Skip to main content

Advertisement

Log in

Hypothalamic Suppression Decreases Bone Strength Before and After Puberty in a Rat Model

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The incidence of menstrual irregularities, both primary and secondary amenorrhea, has been reported to be as high as 60%, with the highest incidence in younger athletes, suggesting possible adverse effects on bone development. It was hypothesized that in a rat model, suppressed hypothalamic activity via a gonadotropin-releasing hormone antagonist (GnRH-a) before onset of puberty would result in a relatively larger bone strength deficit compared with suppression after puberty. Hypothalamic suppression was achieved by providing GnRH injections. Animals received injections for 25 days either before puberty (pre group) (age 23–46 days) or after puberty (post group) (age 65–90 days). Body weights and uterine weights were measured. Serum estradiol was assayed. Mechanical strength of the right femora and histomorphometry of the left femur were measured. Suppression of the hypothalamic–pituitary–gonadal axis was confirmed by significant atrophy of uterine tissue and suppressed estradiol levels. The peak moment was significantly lower in the pre and post GnRH-a groups compared with control. The percentage difference of the average peak moment and stiffness values from the respective age-matched control groups yielded a greater percentage difference in the pre group. The cortical area was less in the GnRH-a-treated groups, but no significant difference between the relative deficits between pre and post groups were found. Hypothalimic–pituitary–gonadal axis suppression before puberty resulted in a significantly larger deficit in mechanical strength compared with postpubertal animals. The time before puberty may represent a time when skeletal strength is more compromised. Women experience both primary and secondary amenorrhea; however, the treatment may need to be different for each condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Redman LM, Loucks AB (2005) Menstrual disorders in athletes. Sports Med 35:747–755

    Article  PubMed  Google Scholar 

  2. Warren MP, Stiehl AL (1999) Exercise and female adolescents: effects on the reproductive and skeletal systems. J Am Med Womens Assoc 54:115–120, 138

    PubMed  CAS  Google Scholar 

  3. Drinkwater BL, Nilson K, Chesnut CHIII, Bremner WJ, Shainholtz S, Southworth MB (1984) Bone mineral content of amenorrheic and eumenorrheic athletes. N Engl J Med 311:277–281

    PubMed  CAS  Google Scholar 

  4. Rencken ML, Chesnut CHIII, Drinkwater BL (1996) Bone density at multiple skeletal sites in amenorrheic athletes. JAMA 276:238–240

    Article  PubMed  CAS  Google Scholar 

  5. Nattiv A, Loucks AB, Manore MM, Sanborn CF, Sundgot-Borgen J, Warren MP (2007) The female athlete triad. Med Sci Sports Exerc 39:1867–1882

    Article  PubMed  Google Scholar 

  6. Pettersson U, Stalnacke B, Ahlenius G, Henriksson-Larsen K, Lorentzon R (1999) Low bone mass density at multiple skeletal sites, including the appendicular skeleton in amenorrheic runners. Calcif Tissue Int 64:117–125

    Article  PubMed  CAS  Google Scholar 

  7. Warren MP, Brooks-Gunn J, Fox RP, Lancelot C, Newman D, Hamilton WG (1991) Lack of bone accretion and amenorrhea: evidence for a relative osteopenia in weight-bearing bones. J Clin Endocrinol Metab 72:847–853

    PubMed  CAS  Google Scholar 

  8. Golden NH (2000) Osteoporosis prevention: a pediatric challenge. Arch Pediatr Adolesc Med 154:542–543

    PubMed  CAS  Google Scholar 

  9. Bailey DA (1997) The Saskatchewan Pediatric Bone Mineral Accrual Study: bone mineral acquisition during the growing years. Int J Sports Med 18(suppl 3):S191–S194

    Article  PubMed  Google Scholar 

  10. Bailey DA, Martin AD, McKay HA, Whiting S, Mirwald R (2000) Calcium accretion in girls and boys during puberty: a longitudinal analysis. J Bone Miner Res 15:2245–2250

    Article  PubMed  CAS  Google Scholar 

  11. Warren MP, Brooks-Gunn J, Fox RP, Holderness CC, Hyle EP, Hamilton WG (2002) Osteopenia in exercise-associated amenorrhea using ballet dancers as a model: a longitudinal study. J Clin Endocrinol Metab 87:3162–3168

    Article  PubMed  CAS  Google Scholar 

  12. Carbon R, Sambrook PN, Deakin V, Fricker P, Eisman JA, Kelly P, Maguire K, Yeates MG (1990) Bone density of elite female athletes with stress fractures. Med J Aust 153:373–376

    PubMed  CAS  Google Scholar 

  13. Ferrari SL, Chevalley T, Bonjour JP, Rizzoli R (2006) Childhood fractures are associated with decreased bone mass gain during puberty: an early marker of persistent bone fragility? J Bone Miner Res 21:501–507

    Article  PubMed  Google Scholar 

  14. Rauch F, Klein K, Allolio B, Schonau E (1999) Age at menarche and cortical bone geometry in premenopausal women. Bone 25:69–73

    Article  PubMed  CAS  Google Scholar 

  15. Kalu DN, Hardin RH, Cockerham R, Yu BP (1984) Aging and dietary modulation of rat skeleton and parathyroid hormone. Endocrinology 115:1239–1247

    Article  PubMed  CAS  Google Scholar 

  16. Myerson M, Gutin B, Warren MP, Wang J, Lichtman S, Pierson RN Jr (1992) Total body bone density in amenorrheic runners. Obstet Gynecol 79:973–978

    PubMed  CAS  Google Scholar 

  17. Turner RT, Wakley GK, Hannon KS (1990) Differential effects of androgens on cortical bone histomorphometry in gonadectomized male and female rats. J Orthop Res 8:612–617

    Article  PubMed  CAS  Google Scholar 

  18. Turner RT, Vandersteenhoven JJ, Bell NH (1987) The effects of ovariectomy and 17 beta-estradiol on cortical bone histomorphometry in growing rats. J Bone Miner Res 2:115–122

    PubMed  CAS  Google Scholar 

  19. Jiang Y, Zhao J, Genant HK, Dequeker J, Geusens P (1997) Long-term changes in bone mineral and biomechanical properties of vertebrae and femur in aging, dietary calcium restricted, and/or estrogen-deprived/-replaced rats. J Bone Miner Res 12:820–831

    Article  PubMed  CAS  Google Scholar 

  20. Peng Z, Tuukkanen J, Vaananen HK (1994) Exercise can provide protection against bone loss and prevent the decrease in mechanical strength of femoral neck in ovariectomized rats. J Bone Miner Res 9:1559–1564

    PubMed  CAS  Google Scholar 

  21. Katsumata T, Nakamura T, Ohnishi H, Sakurama T (1995) Intermittent cyclical etidronate treatment maintains the mass, structure and the mechanical property of bone in ovariectomized rats. J Bone Miner Res 10:921–931

    PubMed  CAS  Google Scholar 

  22. Yingling VR, Khaneja A (2006) Short-term delay of puberty causes a transient reduction in bone strength in growing female rats. Bone 38:67–73

    Article  PubMed  Google Scholar 

  23. Turner RT, Maran A, Lotinun S, Hefferan T, Evans GL, Zhang M, Sibonga JD (2001) Animal models for osteoporosis. Rev Endocr Metab Disord 2:117–127

    Article  PubMed  CAS  Google Scholar 

  24. Li XQ, Klein L (1990) Age-related inequality between rates of formation and resorption in various whole bones of rats. Proc Soc Exp Biol Med 195:350–355

    PubMed  CAS  Google Scholar 

  25. Roth CL, Neu C, Jarry H, Schoenau E (2005) Different effects of agonistic vs. antagonistic gnrh-analogues (triptorelin vs. cetrorelix) on bone modeling and remodeling in peripubertal female rats. Exp Clin Endocrinol Diabetes 113:451–456

    Article  PubMed  CAS  Google Scholar 

  26. Roth C, Leonhardt S, Seidel C, Luft H, Wuttke W, Jarry H (2000) Comparative analysis of different puberty inhibiting mechanisms of two GnRH agonists and the GnRH antagonist cetrorelix using a female rat model. Pediatr Res 48:468–474

    Article  PubMed  CAS  Google Scholar 

  27. Yingling VR, Taylor G (2008) Delayed pubertal development by hypothalamic suppression causes an increase in periosteal modeling but a reduction in bone strength in growing female rats. Bone 42:1137–11343

    Article  PubMed  CAS  Google Scholar 

  28. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    Article  PubMed  CAS  Google Scholar 

  29. Turner CH, Burr DB (1993) Basic biomechanical measurements of bone: a tutorial. Bone 14:595–608

    Article  PubMed  CAS  Google Scholar 

  30. Brodt MD, Ellis CB, Silva MJ (1999) Growing C57Bl/6 mice increase whole bone mechanical properties by increasing geometric and material properties. J Bone Miner Res 14:2159–2166

    Article  PubMed  CAS  Google Scholar 

  31. Di Masso RJ, Font MT, Capozza RF, Detarsio G, Sosa F, Ferretti JL (1997) Long-bone biomechanics in mice selected for body conformation. Bone 20:539–545

    Article  PubMed  CAS  Google Scholar 

  32. Chevalley T, Bonjour JP, Ferrari S, Rizzoli R (2008) Influence of age at menarche on forearm bone microstructure in healthy young women. J Clin Endocrinol Metab 3:2594–2601

    Article  CAS  Google Scholar 

  33. Ahlborg HG, Johnell O, Turner CH, Rannevik G, Karlsson MK (2003) Bone loss and bone size after menopause. N Engl J Med 349:327–334

    Article  PubMed  Google Scholar 

  34. Riggs BL, O’Fallon WM, Muhs J, O’Connor MK, Kumar R, Melton LJ 3rd (1998) Long-term effects of calcium supplementation on serum parathyroid hormone level, bone turnover, and bone loss in elderly women. J Bone Miner Res 13:168–174

    Article  PubMed  CAS  Google Scholar 

  35. Szulc P, Seeman E, Duboeuf F, Sornay-Rendu E, Delmas PD (2006) Bone fragility: failure of periosteal apposition to compensate for increased endocortical resorption in postmenopausal women. J Bone Miner Res 21:1856–1863

    Article  PubMed  Google Scholar 

  36. Kim BT, Mosekilde L, Duan Y, Zhang XZ, Tornvig L, Thomsen JS, Seeman E (2003) The structural and hormonal basis of sex differences in peak appendicular bone strength in rats. J Bone Miner Res 18:150–155

    Article  PubMed  CAS  Google Scholar 

  37. Bagi CM, Ammann P, Rizzoli R, Miller SC (1997) Effect of estrogen deficiency on cancellous and cortical bone structure and strength of the femoral neck in rats. Calcif Tissue Int 61:336–344

    Article  PubMed  CAS  Google Scholar 

  38. Rauch F, Travers R, Glorieux FH (2006) Cellular activity on the seven surfaces of iliac bone: a histomorphometric study in children and adolescents. J Bone Miner Res 21:513–519

    Article  PubMed  Google Scholar 

  39. Rauch F, Travers R, Glorieux FH (2007) Intracortical remodeling during human bone development—a histomorphometric study. Bone 40:274–280

    Article  PubMed  Google Scholar 

  40. Warden SJ, Fuchs RK, Castillo AB, Nelson IR, Turner CH (2007) Exercise when young provides lifelong benefits to bone structure and strength. J Bone Miner Res 22:251–259

    Article  PubMed  Google Scholar 

  41. Bagi C, van der Meulen M, Brommage R, Rosen D, Sommer A (1995) The effect of systemically administered rhIGF-I/IGFBP-3 complex on cortical bone strength and structure in ovariectomized rats. Bone 16:559–565

    Article  PubMed  CAS  Google Scholar 

  42. Gafni RI, McCarthy EF, Hatcher T, Meyers JL, Inoue N, Reddy C, Weise M, Barnes KM, Abad V, Baron J (2002) Recovery from osteoporosis through skeletal growth: early bone mass acquisition has little effect on adult bone density. FASEB J 16:736–738

    PubMed  CAS  Google Scholar 

  43. Gafni RI, Baron J (2000) Catch-up growth: possible mechanisms. Pediatr Nephrol 14:616–619

    Article  PubMed  CAS  Google Scholar 

  44. Warren MP, Brooks-Gunn J, Fox RP, Holderness CC, Hyle EP, Hamilton WG, Hamilton L (2003) Persistent osteopenia in ballet dancers with amenorrhea and delayed menarche despite hormone therapy: a longitudinal study. Fertil Steril 80:398–404

    Article  PubMed  Google Scholar 

  45. Yingling VR, Xiang Y, Raphan T, Schaffler MB, Koser K, Malique R (2007) The effect of a short-term delay of puberty on trabecular bone mass and structure in female rats: a texture-based and histomorphometric analysis. Bone 40:419–424

    Article  PubMed  Google Scholar 

  46. Roth C, Leonhardt S, Seidel C, Lakomek M, Wuttke W, Jarry H (2000) GnRH antagonist cetrorelix prevents sexual maturation of peripubertal male rats. Exp Clin Endocrinol Diabetes 108:358–363

    Article  PubMed  CAS  Google Scholar 

  47. Fyhrie DP, Fazzalari NL, Goulet R, Goldstein SA (1993) Direct calculation of the surface-to-volume ratio for human cancellous bone. J Biomech 26:955–967

    Article  PubMed  CAS  Google Scholar 

  48. Schaffler MB, Reimann DA, Parfitt AM, Fyhrie DP (1997) Which stereological methods offer the greatest help in quantifying trabecular structure from biological and mechanical perspectives? Forma 12:197–207

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Yingling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yingling, V., Elle Saine, M. & Joshi, R. Hypothalamic Suppression Decreases Bone Strength Before and After Puberty in a Rat Model. Calcif Tissue Int 84, 485–493 (2009). https://doi.org/10.1007/s00223-009-9241-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-009-9241-y

Keywords

Navigation