Skip to main content
Log in

Even Symplectic Supermanifolds and Double Field Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Over many decades, the word “double” has appeared in various contexts, which at times seem to be unrelated.1 Several have some relation to mathematical physics. Recently, this has become particularly striking in double field theory(DFT). Two ‘doubles’ that are particularly relevant are

  • double vector bundles and

  • Drinfel’d doubles.

The original Drinfel’d double occurred in the contexts of quantum groups (Drinfel’d, Funktsional Anal Prilozhen 26(1):78–80, 1992) and of Lie bialgebras (Drinfel’d, Teoret Mat Fiz 95(2):226–227, 1993).

Quoting Voronov (Commun Math Phys 315(2): 279–310, 2012):

Double Lie algebroids arose in the works on double Lie groupoids (Mackenzie, Adv Math 94(2):180–239, 1992; Mackenzie, Adv Math 154(1):46–75, 2000a) and in connection with an analog for Lie bialgebroids of the classical Drinfel’d double of Lie bialgebras (Mackenzie, Adv Math 94(2):180–239, 1992; Mackenzie, Electron Res Announc Am Math Soc 4, 74–87, 1998)…. Suppose (A,A*) is a Lie bialgebroid over a base M…. Mackenzie in (Mackenzie, Adv Math 94(2):180–239, 1992; Mackenzie, Electron Res Announc Am Math Soc 4, 74–87, 1998; Mackenzie, Notions of double for Lie algebroids, arXiv:math/0011212, 2000b) and Roytenberg (Courant algebroids, derived brackets and even symplectic supermanifolds, 1999) suggested two different constructions based on the cotangent bundles T * A and \({T^*\Pi A}\), respectively. Here \({\Pi}\) is the fibre-wise parity reversal functor.

Although the approaches of Roytenberg and of Mackenzie look very different, Voronov establishes their equivalence. We have found Roytenberg’s version to be quite congenial with our attempt to interpret the gauge algebra of double field theory in terms of Poisson brackets on a suitable generalized Drinfel’d double. This double of a Lie bialgebroid (A,A*) provides a framework to describe the differentials of A and A * on an equal footing as Hamiltonian functions on an even symplectic supermanifold. A special choice of momenta explicates the double coordinates of DFT and shows their relation to the strong constraint determining the physical fields of double field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blumenhagen R., Deser A., Plauschinn E., Rennecke F., Schmid C.: The intriguing structure of non-geometric frames in string theory. Fortsch. Phys. 61, 893–925 (2013)

    MathSciNet  Google Scholar 

  2. Blumenhagen R., Deser A., Plauschinn E., Rennecke F.: Bianchi identities for non-geometric fluxes—from quasi-Poisson structures to Courant algebroids. Fortsch. Phys. 60, 1217–1228 (2012)

    Article  ADS  MATH  Google Scholar 

  3. Blumenhagen R., Deser A., Plauschinn E., Rennecke F.: Non-geometric strings, symplectic gravity and differential geometry of Lie algebroids. JHEP 1302, 122 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  4. Courant T.J.: Dirac manifolds. Trans. Am. Math. Soc. 319(2), 631–661 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cattaneo A.S., Schätz F.: Introduction to supergeometry. Rev. Math. Phys. 23(6), 669–690 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Drinfel’d V.G.: On the structure of quasitriangular quasi-Hopf algebras. Funktsional Anal. Prilozhen. 26(1), 78–80 (1992)

    MathSciNet  Google Scholar 

  7. Drinfel’d V.G.: On Poisson homogeneous spaces of Poisson–Lie groups. Teoret. Mat. Fiz. 95(2), 226–227 (1993)

    MathSciNet  Google Scholar 

  8. Hohm O., Hull C., Zwiebach B.: Background independent action for double field theory. JHEP 1007, 016 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  9. Hohm O., Hull C., Zwiebach B.: Generalized metric formulation of double field theory. JHEP 1008, 008 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  10. Hull C., Zwiebach B.: Double field theory. JHEP 0909, 099 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  11. Hull C., Zwiebach B.: The Gauge algebra of double field theory and Courant brackets. JHEP 0909, 090 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  12. Jean-Louis, K.: Crochet de Schouten–Nijenhuis et cohomologie. Élie Cartan et les mathématiques d’aujourd’hui. The mathematical heritage of Elie Cartan, Semin. Lyon 1984. Astérisque, No. Hors Sér. 1985, pp. 257–271 (1985)

  13. Kosmann-Schwarzbach, Y.: Exact Gerstenhaber algebras and Lie bialgebroids. Acta Appl. Math. 41(1–3), 153–165 (1995) (geometric and algebraic structures in differential equations)

  14. Kosmann-Schwarzbach Y.:. Ann. Inst. Fourier (Grenoble) 46(5), 1243–1274 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kosmann-Schwarzbach Y.: Derived brackets. Lett. Math. Phys. 69, 61–87 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Liu Z.-J., Weinstein A., Xu P.: Manin triples for Lie bialgebroids. J. Differ. Geom. 45, 547–574 (1997)

    MathSciNet  Google Scholar 

  17. Mackenzie K.C.H.: Double Lie algebroids and second-order geometry. I. Adv. Math. 94(2), 180–239 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mackenzie, K.C.H.: Drinfel’d doubles and Ehresmann doubles for Lie algebroids and Lie bialgebroids. Electron. Res. Announc. Am. Math. Soc. 4, 74–87 (1998) (electronic)

  19. Mackenzie K.C.H.: Double Lie algebroids and second-order geometry. II. Adv. Math. 154(1), 46–75 (2000a)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mackenzie, K.C.H.: Notions of double for Lie algebroids. arXiv:math/0011212 (2000b)

  21. Mackenzie, K.C.H.: General theory of Lie groupoids and Lie algebroids. In: London Mathematical Society Lecture Note Series, vol. 213. Cambridge University Press, Cambridge (2005)

  22. Mackenzie K.C.H.: Ehresmann doubles and Drinfel’d doubles for Lie algebroids and Lie bialgebroids. J. Reine Angew. Math. 658, 193–245 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Mackenzie K.C.H., Xu P.: Lie bialgebroids and Poisson groupoids. Duke Math. J. 73(2), 415–452 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nijenhuis, A.: Jacobi-type identities for bilinear differential concomitants of certain tensor fields. I, II. Nederl. Akad. Wetensch. Proc. Ser. A. 58, 390–397 (1955) (Indag. Math. 17, 398–403, 1955)

  25. Roytenberg, D.: Courant algebroids, derived brackets and even symplectic supermanifolds (1999)

  26. Roytenberg D.: On the structure of graded symplectic supermanifolds and Courant algebroids. Contemp. Math. 315, 169–185 (2002)

    Article  MathSciNet  Google Scholar 

  27. Roytenberg D.: Quasi Lie bialgebroids and twisted Poisson manifolds. Lett. Math. Phys. 61, 123–137 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schouten J.A.: Über Differentialkomitanten zweier kontravarianter Grössen. Proc. Akad. Wet. Amst. 43, 449–452 (1940)

    MathSciNet  Google Scholar 

  29. Siegel W.: Superspace duality in low-energy superstrings. Phys.Rev. D 48, 2826–2837 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  30. Vaisman I.: On the geometry of double field theory. J. Math. Phys. 53, 033509 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Voronov T.: Higher derived brackets and homotopy algebras. J. Pure Appl. Algebra 202(1–3), 133–153 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Voronov, T.: Higher derived brackets for arbitrary derivations. In: Travaux Mathématiques, Fasc. XVI (Trav. Math., XVI), pp. 163–186. University of Luxembourg, Luxembourg (2005)

  33. Voronov T.: Q-manifolds and Mackenzie theory. Commun. Math. Phys. 315(2), 279–310 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Zwiebach B.: Double Field Theory. T-Duality, and Courant Brackets. Lect. Notes Phys. 851, 265–291 (2012)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Deser.

Additional information

Communicated by H. Ooguri

Compare to the over use of twisting.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deser, A., Stasheff, J. Even Symplectic Supermanifolds and Double Field Theory. Commun. Math. Phys. 339, 1003–1020 (2015). https://doi.org/10.1007/s00220-015-2443-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2443-4

Keywords

Navigation