Skip to main content
Log in

Metric Algebroid and Poisson-Lie T-duality in DFT

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this article we investigate the gauge invariance and duality properties of DFT based on a metric algebroid formulation given previously in Carow-Watamura et al (Metric algebroid and Dirac generating operator in Double Field Theory, 2020. https://doi.org/10.1007/JHEP10(2020)192). The derivation of the general action given in this paper does not employ the section condition. Instead, the action is determined by requiring a pre-Bianchi identity on the structure functions of the metric algebroid and also for the dilaton flux. The pre-Bianchi identity is also a sufficient condition for a generalized Lichnerowicz formula to hold. The reduction to the D-dimensional space is achieved by a dimensional reduction of the fluctuations. The result contains the theory on the group manifold, or the theory extending to the GSE, depending on the chosen background. As an explicit example we apply our formulation to the Poisson-Lie T-duality in the effective theory on a group manifold. It is formulated as a 2D-dimensional diffeomorphism including the fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For the original Lichnerowicz formula see [42, 43]. An application to M-theory has been formulated in [44].

  2. In DFT\(_{sec}\), the vector bundle is identified with the tangent bundle itself, thus \(E_A{}^M\) is invertible.

  3. Note that using the pre-Bianchi identity, in the local Lorentz basis the above conditions reduce to the Bianchi identities

    $$\begin{aligned} (\partial _C-F_C)F_{AB}{}^C+2\partial _{[A}F_{B]}= & {} (\partial _C-F_C)\phi '_{AB}{}^C=-{{\mathcal {Z}}}_{AB}\end{aligned}$$
    (5.53)
    $$\begin{aligned} 4\partial _{[A}F_{BCD]}-3F_{[AB}{}^EF_{CD]E}= & {} -3\phi '_{[AB}{}^E\phi '_{CD]E}=-{{\mathcal {Z}}}_{ABCD} \end{aligned}$$
    (5.54)

    However, since \({{\mathcal {Z}}}_{AB}\) and \({{\mathcal {Z}}}_{ABCD}\) are not tensors, this does not mean that the conditions (5.51) and (5.52) hold.

  4. Note that taking the MA such that \({\bar{\phi }}'_{ABC}=0\) in the \({\bar{E}}_A\) frame means

    $$\begin{aligned} {\bar{F}}_{ABC}=\bar{F}'_{ABC}~. \end{aligned}$$
    (5.59)

    Since \(\bar{F}'_{ABC}\) satisfies the closure condition of the Lie algebroid, from the pre-Bianchi identity (4.20) for \(\bar{F}_{ABC}\), we conclude that

    $$\begin{aligned} \rho ({\bar{E}}_{[A})\bar{F}_{BCD]}=0~. \end{aligned}$$
    (5.60)

    Thus, we assume that \(\bar{F}_{ABC}=\bar{F}'_{ABC}\) is a constant flux in the following.

  5. This means that we are considering a class which allows us to take this choice. As we shall see this class includes the case on the Drinfeld double.

  6. When the generalized dilaton depends on \(x^m\) only and we consider the unimodular case, \(d+\frac{1}{2}\log \det (R)\) corresponds to the generalized dilaton in DFT\(_{sec}\).

  7. Note that originally \(U_0\) and \(d_0\) are assumed to be constant, meaning that the conditions given in (6.93), (6.94) and (6.95) are satisfied. Then it follows that the shift of \(I_m\) in (6.101) vanishes.

  8. Note that the r.h.s. of (4.21) and (4.26) can be written by the corresponding curvatures as shown in Sect. 5. For details see [1].

References

  1. Carow-Watamura, U., Miura, K., Watamura, S.,Yano, T.: Metric algebroid and Dirac generating operator in Double Field Theory. https://doi.org/10.1007/JHEP10(2020)192

  2. Hitchin, N.: Brackets, forms and invariant functionals. Asian J. Math 10(3), 541–560 (2006). arXiv:arXiv:math/0508618 [math-DG]

    Article  MathSciNet  MATH  Google Scholar 

  3. Gualtieri, M.: Generalized complex geometry. arXiv:math/0703298 [mathDG]

  4. Courant, T.J.: Dirac manifolds. Trans. Am. Math. Soc. 319(2), 631–661 (1990). https://doi.org/10.1090/S0002-9947-1990-0998124-1

    Article  MathSciNet  MATH  Google Scholar 

  5. Coimbra, A., Strickland-Constable, C., Waldram, D.: Supergravity as generalised geometry I: type II theories. J. High Energy Phys. 11(11), 091 (2011). https://doi.org/10.1007/JHEP11(2011)091. arXiv:1107.1733

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Coimbra, A., Strickland-Constable, C., Waldram, D.: Generalised Geometry and type II Supergravity. Fortschr. Phys. 60(9–10), 982–986 (2012). arXiv:1202.3170

    Article  MathSciNet  MATH  Google Scholar 

  7. Hitchin, N.: Lectures on generalized geometry. Surv. Differ. Geom. 16(1), 79–124 (2011). https://doi.org/10.4310/SDG.2011.v16.n1.a3

    Article  MathSciNet  MATH  Google Scholar 

  8. Bouwknegt, P.: Lectures on cohomology, T-duality, and generalized geometry. Lect. Notes Phys. 807, 261–311 (2010). https://doi.org/10.1007/978-3-642-11897-5_5

    Article  ADS  MATH  Google Scholar 

  9. Siegel, W.: Superspace duality in low-energy superstrings. Phys. Rev. D 48(6), 2826–2837 (1993). https://doi.org/10.1103/PhysRevD.48.2826

    Article  ADS  MathSciNet  Google Scholar 

  10. Hull, C., Zwiebach, B.: The gauge algebra of double field theory and Courant brackets. JHEP 09, 090 (2009). arXiv:0908.1792

    Article  ADS  MathSciNet  Google Scholar 

  11. Hohm, O., Hull, C., Zwiebach, B.: Generalized metric formulation of double field theory. J. High Energy Phys. 08(8), 008 (2010). https://doi.org/10.1007/JHEP08(2010)008. arXiv:1006.4823

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Zwiebach, B.: Doubled field theory, T-duality and courant-brackets. Lect. Notes Phys. 851, 265–291 (2012). https://doi.org/10.1007/978-3-642-25947-0_7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Aldazabal, G., Marqués, D., Núñez, C.: Double field theory: a pedagogical review. Class. Quantum Gravity 30(16), 163001 (2013). https://doi.org/10.1088/0264-9381/30/16/163001. arXiv:1305.1907

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Dibitetto, G., Fernández-Melgarejo, J., Marqués, D., Roest, D.: Duality orbits of non-geometric fluxes. Fortschr. Phys. 60(11–12), 1123–1149 (2012). https://doi.org/10.1002/prop.201200078

    Article  MathSciNet  MATH  Google Scholar 

  15. Geissbühler, D., Marques, D., Nunez, C., Penas, V.: Exploring double field theory. JHEP 06, 101 (2013). arXiv:1304.1472 [hep-th]

  16. Vaisman, I.: On the geometry of double field theory. J. Math. Phys. 53(3), 033509 (2012). https://doi.org/10.1063/1.3694739. arXiv:1203.0836

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Schwarz, A.: Geometry of Batalin–Vilkovisky quantization. Commun. Math. Phys. 155, 249–260 (1993). arXiv:hep-th/9205088

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Alexandrov, M., Kontsevich, M., Schwarz, A., Zaboronsky, O.: The geometry of the master equation and topological quantum field theory. Int. J. Mod. Phys. A 12, 1405–1430 (1997). arXiv:hep-th/9502010

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Roytenberg, D.: Courant algebroids, derived brackets and even symplectic supermanifolds, Dissertation (1999). arXiv:math/9910078

  20. Cattaneo, A.S., Felder, G.: On the AKSZ formulation of the Poisson sigma model. Lett. Math. Phys. 56(2), 163–179 (2001). https://doi.org/10.1023/A:1010963926853

    Article  MathSciNet  MATH  Google Scholar 

  21. Ikeda, N.: Lectures on AKSZ sigma models for physicists. Noncomm. Geometry Phys. 4, 79 (2017). https://doi.org/10.1142/9789813144613_0003. arXiv:1204.3714

    Article  MathSciNet  MATH  Google Scholar 

  22. Deser, A., Stasheff, J.: Even symplectic supermanifolds and double field theory. Commun. Math. Phys. 339(3), 1003–1020 (2015). https://doi.org/10.1007/s00220-015-2443-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Carow-Watamura, U., Heller, M.A., Ikeda, N., Kaneko, Y., Watamura, S.: Higher gauge theories from Lie n-algebras and off-shell covariantization. J. High Energy Phys. 07(7), 125 (2016). https://doi.org/10.1007/JHEP07(2016)125. arXiv:1606.03861

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Deser, A., Sämann, C.: Extended Riemannian geometry I: local double field theory. Ann. Henri Poincaré 19(8), 2297–2346 (2018). https://doi.org/10.1007/s00023-018-0694-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Carow-Watamura, U., Ikeda, N., Kaneko, T., Watamura, S.: DFT in supermanifold formulation and group manifold as background geometry. J. High Energy Phys. 04, 002 (2019). https://doi.org/10.1007/JHEP04(2019)002. arXiv:1812.03464

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Alekseev, A., Xu, P.: Derived brackets and Courant algebroids, unpublished (2001). Available at http://www.math.psu.edu/ping/anton-final.pdf

  27. Tseytlin, A.A., Wulff, L.: Kappa-symmetry of superstring sigma model and generalized 10d supergravity equations. J. High Energy Phys. 06(6), 174 (2016). https://doi.org/10.1007/JHEP06(2016)174. arXiv:1605.04884

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Arutyunov, G., Frolov, S., Hoare, B., Roiban, R., Tseytlin, A.: Scale invariance of the \(\eta \)-deformed \(AdS_5\times S_5\) superstring, T-duality and modified type II equations. Nuclear Phys. B 903, 262–303 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Sakamoto, J., Sakatani, Y., Yoshida, K.: Weyl invariance for generalized supergravity backgrounds from the doubled formalism. Prog. Theor. Exp. Phys.2017(5), 053B07 (2017). https://doi.org/10.1093/ptep/ptx067

  30. Y. Sakatani, S. Uehara, K. Yoshida, "Generalized gravity from modified DFT. J. High Energy Phys. 2017(4), (2017). https://doi.org/10.1007%2Fjhep04%282017%29123

  31. Chatzistavrakidis, A., Jonke, L., Khoo, F.S., Szabo, R.J.: Double field theory and membrane sigma-models. J. High Energy Phys. 2018(7), (2018) . https://doi.org/10.1007/JHEP07(2018)015

  32. Mori, H., Sasaki, S.: More on doubled aspects of algebroids in double field theory. J. Math. Phys. 61, 123504 (2020). arXiv:2008.00402

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Liu, Z.-J., Weinstein, A., Xu, P.: Manin triples for lie bialgebroids. J. Differ. Geometry 45(3), (1997). https://doi.org/10.48550/arXiv.dg-ga/9508013

  34. Vaisman, I.: Transitive Courant algebroids. Int. J. Math. Math. Sci. 2005(11), 1737–1758 (2005). https://doi.org/10.1155/IJMMS.2005.1737

    Article  MathSciNet  MATH  Google Scholar 

  35. Hull, C., Zwiebach, B.: Double Field Theory. JHEP 09, 099 (2009). arXiv:0904.4664 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  36. Bruce, A.J., Grabowski, J.: Pre-Courant algebroids. J. Geometry Phys. 142, 254–273 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Garcia-Fernandez, M.: Ricci flow, Killing spinors, and T-duality in generalized geometry. Adv. Math. 350, 1059–1108 (2019). arXiv:1611.08926

    Article  MathSciNet  MATH  Google Scholar 

  38. Ševera, P., Valach, F.: Ricci flow, Courant algebroids, and renormalization of Poisson-Lie T-duality. Lett. Math. Phys. 107(10), 1823–1835 (2017). https://doi.org/10.1007/s11005-017-0968-5. arXiv:1610.09004

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Kosmann-Schwarzbach, Y.: Derived brackets. Lett. Math. Phys. 69, 61–87 (2004). arXiv:math/0312524

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Ševera, P., Valach, F.: Courant algebroids, Poisson-Lie T-duality, and type II supergravities. Commun. Math. Phys. 375(1), 307–344 (2020). https://doi.org/10.1007/s00220-020-03736-x. arXiv:1810.07763

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Garcia-Fernandez, M.: Torsion-free generalized connections and heterotic supergravity. Commun. Math. Phys. 332(1), 89–115 (2014). https://doi.org/10.1007/s00220-014-2143-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Lichnerowicz, A.: Spineurs harmonique. C. R. Acad. Sci. Paris Sr. A 257, 7–9 (1963)

    MathSciNet  MATH  Google Scholar 

  43. Bismut, J.-M.: A local index theorem for non Kähler manifolds. Math. Ann. 284(4), 681–699 (1989). https://doi.org/10.1007/BF01443359

    Article  MathSciNet  MATH  Google Scholar 

  44. Coimbra, A., Minasian, R.: M-theoretic Lichnerowicz formula and supersymmetry. J. High Energy Phys.) (2019). https://doi.org/10.1007/jhep10(2019)036

  45. Blumenhagen, R., Hassler, F., Lüst, D.: Double field theory on group manifolds. JHEP 02, 001 (2015). arXiv:arXiv:1410.6374 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  46. Blumenhagen, R., du Bosque, P., Hassler, F., Lüst, D.: Generalized metric formulation of double field theory on group manifolds. J. High Energy Phys. 08(8), 056 (2015). https://doi.org/10.1007/JHEP08(2015)056

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. du Bosque, P., Hassler, F., Lüst, D.: Flux formulation of DFT on group manifolds and generalized Scherk–Schwarz compactifications. JHEP 02 (2016). https://doi.org/10.48550/arXiv.1509.04176

  48. Hohm, O., Zwiebach, B.: Towards an invariant geometry of double field theory. J. Math. Phys. 54(3), 032303 (2013). https://doi.org/10.1063/1.4795513. arXiv:1212.1736

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Klimčík, C., Ševera, P.: Dual non-Abelian duality and the Drinfeld double. Phys. Lett. B 351(4), 455–462 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  50. Ševera, P.: Poisson-Lie t-duality and courant algebroids. Lett. Math. Phys. 105(12), 1689–1701 (2015). https://doi.org/10.1007/s11005-015-0796-4

  51. Jurčo, B., Vysoký, J.: Poisson-Lie T-duality of string effective actions: a new approach to the Dilaton puzzle. J. Geometry Phys. 130, 1–26 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Jurco, B., Vysoky, J.: Effective actions for -models of Poisson-Lie type. arXiv:1903.02848

  53. Hassler, F.: The topology of Double Field Theory. J. High Energy Phys. 06, 128 (2018). arXiv:1611.07978

  54. Hassler, F.: Poisson-Lie T-Duality in Double Field Theory. arXiv:1707.08624 [hep-th]

  55. Sakatani, Y.: Type II DFT solutions from Poisson–Lie t-duality/plurality. Prog. Theor. Exp. Phys. 2019(7), (2019). https://doi.org/10.1093/ptep/ptz071

  56. Demulder, S., Hassler, F., Thompson, D.C.: Doubled aspects of generalised dualities and integrable deformations. J. High Energy Phys. 2019(2), (2019). https://doi.org/10.48550/arXiv.1810.11446

  57. Klimčík, C.: Poisson-Lie T-duality. Nuclear Phys. B - Proc. Suppl. 46(1), 116–121 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Klimcík, C., Ševera, P.: Poisson-Lie T-duality and loop groups of Drinfeld doubles. Phys. Lett. B 372(1–2), 65–71 (1996). https://doi.org/10.48550/arXiv.hep-th/9512040

  59. Klimcik, C., Severa, P.: Non-Abelian Momentum-Winding Exchange. CERN-TH/96-142. arXiv:hep-th/9605212

  60. Klimcik, C.: \(\eta \) and \(\lambda \) deformations as \(\mathcalligra{e}\)-models. Nucl. Phys. B 900, 259 (2015). arXiv:1508.05832

    ADS  Google Scholar 

  61. Tyurin, E., von Unge, R.: Poisson-Lie t-duality: the path-integral derivation. Phys. Lett. B 382(3), 233–240 (1996). https://doi.org/10.48550/arXiv.hep-th/9512025

  62. von Unge, R.: Poisson-Lie T-plurality. JHEP 0207, 014 (2002). arXiv:hep-th/0205245

    Article  MathSciNet  Google Scholar 

  63. Hohm, O., Kwak, S.K., Zwiebach, B.: Double field theory of type II strings. J. High Energy Phys. 09(9), 013 (2011). https://doi.org/10.1007/JHEP09(2011)013

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Jeon, I., Lee, K., Park, J.-H.: Ramond–Ramond Cohomology and O(D, D) T-duality. JHEP 09, 079 (2012). arXiv:1206.3478

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Fukuma, M., Oota, T., Tanaka, H.: Comments on T dualities of Ramond–Ramond potentials on tori. Prog. Theor. Phys. 103, 425–446 (2000). arXiv:hep-th/9907132 [hep-th]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank G. Aldazabal, N. Ikeda, C. Klimčík, Y. Sakatani, P. Ševera and K. Yoshida for stimulating discussions and lectures. We also thank T. Kaneko, S. Sekiya, S. Takezawa, and T. Yano for valuable discussions. S.W. is supported by the JSPS Grant-in-Aid for Scientific Research (B) No.18H01214.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Watamura.

Additional information

Communicated by Y. Kawahigashi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Spin Representation

Here, we construct a spin representation of SO(10, 10) using the basis \(\Gamma _A=(\Gamma _{{\textsf{a}}},\Gamma _{{\bar{{{\textsf{a}}}}}})\). \(\Gamma _A\) is defined by

$$\begin{aligned} \Gamma _A= \begin{pmatrix} \Gamma _{{\textsf{a}}}\\ \Gamma _{{\bar{{{\textsf{a}}}}}} \end{pmatrix} =\frac{1}{\sqrt{2}} \begin{pmatrix} s_{{{\textsf{a}}}b}&{}\delta _{{\textsf{a}}}{}^{b}\\ -s_{{\bar{{{\textsf{a}}}}} b}&{}\delta _{{\bar{{{\textsf{a}}}}}}{}^b \end{pmatrix} \begin{pmatrix} \gamma ^b\\ \gamma _b \end{pmatrix}~. \end{aligned}$$
(A.1)

Note that \(s=\text{ diag }(-1,1,1,\cdots ,1)\) for all suffices \(a, {{\textsf{a}}}, {\bar{{{\textsf{a}}}}}\), i.e.,

$$\begin{aligned} \Gamma ^{{\bar{{{\textsf{a}}}}}}=\eta ^{{\bar{{{\textsf{a}}}}}{\bar{{{\textsf{b}}}}}}\Gamma _{{\bar{{{\textsf{b}}}}}}=-s^{{\bar{{{\textsf{a}}}}}{\bar{{{\textsf{b}}}}}}\Gamma _{{\bar{{{\textsf{b}}}}}}~. \end{aligned}$$
(A.2)

The inner product of the basis is diagonalized as

$$\begin{aligned} \{\Gamma _A,\Gamma _B\}= 2\begin{pmatrix} s_{{{\textsf{a}}}{{\textsf{b}}}}&{}0\\ 0&{}-s_{{\bar{{{\textsf{a}}}}}{\bar{{{\textsf{b}}}}}} \end{pmatrix}~. \end{aligned}$$
(A.3)

The component of the generalized metric using this basis is equal to that using \(\gamma _A\):

$$\begin{aligned} H_{AB}= \begin{pmatrix} s_{\textsf{ab}}&{}0\\ 0&{}s_{\bar{\textsf{a}}\bar{\textsf{b}}} \end{pmatrix}~. \end{aligned}$$
(A.4)

In this paper, we use the following spin representation for the basis \(\Gamma _A\):

$$\begin{aligned} \Gamma _A=\{\Gamma _{{\textsf{a}}},\Gamma _{{\bar{{{\textsf{a}}}}}}\}=\{\Gamma _{0},\cdots ,\Gamma _9,\Gamma _{\bar{0}},\cdots ,\Gamma _{{\bar{9}}}\}\ , \end{aligned}$$
(A.5)

which we give here explicitly,

$$\begin{aligned} \Gamma _0= & {} i\sigma _1\otimes 1\otimes 1\otimes 1\otimes 1\otimes 1^{\otimes 5}\nonumber \\ \Gamma _1= & {} \sigma _2\otimes 1\otimes 1\otimes 1\otimes 1\otimes 1^{\otimes 5}\nonumber \\ \Gamma _2= & {} \sigma _3\otimes \sigma _1\otimes 1\otimes 1\otimes 1\otimes 1^{\otimes 5}\nonumber \\ \Gamma _3= & {} \sigma _3\otimes \sigma _2\otimes 1\otimes 1\otimes 1\otimes 1^{\otimes 5}\nonumber \\ \Gamma _4= & {} \sigma _3\otimes \sigma _3\otimes \sigma _1\otimes 1\otimes 1\otimes 1^{\otimes 5}\nonumber \\ \Gamma _5= & {} \sigma _3\otimes \sigma _3\otimes \sigma _2\otimes 1\otimes 1\otimes 1^{\otimes 5}\nonumber \\ \Gamma _6= & {} \sigma _3\otimes \sigma _3\otimes \sigma _3\otimes \sigma _1\otimes 1\otimes 1^{\otimes 5}\nonumber \\ \Gamma _7= & {} \sigma _3\otimes \sigma _3\otimes \sigma _3\otimes \sigma _2\otimes 1\otimes 1^{\otimes 5}\nonumber \\ \Gamma _8= & {} \sigma _3\otimes \sigma _3\otimes \sigma _3\otimes \sigma _3\otimes \sigma _1\otimes 1^{\otimes 5}\nonumber \\ \Gamma _9= & {} \sigma _3\otimes \sigma _3\otimes \sigma _3\otimes \sigma _3\otimes \sigma _2\otimes 1^{\otimes 5}\nonumber \\ \Gamma _{{\bar{0}}}= & {} (\sigma _3)^{\otimes 5}\otimes \sigma _1\otimes 1\otimes 1\otimes 1\otimes 1\nonumber \\ \Gamma _{\bar{1}}= & {} i(\sigma _3)^{\otimes 5}\otimes \sigma _2\otimes 1\otimes 1\otimes 1\otimes 1\nonumber \\ \Gamma _{\bar{2}}= & {} i(\sigma _3)^{\otimes 5}\otimes \sigma _3\otimes \sigma _1\otimes 1\otimes 1\otimes 1\nonumber \\ \Gamma _{{\bar{3}}}= & {} i(\sigma _3)^{\otimes 5}\otimes \sigma _3\otimes \sigma _2\otimes 1\otimes 1\otimes 1\nonumber \\ \Gamma _{{\bar{4}}}= & {} i(\sigma _3)^{\otimes 5}\otimes \sigma _3\otimes \sigma _3\otimes \sigma _1\otimes 1\otimes 1\nonumber \\ \Gamma _{{\bar{5}}}= & {} i(\sigma _3)^{\otimes 5}\otimes \sigma _3\otimes \sigma _3\otimes \sigma _2\otimes 1\otimes 1\nonumber \\ \Gamma _{{\bar{6}}}= & {} i(\sigma _3)^{\otimes 5}\otimes \sigma _3\otimes \sigma _3\otimes \sigma _3\otimes \sigma _1\otimes 1\nonumber \\ \Gamma _{{\bar{7}}}= & {} i(\sigma _3)^{\otimes 5}\otimes \sigma _3\otimes \sigma _3\otimes \sigma _3\otimes \sigma _2\otimes 1\nonumber \\ \Gamma _{{\bar{8}}}= & {} i(\sigma _3)^{\otimes 5}\otimes \sigma _3\otimes \sigma _3\otimes \sigma _3\otimes \sigma _3\otimes \sigma _1\nonumber \\ \Gamma _{{\bar{9}}}= & {} i(\sigma _3)^{\otimes 5}\otimes \sigma _3\otimes \sigma _3\otimes \sigma _3\otimes \sigma _3\otimes \sigma _2~, \end{aligned}$$
(A.6)

where \(\sigma _1,\sigma _2\) and \(\sigma _3\) are the Pauli matrices:

$$\begin{aligned} \sigma _1= \begin{pmatrix} 0&{}1\\ 1&{}0 \end{pmatrix}~,~ \sigma _2= \begin{pmatrix} 0&{}-i\\ i&{}0 \end{pmatrix}~,~ \sigma _3= \begin{pmatrix} 1&{}0\\ 0&{}-1 \end{pmatrix}~. \end{aligned}$$
(A.7)

\(A_+\) is defined as a generator of the Hermitian conjugate as

$$\begin{aligned} A_+\Gamma _AA_+^{-1}=\Gamma _A^\dagger ~. \end{aligned}$$
(A.8)

\(A_+\) is the charge conjugate matrix in this representation given by

$$\begin{aligned} A_+=i\sigma _2\otimes \sigma _3\otimes \sigma _3\otimes \sigma _3\otimes \sigma _3\otimes \sigma _2\otimes \sigma _3\otimes \sigma _3\otimes \sigma _3\otimes \sigma _3~. \end{aligned}$$
(A.9)

To obtain the Majorana representation, we define the generator of the complex conjugate as

$$\begin{aligned} B_+\Gamma _AB_+^{-1}= & {} \Gamma _A^{*}~. \end{aligned}$$
(A.10)

The representation of \(B_+\) is given by

$$\begin{aligned} B_+=\sigma _3\otimes \sigma _1\otimes \sigma _2\otimes \sigma _1\otimes \sigma _2\otimes 1\otimes \sigma _2\otimes \sigma _1\otimes \sigma _2\otimes \sigma _1~. \end{aligned}$$
(A.11)

The spinor basis \(e_\alpha \) of the Majorana representation is defined by

$$\begin{aligned} B_+^{-1}e_\alpha ^*=e_{\alpha }~. \end{aligned}$$
(A.12)

A Majorana spinor \(\varphi \in {\mathbb {S}}\) is denoted by

$$\begin{aligned} \varphi =\varphi ^{\alpha } e_{\alpha }~. \end{aligned}$$
(A.13)

where \(\varphi ^\alpha \in {\mathbb {R}}\). \(\Gamma _\chi \) is defined as

$$\begin{aligned} \{\Gamma _\chi ,\Gamma _A\}=0~. \end{aligned}$$
(A.14)

The explicit form of \(\Gamma _\chi \) is given by

$$\begin{aligned} \Gamma _\chi =\sigma _3^{\otimes 5}\otimes \sigma _3^{\otimes 5}~. \end{aligned}$$
(A.15)

Finally, the spin representation of the generalized metric is given by

$$\begin{aligned} {K}\Gamma _A{K}^{-1}= & {} H_A{}^B\Gamma _B~,\end{aligned}$$
(A.16)
$$\begin{aligned} {K}= & {} 1^{\otimes 5}\otimes \sigma _3^{\otimes 5}~. \end{aligned}$$
(A.17)

1.1 A.1 Majorana representation

We list the properties under Hermitian conjugation and taking the transpose for the operators in the Majorana representation:

$$\begin{aligned} J_{\alpha \beta }= & {} e_{\alpha }^\dagger e_{\beta }~,\end{aligned}$$
(A.18)
$$\begin{aligned} \Gamma _A{}_{\alpha \beta }= & {} e_{\alpha }^\dagger \Gamma _A e_{\beta }~,\end{aligned}$$
(A.19)
$$\begin{aligned} A_+{}_{\alpha \beta }= & {} e_{\alpha }^\dagger A_+ e_{\beta }~,\end{aligned}$$
(A.20)
$$\begin{aligned} K_{\alpha \beta }= & {} e_{\alpha }^\dagger K e_{\beta }~, \end{aligned}$$
(A.21)

where \(J_{\alpha \beta }\) is the metric on a Majorana spinor, i.e.,

$$\begin{aligned} e^\alpha= & {} J^{-1\alpha \beta }e_\beta ~, \end{aligned}$$
(A.22)
$$\begin{aligned} \varphi _\alpha= & {} J_{\alpha \beta }\varphi ^\beta ~. \end{aligned}$$
(A.23)

\(J_{\alpha \beta },A_+{}_{\alpha \beta }\) and \(K_{\alpha \beta }\) are (anti-)symmetric and (anti-)Hermitian, and \(\Gamma _A\) is in the Majorana representation. Then, they are real matrices as follows,

$$\begin{aligned} J_{\alpha \beta }^{*}= & {} J_{\beta \alpha }~, \end{aligned}$$
(A.24)
$$\begin{aligned} J_{\alpha \beta }= & {} J_{\beta \alpha }~, \end{aligned}$$
(A.25)
$$\begin{aligned} \Gamma _Ae_{\alpha }= & {} {} \Gamma _{A}{}^{\beta } {}_{\alpha }e_{\beta }~, \end{aligned}$$
(A.26)
$$\begin{aligned} \Gamma _{A\alpha \beta }= & {} \Gamma _{A}^{*} {}_{\alpha \beta }~, \end{aligned}$$
(A.27)
$$\begin{aligned} A_{+\alpha \beta }^{*}= & {} -A_{+\beta \alpha }~, \end{aligned}$$
(A.28)
$$\begin{aligned} A_{+\alpha \beta }= & {} - A_{+\beta \alpha }~, \end{aligned}$$
(A.29)
$$\begin{aligned} K_{\alpha \beta }^{*}= & {} K_{\beta \alpha }~, \end{aligned}$$
(A.30)
$$\begin{aligned} {K}_{\alpha \beta }= & {} {K}_{\beta \alpha }~. \end{aligned}$$
(A.31)

1.2 A.2 Vacuum

The vacuum of the spin space \({\mathbb {S}}\) is defined by

$$\begin{aligned} B_+^{-1}\vert 0\rangle ^*= & {} \vert 0\rangle ~,\nonumber \\ \gamma _a\vert 0\rangle= & {} 0~. \end{aligned}$$
(A.32)

\(\gamma _a\) is a suffix of standard O(DD). On the other hand, \(K\vert 0\rangle \) is a dual vacuum and satisfies

$$\begin{aligned} \gamma ^aK\vert 0\rangle =0~. \end{aligned}$$
(A.33)

1.3 A.3 A-product

An O(DD) transformation of a spinor is given by

$$\begin{aligned} \varphi \mapsto \exp \Big (\frac{1}{4}\Lambda _{AB}\Gamma ^{AB}\Big )\varphi ~, \end{aligned}$$
(A.34)

where \(\Lambda _{AB}=-\Lambda _{BA}\). We define the A-product \((\cdot ,\cdot )_{A}\) as an O(DD) invariant product of any two spinors \(\varphi _1,\varphi _2\):

$$\begin{aligned} (\varphi _1,\varphi _2)_A=\varphi _1^\dagger A_+\varphi _2~. \end{aligned}$$
(A.35)

We show the O(DD) invariance of the A-product as follows,

$$\begin{aligned} (\varphi _1,\varphi _2)_A\mapsto & {} \Big (\exp \Big (\frac{1}{4}\Lambda _{AB}\Gamma ^{AB}\Big )\varphi _1,\exp \Big (\frac{1}{4}\Lambda _{A'B'}\Gamma ^{A'B'}\Big )\varphi _2\Big )_A\nonumber \\= & {} \varphi _1^\dagger \exp \Big (\frac{1}{4}\Lambda _{AB}\Gamma ^{AB}\Big )^\dagger A_+\exp \Big (\frac{1}{4}\Lambda _{A'B'}\Gamma ^{A'B'}\Big )\varphi _2\nonumber \\= & {} \varphi _1^\dagger A_+\exp \Big (-\frac{1}{4}\Lambda _{AB}\Gamma ^{AB}\Big ) \exp \Big (\frac{1}{4}\Lambda _{A'B'}\Gamma ^{A'B'}\Big )\varphi _2\nonumber \\= & {} \varphi _1^\dagger A_+\varphi _2\nonumber \\ {}= & {} (\varphi _1,\varphi _2)_A~. \end{aligned}$$
(A.36)

The A-product of two Majorana spinors \(\varphi _1,\varphi _2\) is real:

$$\begin{aligned} (\varphi _1,\varphi _2)_A=\varphi _1^{\alpha }e_{\alpha }^\dagger A_+\varphi _2^{\beta }e_{\beta }=\varphi _1^{\alpha } A_{+\alpha \beta }\varphi _2^{\beta }\in {\mathbb {R}}~. \end{aligned}$$
(A.37)

As we see from (Eq. 4.42), \((\vert 0\rangle ,K\vert 0\rangle )_A\) includes the measure. The representation of \((\vert 0\rangle ,K\vert 0\rangle )_A\) is given by

$$\begin{aligned} (\vert 0\rangle ,K\vert 0\rangle )_A=\langle 0 \vert A_+K\vert 0\rangle ~. \end{aligned}$$
(A.38)

Since \(A_+\) and K are constant matrices, \(\vert 0\rangle \) has to be a half density.

$$\begin{aligned} \vert 0\rangle = \sqrt{dXe^{-2d}\sqrt{\det \eta _{NM}}}\vert 0\rangle ~, \end{aligned}$$
(A.39)

where \(\vert 0\rangle \) is a constant spinor and satisfies

$$\begin{aligned} \langle 0 \vert A_+K\vert 0\rangle =c_0~. \end{aligned}$$
(A.40)

1.4 A.4 AK-product

We can define the AK-product \((-,-)_{AK}\) as the \(O(1,D-1)\times O(D-1,1)\) invariant product of any two spinors \(\varphi _1,\varphi _2\):

$$\begin{aligned} (\varphi _1,\varphi _2)_{AK}=\varphi _1^\dagger A_+ K\varphi _2~. \end{aligned}$$
(A.41)

We can see its \(O(1,D-1)\times O(D-1,1)\) invariance as:

$$\begin{aligned} (\varphi _1,\varphi _2)_{AK}\mapsto & {} \Big (\exp \Big (\frac{1}{4}\Lambda _{AB}\Gamma ^{AB}\Big )\varphi _1,\exp \Big (\frac{1}{4}\Lambda _{A'B'}\Gamma ^{A'B'}\Big )\varphi _2\Big )_{AK}\nonumber \\= & {} \varphi _1^\dagger \exp \Big (\frac{1}{4}\Lambda _{AB}\Gamma ^{AB}\Big )^\dagger A_+ K\exp \Big (\frac{1}{4}\Lambda _{A'B'}\Gamma ^{A'B'}\Big )\varphi _2\nonumber \\= & {} \varphi _1^\dagger A_+\exp \Big (-\frac{1}{4}\Lambda _{AB}\Gamma ^{AB}\Big )K \exp \Big (\frac{1}{4}\Lambda _{A'B'}\Gamma ^{A'B'}\Big )\varphi _2\nonumber \\= & {} \varphi _1^\dagger A_+ K\exp \Big (-\frac{1}{4}\Lambda _{AB}\Gamma ^{CD}H_{C}{}^AH_D{}^B\Big ) \exp \Big (\frac{1}{4}\Lambda _{A'B'}\Gamma ^{A'B'}\Big )\varphi _2\nonumber \\= & {} \varphi _1^\dagger A_+ K\exp \Big (-\frac{1}{4}\Lambda _{AB}\Gamma ^{AB}\Big ) \exp \Big (\frac{1}{4}\Lambda _{A'B'}\Gamma ^{A'B'}\Big )\varphi _2\nonumber \\= & {} \varphi _1^\dagger A_+ K\varphi _2\nonumber \\= & {} (\varphi _1,\varphi _2)_{AK}~, \end{aligned}$$
(A.42)

where \(\Lambda _{AB}\) satisfies

$$\begin{aligned} \Lambda _{AB}=-\Lambda _{BA}~,~\Lambda _{AB}=H_A{}^{A'}H_B{}^{B'}\Lambda _{A'B'}~. \end{aligned}$$
(A.43)

As an A-product, the AK-product is real.

$$\begin{aligned} (\varphi _1,\varphi _2)_{AK}=\varphi _1^{\alpha }e_{\alpha }^\dagger A_+ K\varphi _2^{\beta }e_{\beta }=\varphi _1^{\alpha } A_{+\alpha \gamma }S^{\gamma \delta } K_{\delta \beta }\varphi _2^{\beta } \end{aligned}$$
(A.44)
$$\begin{aligned} (\varphi _1,\varphi _2)_{AK}\in {\mathbb {R}}~. \end{aligned}$$
(A.45)

B. Reduction of \(S_{RR}\) to DFT\(_{sec}\)

In this section, we show that for the case of a flat background \(S_{RR}\) reduces to DFT\(_{sec}\). For this end we consider the case where the metric and the structure function \(\phi '\) are given by

$$\begin{aligned} \eta _{MN}= \begin{pmatrix} 0&{}\delta ^m{}_n\\ \delta _m{}^n&{}0 \end{pmatrix}~,~\phi '_{LM}{}^N=0~. \end{aligned}$$
(B.1)

Then, the vielbein \(E_A{}^N\) is given by

$$\begin{aligned} E_A{}^N= \begin{pmatrix} e^{-T}{}^a{}_m&{}0\\ 0&{}e_a{}^m \end{pmatrix} \begin{pmatrix} \delta ^m{}_n&{}0\\ -B_{mn}&{}\delta _m{}^n \end{pmatrix}~. \end{aligned}$$
(B.2)

For the purpose to define the B-transformation later, we separate \(E_A{}^N\) into a GL(D) part \(E^{(e)}_A{}^M\) and a B-field part \(E^{(B)}_M{}^N\) as

$$\begin{aligned} E_A{}^M= & {} E_A^{(e)}{}^NE_N^{(B)}{}^M~,\end{aligned}$$
(B.3)
$$\begin{aligned} E^{(e)}_A{}^N= & {} \begin{pmatrix} e^{-T}{}^a{}_m&{}0\\ 0&{}e_a{}^m \end{pmatrix}~,\end{aligned}$$
(B.4)
$$\begin{aligned} E^{(B)}_N{}^M= & {} \begin{pmatrix} \delta ^m{}_n&{}0\\ -B_{mn}&{}\delta _m{}^n \end{pmatrix}~. \end{aligned}$$
(B.5)

The spin operators \({{\textsf{S}}}_{E^{(e)}},{{\textsf{S}}}_{E^{(B)}}\) related to \(E^{(e)}\) and \(E^{(B)}\), respectively, can be defined as

$$\begin{aligned} {{\textsf{S}}}_{E^{(e)}}\gamma _A{{\textsf{S}}}_{E^{(e)}}^{-1}= & {} E^{(e)}_A{}^N\delta _N{}^B\gamma _B~,\end{aligned}$$
(B.6)
$$\begin{aligned} {{\textsf{S}}}_{E^{(B)}}\gamma _A{{\textsf{S}}}_{E^{(B)}}^{-1}= & {} \delta _A{}^ME^{(B)}_M{}^N\delta _N{}^B\gamma _B~. \end{aligned}$$
(B.7)

The concrete form of \({{\textsf{S}}}_{E^{(e)}}\) and \({{\textsf{S}}}_{E^{(B)}}\) are

$$\begin{aligned} {{\textsf{S}}}_{E^{(e)}}= & {} \exp (-\frac{1}{2}\lambda _a{}^b\gamma ^a{}_b)~,~(e^{\lambda })_a{}^b=e_a{}^m\delta _m{}^b~,\end{aligned}$$
(B.8)
$$\begin{aligned} {{\textsf{S}}}_{E^{(B)}}= & {} e^{\frac{1}{4}B_{mn}\delta _a{}^m\delta _b{}^n\gamma ^{ab}}~, \end{aligned}$$
(B.9)

Using these spin operators, we define the spin operator \({{\textsf{S}}}_E\) related to \(E_A{}^N\) as

$$\begin{aligned} {{\textsf{S}}}_E= & {} {{\textsf{S}}}_{E^{(B)}}{{\textsf{S}}}_{E^{(e)}}~,\end{aligned}$$
(B.10)
$$\begin{aligned} {{\textsf{S}}}_E\gamma _A{{\textsf{S}}}_E^{-1}= & {} E_A{}^N\delta _N{}^B\gamma _B~. \end{aligned}$$
(B.11)

With this \({{\textsf{S}}}_E\), the corresponding Dirac generating operator denoted by \(\partial _N:=E_N^{-1}{}^A\partial _A\) is

(B.12)

is a Dirac operator in the local coordinate basis. To see the relation between \(S_{RR}\) and DFT\(_{sec}\), we rewrite the action of the R–R sector \(S_{RR}\) by :

(B.13)

where \(\breve{\chi }\) is defined by

$$\begin{aligned} \breve{\chi }=e^{-d}{{\textsf{S}}}_E\chi ~. \end{aligned}$$
(B.14)

The coefficient of the R–R flux is defined by

(B.15)

This defines the RR field \(\breve{F}^{RR}\) from the spinor \(\breve{\chi }\). It is the equivalent to the relation used in DFT\(_{sec}\) [63]. Using \(\breve{F}^{RR}\), the action of the R–R sector becomes

(B.16)

where we used

$$\begin{aligned} {{\textsf{S}}}_{E^{(e)}}^{-1}\vert 0\rangle =(\det g_{mn})^\frac{1}{4}\vert 0\rangle ~. \end{aligned}$$
(B.17)

To compare with the action in DFT\(_{sec}\), we determine the constant \(\beta _{RR}\) as

$$\begin{aligned} \beta _{RR}=-\frac{1}{2c_0}~, \end{aligned}$$
(B.18)

which yields the action of R–R sector in a flat space as:

$$\begin{aligned} S_{RR}=-\frac{1}{4}\int dX\sum _{p}\sqrt{\det G_{ll'}}\frac{1}{p!}\breve{F}^{RR}_{m_1\cdots m_p}\breve{F}^{RR}_{n_1\cdots n_p}G^{m_1n_1}\cdots G^{m_pn_p}~. \end{aligned}$$
(B.19)

Thus, the action of the R–R sector (7.3) reduced to a flat background is consistent with the results given in the literature for DFT\(_{sec}\).

C. GSE and DFT

The Generalized Supergravity Equations (GSE) are defined by

$$\begin{aligned} R^{(e)}+4\nabla ^m\partial _m\phi -4\vert \partial \phi \vert {}^2-\frac{1}{2}\vert {}H\vert {}^2-4(I^mI_m+U^mU_m+2U^m\partial _m\phi -\nabla _mU^m)= & {} 0~,\nonumber \\ R^{(e)}_{mn}-\frac{1}{4}H_{mpq}H_n{}^{pq}+2\nabla _m\partial _n\phi +\nabla _mU_n+\nabla _nU_m= & {} 0~,\nonumber \\ -\frac{1}{2}\nabla ^kH_{kmn}+\partial _k\phi H^k{}_{mn}+U^kH_{kmn}+\nabla _mI_n-\nabla _nI_m= & {} 0~. \nonumber \\ \end{aligned}$$
(C.1)

Here \(R^{(e)}\) is the Ricci scalar given by the D-dimensional vielbein and \(I=I^m\partial _m\) is a constant Killing vector which satisfies

$$\begin{aligned} L_IG=0~,~L_IB=0~,~L_I\phi =0~. \end{aligned}$$
(C.2)

\(U_m\) is defined by

$$\begin{aligned} U_m=I^nB_{nm}~. \end{aligned}$$
(C.3)

It was shown in [29] that the GSE can be derived from the DFT\(_{sec}\) by taking an ansatz

$$\begin{aligned} H_{MN}= \begin{pmatrix} G^{-1}&{}-G^{-1}B\\ BG^{-1}&{}G-BG^{-1}B \end{pmatrix}~,~ d=\phi -\frac{1}{4}\log (\det G)+I^m{{\tilde{x}}}_m~. \end{aligned}$$
(C.4)

On the other hand, we would like to use a different ansatz, to obtain the Poisson-Lie T-duality in which the sign of \(B_0\) equals to that of \(\Pi \) and \({\bar{\Pi }}\) as in section 6.1 Since a change of the ansatz \((B,I)\rightarrow (-B,-I)\) respects the GSE (C.1), we use here the ansatz

$$\begin{aligned} H_{MN}= \begin{pmatrix} G^{-1}&{}G^{-1}B\\ -BG^{-1}&{}G-BG^{-1}B \end{pmatrix}~, \end{aligned}$$
(C.5)
$$\begin{aligned} d=\phi -\frac{1}{4}\log (\det G)-I^m{{\tilde{x}}}_m~. \end{aligned}$$
(C.6)

Moreover, when \(I^m\) is not constant, we use the following redefinition of \(F_A\):

$$\begin{aligned} d= & {} \phi -\frac{1}{4}\log (\det G)~,\nonumber \\ F_M= & {} 2\partial _Md-2I_M~, \end{aligned}$$
(C.7)

where \(I_M=(I^m,I_m)\) as in the modified DFT.

Thus, in this paper, we denote the DFT action \(\mathcal{I}(0,8c_0^{-1})\) using the ansätze (C.5), (C.7) which derives the GSE of \(S_{DFT_{sec}}^{mod}[E_A{}^M,d,I^m]\). The resulting action coincides with the modified DFT action defined in [30], and thus is giving the missing algebraic background of their modification for the Drinfel’d double case.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carow-Watamura, U., Miura, K. & Watamura, S. Metric Algebroid and Poisson-Lie T-duality in DFT. Commun. Math. Phys. 402, 1879–1930 (2023). https://doi.org/10.1007/s00220-023-04765-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-023-04765-y

Navigation