Skip to main content

Advertisement

Log in

The clinical trajectory of peripheral blood immune cell subsets, T-cell activation, and cytokines in septic patients

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

Changes in the immune status of patients with sepsis may have a major impact on their prognosis. Our research focused on changes in various immune cell subsets and T-cell activation during the progression of sepsis.

Methods and subjects

We collected data from 188 sepsis patients at the First Affiliated Hospital of Zhejiang University School of Medicine. The main focus was on the patient’s immunocyte subset typing, T-cell activation/Treg cell analysis, and cytokine assay, which can indicate the immune status of the patient.

Results

The study found that the number of CD4+ T cells, CD8+ T cells, NK cells, and B cells decreased early in the disease, and the decrease in CD4+ and CD8+ T cells was more pronounced in the death group. T lymphocyte activation was inhibited, and the number of Treg cells increased as the disease progressed. T lymphocyte inhibition was more significant in the death group, and the increase in IL-10 was more significant in the death group. Finally, we used patients’ baseline conditions and immunological detection indicators for modeling and found that IL-10, CD4+ Treg cells, CD3+HLA-DR+ T cells, and CD3+CD69+ T cells could predict patients’ prognosis well.

Conclusion

Our study found that immunosuppression occurs in patients early in sepsis. Early monitoring of the patient’s immune status may provide a timely warning of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data supporting the results of this research are available from the corresponding author on reasonable request.

References

  1. Venet F, Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat Rev Nephrol. 2018;14(2):121–37.

    Article  CAS  PubMed  Google Scholar 

  2. Lu X, Yang YM, Lu YQ. Immunosenescence: a critical factor associated with organ injury after sepsis. Front Immunol. 2022;13: 917293.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. van der Poll T, Shankar-Hari M, Wiersinga WJ. The immunology of sepsis. Immunity. 2021;54(11):2450–64.

    Article  PubMed  Google Scholar 

  4. Ruan WS, et al. Early activation of myeloid-derived suppressor cells participate in sepsis-induced immune suppression via PD-L1/PD-1 Axis. Front Immunol. 2020;11:1299.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Li L, Lu YQ. The regulatory role of high-mobility group protein 1 in sepsis-related immunity. Front Immunol. 2020;11: 601815.

    Article  CAS  PubMed  Google Scholar 

  6. Monneret G, Gossez M, Venet F. Sepsis and immunosenescence: closely associated in a vicious circle. Aging Clin Exp Res. 2021;33(3):729–32.

    Article  PubMed  Google Scholar 

  7. Yang X, et al. Deregulation of T cell response in sepsis. Front Biosci (Landmark Ed). 2014;19(8):1370–6.

    Article  PubMed  Google Scholar 

  8. Kumar V. T cells and their immunometabolism: a novel way to understanding sepsis immunopathogenesis and future therapeutics. Eur J Cell Biol. 2018;97(6):379–92.

    Article  CAS  PubMed  Google Scholar 

  9. Wik JA, Skålhegg BS. T cell metabolism in infection. Front Immunol. 2022;13: 840610.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Hohlstein P, et al. Prognostic relevance of altered lymphocyte subpopulations in critical illness and sepsis. J Clin Med. 2019. https://doi.org/10.3390/jcm8030353.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Venet F, et al. Increased circulating regulatory T cells (CD4(+)CD25 (+)CD127 (-)) contribute to lymphocyte anergy in septic shock patients. Intensive Care Med. 2009;35(4):678–86.

    Article  PubMed  Google Scholar 

  12. Faivre V, et al. Human monocytes differentiate into dendritic cells subsets that induce anergic and regulatory T cells in sepsis. PLoS ONE. 2012;7(10): e47209.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Szeto C, et al. Impact of HLA-DR antigen binding cleft rigidity on T cell recognition. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21197081.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Kar A, Mehrotra S, Chatterjee S. CD38: T Cell immuno-metabolic modulator. Cells. 2020. https://doi.org/10.3390/cells9071716.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Esensten JH, et al. CD28 costimulation: from mechanism to therapy. Immunity. 2016;44(5):973–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Cibrián D, Sánchez-Madrid F. CD69: from activation marker to metabolic gatekeeper. Eur J Immunol. 2017;47(6):946–53.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Jarczak D, Nierhaus A. Cytokine storm-definition, causes, and implications. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms231911740.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Ye Q, et al. An imbalance of T cell subgroups exists in children with sepsis. Microbes Infect. 2019;21(8–9):386–92.

    Article  CAS  PubMed  Google Scholar 

  19. Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med. 2020;383(23):2255–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol. 2017;39(5):517–28.

    Article  CAS  PubMed  Google Scholar 

  21. Singer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013;13(12):862–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Lindell RB, et al. Impaired lymphocyte responses in pediatric sepsis vary by pathogen type and are associated with features of immunometabolic dysregulation. Shock. 2022;57(6):191–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Fabri A, et al. Characterization of circulating IL-10-producing cells in septic shock patients: a proof of concept study. Front Immunol. 2020;11: 615009.

    Article  CAS  PubMed  Google Scholar 

  25. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003;348(2):138–50.

    Article  CAS  PubMed  Google Scholar 

  26. Song CY, et al. Immune dysfunction following COVID-19, especially in severe patients. Sci Rep. 2020;10(1):15838.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Carvelli J, et al. Imbalance of circulating innate lymphoid cell subpopulations in patients with septic shock. Front Immunol. 2019;10:2179.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Reizine F, et al. Beneficial effects of citrulline enteral administration on sepsis-induced T cell mitochondrial dysfunction. Proc Natl Acad Sci USA. 2022. https://doi.org/10.1073/pnas.2115139119.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Taylor MD, et al. CD4 and CD8 T cell memory interactions alter innate immunity and organ injury in the CLP sepsis model. Front Immunol. 2020;11: 563402.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Gorabi AM, et al. The pivotal role of CD69 in autoimmunity. J Autoimmun. 2020;111: 102453.

    Article  CAS  PubMed  Google Scholar 

  31. van de Donk N, Richardson PG, Malavasi F. CD38 antibodies in multiple myeloma: back to the future. Blood. 2018;131(1):13–29.

    Article  PubMed  Google Scholar 

  32. Petersen OH. Is CD38 involved in Ca(2+) signalling elicited by activation of T cell receptors? Cell Calcium. 2022;101: 102524.

    Article  CAS  PubMed  Google Scholar 

  33. Ahmed A, Vyakarnam A. Emerging patterns of regulatory T cell function in tuberculosis. Clin Exp Immunol. 2020;202(3):273–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13(4):227–42.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Franceschi C, et al. Inflammaging and “Garb-aging.” Trends Endocrinol Metab. 2017;28(3):199–212.

    Article  CAS  PubMed  Google Scholar 

  36. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345(6274):458–60.

    Article  CAS  PubMed  Google Scholar 

  37. Guignant C, et al. Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients. Crit Care. 2011;15(2):R99.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Lawrence KL, et al. CD4+ lymphocyte adenosine triphosphate determination in sepsis: a cohort study. Crit Care. 2010;14(3):R110.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Millrud CR, Bergenfelz C, Leandersson K. On the origin of myeloid-derived suppressor cells. Oncotarget. 2017;8(2):3649–65.

    Article  PubMed  Google Scholar 

  40. Arnold CR, et al. Gain and loss of T cell subsets in old age–age-related reshaping of the T cell repertoire. J Clin Immunol. 2011;31(2):137–46.

    Article  PubMed  Google Scholar 

  41. de Lima MHF, et al. Sepsis-Induced immunosuppression is marked by an expansion of a highly suppressive repertoire of FOXP3+ T-regulatory cells expressing TIGIT. J Infect Dis. 2022;225(3):531–41.

    Article  PubMed  Google Scholar 

  42. Nascimento DC, et al. IL-33 contributes to sepsis-induced long-term immunosuppression by expanding the regulatory T cell population. Nat Commun. 2017;8:14919.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Miyara M, Sakaguchi S. Natural regulatory T cells: mechanisms of suppression. Trends Mol Med. 2007;13(3):108–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Key Research and Development Program of Zhejiang Province (2019C03076).

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: XL, C-YS, Y-QL; data collection: XL, PW, LL, L-YL, SJ, J-NZ; data analysis: XL, M-XF; drafting of the article: XL; critical revision: Y-MY, Y-QL. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Yuan-Qiang Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

The studies involving human participants were reviewed and approved by the Ethics Committee of The First Affiliated Hospital, Zhejiang University School of Medicine (20230150). This study was in accordance with the national legislation and the institutional requirements. The written informed consent was obtained by the patients/participants. The procedures were in accordance with the Helsinki Declaration of 1964.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 731 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Song, CY., Wang, P. et al. The clinical trajectory of peripheral blood immune cell subsets, T-cell activation, and cytokines in septic patients. Inflamm. Res. 73, 145–155 (2024). https://doi.org/10.1007/s00011-023-01825-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-023-01825-w

Keywords

Navigation