L and Rao A 2001 Gene regulation mediated by calcium signals in T Lymphocytes. Nat. Immunol. 2 316–324

    Article  CAS  PubMed  Google Scholar 

  • Finch E, Turner T, and Goldin S 1991 Calcium as a coagonist of inositol 1,4,5 trisphosphate-induced calcium release. Science 252 443–446

    Article  CAS  PubMed  Google Scholar 

  • Fitzsimmons TJ, Gukovsky I, Mcroberts JA, Rodriguez E, Lai FA and Pandol SJ 2000 Multiple isoforms of the ryanodine receptor are expressed in rat pancreatic acinar cell. Biochem. J. 351 265–271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fogarty KE, Kidd JF, Tuft DK and Thorn P 2000 Mechanisms underlying InsP3-evoked global Ca2+ signals in mouse pancreatic acinar cells. J. Physiol. 526 515–526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Futatsugi A, Nakamura T, Yamada MK, Ebisui E, Nakamura K, Uchida K, et al. 2005 IP3 receptor types 2 and 3 mediate exocrine secretion underlying energy metabolism. Science 309 2232–2234

    Article  CAS  PubMed  Google Scholar 

  • Gin E, Crampin EJ, Brown DA, Shuttleworth TJ, Yule DI and Sneyd J 2007 A mathematical model of fluid secretion from a parotid acinar cell. J. Theor. Biol. 248 64–80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Giovannucci DR, Bruce JI, Straub SV, Arreola J, Sneyd J, Shuttleworth TJ, et al. 2002 Cytosolic Ca2+ and Ca2+ activated Cl- current dynamics: insights from two functionally distinct mouse exocrine cells. J. Physiol. 1–16

  • Goldbeter A, Dupont G and Berridge MJ 1990 Minimal model for signal induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. Proc. Natl. Acad. Sci. USA 87 1461–1465

  • Grubelnik V, Larsen AZ, Kummer U, Olsen LF and Marhl M 2001 Mitochondria regulate the amplitude of simple and complex calcium oscillations. Biophys. Chem. 94 59–74

    Article  CAS  PubMed  Google Scholar 

  • Habara Y and Kanno T 1993 Stimulus-secretion coupling and Ca2+ dynamics in pancreatic acinar cells. Pergamon 25 843–850

    Google Scholar 

  • Harootunian AT, Kao JP, Paranjape S and Tsien RY 1991 Generation of calcium oscillation in fibroblasts by postive feedback between Calcium and IP3. Science 251 75–78

    Article  CAS  PubMed  Google Scholar 

  • Hattori M, Suzuki AZ, Higo T, Miyauchi H, Michikawa T, Nakamura T, et al. 2004 Distinct roles of inositol 1,4,5-trisphosphate receptor types 1 and 3 in Ca2+ signaling. J. Biol. Chem. 279 11967–11975

    Article  CAS  PubMed  Google Scholar 

  • Iino M 2010 Spatiotemporal dynamics of Ca2+ signaling and its physiological roles. Proc. Jpn. Acad. Ser. B 86 244–256

  • Ishii K, Hirose K, and Iino M 2006 Ca2+ shuttling between endoplasmic reticulum and mitochondria underlying Ca2+ oscillations. EMBO J. 7 390–396

  • Kasai H 1995 Pancreatic calcium waves and secreation. CIBA Found Symp. 188 104–116

  • Kasai H, Li XY and Miyashita Y 1993 Subcellular distribution of Ca2+ release channels underlying Ca2+ waves and oscillations in exocrine pancreas. Cell 74 669–677

    Article  CAS  PubMed  Google Scholar 

  • Keener J and Sneyd J 2008 Mathematical physiology: cellular physiology; in Interdisciplinary applied mathematics 2nd edition (eds) SS Antman, JE Marsden and L Sirovich (New York: Springer) Vol. 8, pp 1182

  • Keizer J and Levine L 1996 Ryanodine receptor adaptation and Ca2+ induced Ca2+ release dependent Ca2+ oscillations. Biophys. J. 71 3477–3487

  • Kopach O, Kruglikov I, Pivneva T, Voitenko N, Verkhratsky A and Fedirko N 2011 Mitochondria adjust Ca2+ signaling regime to a pattern of stimulation in salivary acinar cells. Biochem. Biophys. Acta 1813 1740–1748

  • Laude AJ and Simpson AW 2009 Compartmentalized signalling- Ca2+ compartments, microdomains and the many facets of Ca2+ signalling. FEBS 276 1800–1816

    Article  CAS  Google Scholar 

  • LeBeau AP, Yule DI, Groblewski GE and Sneyd J 1999 Agonist-dependent phosphorylation of the inositol1,4,5-trisphosphate receptor:a possible mechanism for agonist-specific calcium oscillations in pancreatic acinar cells. J. Gen. Physiol. 113 851–871

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • lee M, Chung S, Uhm DH and Park MK 2005 Regulation of zymogen granule exocytosis by Ca2+, cAMP, and PKC in pancreatic acinar cell. Biochem. Biophys. Res. Com. 334 1241–1247

  • Lee MG, Xu X, Zeng W, Diaz J, Wojcikiewicz RJH, Kuo TH, et al. 1997 Polarized expression of Ca2+ channels in pancreatic and salivary gland cells. J. Biol. Chem. 272 15765–15770

    Article  CAS  PubMed  Google Scholar 

  • Leite MF, Andrade VA and Nathanson MH 2010 Signaling pathways in biliary epithelial cells; in Signaling pathways in liver diseases 2nd edition (eds) JF Dufour and PA Clavien (Heidelberg: Springer) Chapter 2, pp. 25–39

  • Leite MF, Dranoff JA, Gao L and Nathanson MH 1999 Expression and subcellular localization of the ryanodine receptor in rat pancreatic acinar cells. Biochem. J. 337 305–309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leung PS 2010 Physiology of the pancreas. The Renin-Angiotensin System: Current Research Progress in The Pancreas (Netherlands: Springer) Vol. 690, pp 13-27

  • Low JT, Shukla A, Behrendroff N and Thorn P 2010 Exocytosis, dependent on Ca2+ release from Ca2+ stores, in regulated by Calcium microdomains. J. Cell Science 123 3201–3208

  • Lytton J, Westlin M, Burkll SE, Shulln GE and MacLennanll DH 1992 Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J. Biol. Chem. 267 14483–14489

    CAS  PubMed  Google Scholar 

  • Marhl M, Gosak M, Perc M, Jane Dixon C and Green AK 2008 Spatio-temporal modelling explains the effect of reduced plasma membrane Ca2+ efflux on intracellular Ca2+ oscillations in hepatocytes. J. Theor. Biol. 252 419–426

    Article  CAS  PubMed  Google Scholar 

  • Matveer V, Bertram R and Sherman A 2011 Calcium cooperativity of exocytosis as a measure of Ca2+ channel domain overlap. Brain Res. 1398 126–138

  • Meyer T and Stryer 1988 Molecular model for receptor-stimulation calcium spiking. Proc. Natl. Acad. Sci. USA 85 5051–5055

  • Mignen O, Thompson JL, Yule DI and Shuttleworth TJ 2005 Agonist activation of arachidonate-regulated Ca2+ -selective (ARC) channels in murine parotid and pancreatic acinar cells. J. Physiol. 564 791–801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miyakawa T, Maeda A, Yamazawa T, Hirose K, Kurosaki T and Iino M 1999 Encoading of Ca2+ signals by differential expression of IP3 receptor subtypes. EMBO J. 18 1303–1308

  • Mogami H, Tepikin AV and Petersen OH 1998 Termination of cytosolic Ca2+ signals: Ca2+ reuptake into intracellular stores is regulated by the free Ca2+ concentration in the store lumen. EMBO J. 17 435–442

  • Nalaskowski MM and Mayr GW 2004 The families of kinase removing the Ca2+ releasing second messenger Ins(1,4,5) P3. Curr. Mol. Med. 4 277–290

    Article  CAS  PubMed  Google Scholar 

  • Nathanson MH, Fallon MB, Padfeild PJ and Maranto AR 1994 Localization of the type 3 inositol 1,4,5 trisphosphate receptor in the Ca2+ waves triger zone of pancreatic acinar cell. J. Biol. Chem. 269 4693–4966

    CAS  PubMed  Google Scholar 

  • Nathanson MH, Padfeild PJ, O'Sullivan AJ, Burgstahler AD and Jamieson JD 1992 Mechanism of Ca2+ waves in pancreatic acinar cell. Cell Calcium 267 18118–18121

    CAS  Google Scholar 

  • Nayak RA, Shajhan TK, Panfilov AV and Pandit R 2013 Spiral-wave dynamic in a mathematical model of human ventricular tissue with myocytes and fibroblast. PLoS One 8 e72950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Palk L, Sneyd J, Shuttleworth TJ, Yule DI and Crampin EJ 2010 A dynamic model of saliva secretion. J. Theor. Biol. 266 625–640.

  • Perc M and Marhl M 2003 Different types of bursting calcium oscillations in non-excitable cells. Chaos Soliton Fract. 18 759–773

  • Petersen CC, Toescu EC and Petersen OH 1991 Different patterns of receptor-activated cytoplasmic calcium oscillation in single pancreatic acinar cell. EMBO J. 10 527–533

  • Petersen OH 2005 Ca2+ Signalling and Ca2+ activation ion channels in exocrine acinar cells. Cell Calcium 38 171–200

    Article  CAS  PubMed  Google Scholar 

  • Petersen OH 2009 Ca2+ signalling in pancreatic acinar cells: physiology and pathophysiology. Braz. J. Med. Biol. Res. 42 9–16

    Article  CAS  PubMed  Google Scholar 

  • Petersen OH 1995 Local calcium spiking in pancreatic acinar cells. Ciba Found Symp. 188 85–94

  • Petersen OH, Petersen CC and Kasai H 1994 Calcium and Harmone Action. Annu. Rev. Physiol. 56 297–319

    Article  CAS  PubMed  Google Scholar 

  • Petersen OH and Tepikin AV 2008 Polarized calcium signaling in exocrine gland cells. Annu. Rev. Physiol. 70 273–299

    Article  CAS  PubMed  Google Scholar 

  • Petersen OH, Wakui M, Osipchuk Y, Yule D and Gallacher DV 1990 Electrophysiology of pancreatic acinar cells. Methods Enzymol. 192 301–308

  • Politi A, Gaspers LD, Thomas AP and Hofer T 2006 Models of IP3 and Ca2+ oscillations: frequency encoding and identification of underlying feedbacks. Biophys. J. 90 3120–3133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pozzan T, Rizzuto R, Volpe P and meldolesi J 1994 Molecular and cellular physiology of intracellular stores. Physiol. Rev. 74 595–636

  • Pushpavanam S 1998 Mathematical methods in chemical engineering (New Delhi: Prentice Hall of India Private Limited).

  • Putney JW, Broad LM, Braun FJ, Lievremont JP and Bird GH 2001 Mechanisms of capacitative calcium entry. J. Cell Sci. 114 2223–2229

  • Rebecche MJ and Pentyala SN 2000 Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol. Rev. 80 1291–1335

    Google Scholar 

  • Rhee SG 2001 Regulation of Phosphoinositide-specific phosphlipace C. Annu. Rev. Physiol. 70 281–312

  • Romeo MM and Jones CRT 2003 The stability of traveling calcium pulses in a pancreatic acinar cell. Physica D. 177 242–258

  • Shajhan TK, Nayak RA and Pandit R 2009 Spiral-wave turbulence and its control in the presence of inhomogeneities in four mathematical model of cardiac tissue. PLoS One 4 e4738.

  • Simpson D, Kirk V and Sneyd J 2005 Complex oscillations and waves of calcium in pancreatic acinar cell. Physica. D. 200 303–324

    Article  CAS  Google Scholar 

  • Sneyd J 1994 Calcium buffering and Diffusion:On regulation of an outstanding problem. Biophys. J. 67 4–5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sneyd J, Atanasova KT, Bruce JI, Straub SV, Giovannucci DR and Yule DI 2003 A Model of calcium waves in pancreatic and parotid acinar cells. Biophys. J. 85 1392–1405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sneyd J, Atanasova KT, Reznikov V, Bai Y, Sanderson MJ and Yule DI 2006 A method for determining the dependence of calcium oscillations on inositol trisphosphate oscillations. PNAS 103 1675–1680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sneyd J, Atanasova KT, Yule DI, Thomas JL and Shuttleworth TJ 2004 Control of Calcium Oscillations by membrane fluxes. PNAS 101 1392–1396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sneyd J and Dufour JF 2002 A dynamic model of the type-2 inositol trisphosphate receptor. Proc. Natl. Acad. Sci. USA 99 2398–2403

  • Sneyd J and Falcke M 2004 Models of the inositol trisphosphate receptor. Prog. Biophys. Mol. Biol. 89 207–245

    Article  PubMed  Google Scholar 

  • Sneyd J, LeBeau A and Yule D 2000 Traveling waves of calcium in pancreatic acinar cells: model construction and bifurcation analysis. Physica D. 145 158–179

  • Stern MD, Song LS, Cheng H, Sham JSK, Yang HT, Boheler KR, et al. 1999 Local control models of cardiac excitation–contraction coupling: a possible role for allosteric interactions between ryanodine receptors. J. Gen. Physiol. 113 469–489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Straub SV, Giovannucci DR and Yule DI 2000 Calcium wave propogation in pancreatic acinar cell:Functional Interaction of Inositol 1,4,5-Trisphosphate Receptors,Ryanodine Receptors, and Mitochondria. J. Gen. Physiol. 116 547–559

  • Strizhak P, Magura IS, YatsimirshII KB and Masyuk AI 1995 Return map approach to description of the deterministic chaos in cytosolic calcium oscillation. J. Biolo. Phys. 21 233–239

    Article  CAS  Google Scholar 

  • Tanimura A 2009 Mechanism of calcium waves and oscillations in non-excitable cells. Int. J. Oral-Med. Sci. 8 1–11

    Article  CAS  Google Scholar 

  • Tepikin AV and Petersen OH 1992 Mechanisms of cellular calcium oscillations in secretory cells. Biochimiea et Biophysica Acta. 1137 197–207

  • Thorn P 1993 Spatial aspects of Ca2+ signalling in Pancreatic acinar cell. J. Exp. Biol. 184 129–144

    CAS  PubMed  Google Scholar 

  • Thorn P, Lawrie AM, Smith PM, Gallacher DV and Petersen OH 1993 Local and global cytosolic Ca2+ oscillations in exocrine cells evoked by agonist and inositol trisphosphate. Cell 74 661–668

    Article  CAS  PubMed  Google Scholar 

  • Tinel H, Cancela JM, Mogami H, Gerasimenko JV, Gerasimenko OV, Tepikin AV, et al. 1999 Active mitochondria surrounding the pancreatic acinar granule region prevent spreading of inositol trisphosphate-evoked local cytosolic Ca2+ signals. EMBO J. 18 4999–5008

  • Toescu EC, Gallacher DV and Petersen OH 1994 Identical regional mechanisms of intracelular free Ca2+ concentration increase during polarized agonist-evoked Ca2+ response in pancreatic acinar cells. Biochem. J. 304 313–316

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ullah G, Jung P and Cornell-Bell AH 2006 Anti-phase calcium oscillations in astrocytes via inositol (1, 4, 5)-trisphosphate regeneration. Cell Calcium 39 197–208

    Article  CAS  PubMed  Google Scholar 

  • Ullah G, Jung P and Machaca K 2007 Modlling Ca2+ signalling differentiation during oocyte maturation. Cell Calcium. 42 556–564

  • Ventura AC and Sneyd J 2006 Calcium oscillations and waves generated by multiple release mechanisms in pancreatic acinar cells. Bull. Math. Biol. 68 2205–2231

    Article  PubMed  Google Scholar 

  • Wagner J and Keizer J 1994 Effects of rapid buffers on Ca2+ Diffusion and Ca2+ Oscillations. Biophys. J. 67 447–456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Williams JA and Yule DI 2012 Stimulus-secretion coupling in pancreatic acinar cells; in Physiology of the gastrointestinal tract 4th edition (Academic Press) p. 1337.

  • Wojcikiewicz RJH 1995 Type I, II, III inositol 1,4,5-trisphosphate receptors are unequally susceptible to down-regulation and are expressed in markedly different proportions in different cell type. J. Biol. Chem. 270 11678–11683

    Article  CAS  PubMed  Google Scholar 

  • Woodring PJ and Garrison JC 1997 Expression, purification, and regulation of two isoforms of the inositol 1,4,5 trisphosphate 3-kinase. J. Bio. Chem. 272 30447–30454

    Article  CAS  Google Scholar 

  • Xu X, Zeng W, Diaz J and Muallem S 1996 Spacial compartmentalization of Ca2+ signalling complexes in pancreatic acini. J. Bio. Chem. 271 24684–24690

    Article  CAS  Google Scholar 

  • Young GWD and Keizer J 1992 A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proc. Natl. Acad. Sci. USA 89 9895–9899

  • Yule DI and Gallacher DV 1988 Oscillations of cytosolic calcium in single pancreatic acinar cells stimulated by acetylcholine. FEBS 239 358–362

    Article  CAS  Google Scholar 

  • Yule DI, Lawrie AM and Gallacher DV 1991 Acetylcholine and Cholecystokinin induce different patterns of oscillationg calcium signals in pancreatic acinar cell. Cell Calcium 12 145–151

    Article  CAS  PubMed  Google Scholar 

  • Yule DI, Stuenkel E and Williams JA 1996 Intracellular calcium waves in rat pancreatic acini:mechanism of transmission. Am. J. Physiol. 271 C1285–C1294

    CAS  PubMed  Google Scholar 

  • Yule DI and Williams JA 2012 Stimulus-secretion coupling in pancreatic acinar cells; in Physiology of the gastrointestinal tract 4th edition (Academic Press) pp 1361–1397

Download references

Acknowledgements

The first author would like to thank especially Dr. Ganesh Dixit former faculty in the University of Auckland for providing moral support during my stay in Auckland, New Zealand. Authors would like to thank Laurence Palk, and Kate Patterson at the University of Auckland for the helpful discussion related to nonlinear dynamics and helping to develop the Matlab code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj Manhas.

Additional information

[Manhas N, Sneyd J and Pardasani KR 2014 Modelling the transition from simple to complex Ca2+oscillations in pancreatic acinar cells. J. Biosci. 39 1–22] DOI 10.1007/s12038-014-9430-3

Appendix A

Appendix A

$$ \begin{array}{c}\hfill \frac{\partial \left[C{a}^{2+}\right]}{\partial t}={D}_c\frac{\partial^2\left[C{a}^{2+}\right]}{\partial {x}^2}+\left({J}_{IPR}+{J}_{RyR}+{J}_{ER}\right)\hfill \\ {}\hfill \left(-{J}_{SERCA}\right)-{J}_{MITO}+\delta \left({J}_{IN}-{J}_{PM}\right)\hfill \end{array} $$
(A1)

Note that JMITO is nonzero only in the mitochondrial region.

$$ \frac{1}{\gamma}\frac{d{\left[C{a}^{2+}\right]}_{ER}}{ dt}=\left(-\left({J}_{IPR}+{J}_{RyR}+{J}_{ER}\right)+{J}_{SERCA}\right) $$
(A2)
$$ \frac{d\left[I{P}_3\right]}{ dt}=\frac{J_0}{\tau_p}\left(\begin{array}{l}\left(v\frac{\left[C{a}^{2+}\right]+\left(1-\alpha \right){k}_5}{\left[C{a}^{2+}\right]+{k}_5}\right)-\\ {}\left({k}_{5p}+{k}_{3k}\frac{{\left[C{a}^{2+}\right]}^2}{{\left[C{a}^{2+}\right]}^2+{k}_{\deg}^2}\right)\left[I{P}_3\right]\end{array}\right) $$
(A3)
$$ \frac{ dR}{ dt}={\phi}_{-2}O-{\phi}_2\left[I{P}_3\right]R+\left({k}_{-1}+{l}_{-2}\right){l}_1-{\phi}_1R $$
(A4)
$$ \frac{ dO}{ dt}={\phi}_2\left[I{P}_3\right]R-\left({\phi}_{-2}+{\phi}_4+{\phi}_3\right)O+{\phi}_{-4}A+{k}_{{}_{-3}}S $$
(A5)
$$ \frac{ dA}{ dt}={\phi}_4O-{\phi}_{-4}A-{\phi}_5A+\left({k}_{-1}+{l}_{-2}\right){l}_2 $$
(A6)
$$ \frac{d{I}_1}{ dt}={\phi}_1R-\left({k}_{-1}+{l}_{-2}\right){l}_1 $$
(A7)
$$ \frac{d{I}_2}{ dt}={\phi}_5A-\left({k}_{-1}+{l}_{-2}\right){I}_2 $$
(A8)
$$ \frac{ dw}{ dt}=\frac{k_c^{-}\left({w}^{\infty}\left[C{a}^{2+}\right]-w\right)}{w^{\infty}\left[C{a}^{2+}\right]} $$
(A9)
$$ {P}_{IPR}=\left(0.1\ast O+0.9\ast A\right),\kern0.5em \mathrm{IPR}\kern0.5em \mathrm{open}\kern0.5em \mathrm{probability} $$
(A10)
$$ {J}_{IPR}={k}_{IPR}{P}_{IPR}\left({\left[C{a}^{2+}\right]}_{ER}-\left[C{a}^{2+}\right]\right) $$
(A11)
$$ {P}_{RyR}=\frac{w\left(1+{\left(\left[C{a}^{2+}\right]/{K}_b\right)}^3\right)}{\left(1+{\left(\left[C{a}^{2+}\right]\right)}^4+{\left(\left[C{a}^{2+}\right]/{K}_b\right)}^3\right)},\kern0.5em \mathrm{RyR}\kern0.5em \mathrm{open}\kern0.5em \mathrm{probability} $$
(A12)
$$ {J}_{RyR}={k}_{RyR}{P}_{RyR}\left({\left[c{a}^{2+}\right]}_{ER}-\left[c{a}^{2+}\right]\right) $$
(A13)
$$ {J}_{PM}={V}_{PM}\frac{{\left[C{a}^{2+}\right]}^2}{K_{PM}^2+{\left[C{a}^{2+}\right]}^2} $$
(A14)
$$ {J}_{SERCA}={V}_{SERCA}\frac{\left[C{a}^{2+}\right]}{K_{SERCA}+\left[C{a}^{2+}\right]}\times \frac{1}{{\left[C{a}^{2+}\right]}_{er}} $$
(A15)
$$ {J}_{MITO}={v}_{MITO}\frac{\left[C{a}^{2+}\right]}{1+{\left(1/\left[C{a}^{2+}\right]\right)}^2} $$
(A16)
$$ {J}_{IN}={\alpha}_1+{\alpha}_2v $$
(A17)
$$ {J}_{ER}=0.002{s}^{-1} $$
(A18)

All ϕ are saturating (non-mass action) binding rates and are function of [Ca2+] derived by Sneyd and Dufour.

$$ {\phi}_1\left[C{a}^{2+}\right]=\frac{\left({k}_1{L}_1+{l}_2\right)\left[C{a}^{2+}\right]}{L_1+\left[C{a}^{2+}\right]\left(1+\frac{L_2}{L_3}\right)} $$
(A19)
$$ {\phi}_2\left[C{a}^{2+}\right]=\frac{k_2{L}_3+{l}_4\left[C{a}^{2+}\right]}{L_3+\left[C{a}^{2+}\right]\left(1+\frac{L_3}{L_1}\right)} $$
(A20)
$$ {\phi}_{-2}\left[C{a}^{2+}\right]=\frac{k_{-2}+{l}_{-4}\left[C{a}^{2+}\right]}{\left(1+\frac{\left[C{a}^{2+}\right]}{L_5}\right)} $$
(A21)
$$ {\phi}_3\left[C{a}^{2+}\right]=\frac{k_3{L}_5}{L_5+\left[C{a}^{2+}\right]} $$
(A22)
$$ {\phi}_4\left[C{a}^{2+}\right]=\frac{\left({k}_4{L}_5+{l}_6\right)\left[C{a}^{2+}\right]}{L_5+\left[C{a}^{2+}\right]} $$
(A23)
$$ {\phi}_{-4}\left[C{a}^{2+}\right]=\frac{L_1\left({k}_{-4}+{l}_{-6}\right)}{L_1+\left[C{a}^{2+}\right]} $$
(A24)
$$ {\phi}_5\left[C{a}^{2+}\right]=\frac{\left({k}_1{L}_1+{l}_2\right)\left[C{a}^{2+}\right]}{L_1+\left[C{a}^{2+}\right]} $$
(A25)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manhas, N., Sneyd, J. & Pardasani, K. Modelling the transition from simple to complex Ca2+oscillations in pancreatic acinar cells. J Biosci 39, 463–484 (2014). https://doi.org/10.1007/s12038-014-9430-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-014-9430-3

Keywords

Navigation