Skip to main content
Log in

Electronic, Thermal, and Thermoelectric Properties of Ni-Doped FeTe2 Polycrystalline Alloys

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Recently, transition metal dichalcogenides are being actively researched as thermoelectric materials. Among those, FeTe2 alloys exhibits both n-type and p-type conduction in different temperature range and thus their practicality as a thermoelectric material is somewhat limited. In this study, the effect of Ni addition on the electrical and thermal transport properties of FeTe2 was investigated by synthesizing a series of Ni-doped FeTe2 polycrystalline alloys. Fe1 − xNixTe2 (x = 0, 0.025, 0.05, 0.075, and 0.1). The electrical conductivity gradually increased from 323 S/cm (x = 0) to 688 S/cm (x = 0.1) at 300 K and from 905 S/cm (x = 0) to 1510 S/cm (x = 0.1) at 600 K. The change is mainly attributed to an increase in carrier concentration by the Ni doping. In addition, the Ni doping converted FeTe2 to an n-type conductor above 400 K. The power factor was increased to 0.11–0.15 mW/mK2 for the Ni-doped sample, compared to 0.05 mW/mK2 for FeTe2 at 600 K. The thermal conductivity decreased from 3.36 W/mK (x = 0) to 2.02 W/mK (x = 0.1) at 300 K owing to a significant decrease in lattice thermal conductivity resulting from point defect phonon scattering induced by Ni doping. Consequently, a maximum zT value of 0.029 at 600 K was observed for x = 0.075 in Fe1 − xNixTe2.which is more than 4-fold increase compared to zT of 0.0065 of FeTe2.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bell, L.E.: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457 (2008)

    Article  CAS  Google Scholar 

  2. Mahan, G.D., Sofo, J.O.: The best thermoelectric. Proc. Natl. Acad. Sci. 93, 7436–7439 (1996)

    Article  CAS  Google Scholar 

  3. Holland, M.G.: Phonon scattering in semiconductors from thermal conductivity studies. Phys. Rev. 134, A471 (1964)

    Article  Google Scholar 

  4. Spitzer, D.P.: Lattice thermal conductivity of semiconductors: a chemical bond approach. J. Phys. Chem. 31, 19 (1980)

    Google Scholar 

  5. Ortiz, B.R., Peng, H., Lopez, A., Parilla, P.A., Lany, S., Toberer, E.S.: Effect of extended strain fields on point defect phonon scattering in thermoelectric materials. Phys. Chem. Chem. Phys. 17, 19410 (2015)

    Article  CAS  Google Scholar 

  6. Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vahaee, D., Chen, Z., Liu, J., Dresselhaus, M.S., Chen, G., Ren, Z.: Formation mechanism of twin structures in p-type (Bi0.25Sb0.75)2Te3 thermoelectric compound. Science 320, 634–638 (2008)

    Article  CAS  Google Scholar 

  7. Dong Ho, Kim Hyun-Sik, Kim Seokown, Hong Ju Hyeong, Lee Jae Gwan, Han Hong Sik, Cho Se Woong, Lee Sang-il, Kim (2021) Investigation of PdTe2 Phase Segregation on Thermoelectric Properties of n-Type Bi2Te2.7Se0.3 Fabricated by Melt-Spinning Technique for Possible Carrier Filtering Effect. Electronic Materials Letters 17(5):436–442. https://doi.org/10.1007/s13391-021-00300-0

    Article  CAS  Google Scholar 

  8. Lee, K.H., Kim, Y., Kim, D.H., Park, C.O., Kim, H.S., Kim, S.I.: Studies on phase formation behavior and thermoelectric transport properties of Cu-doped Bi2Te3–Bi2S3 system. J. Mater. Res. Technol. 15, 4781–4789 (2021)

    Article  CAS  Google Scholar 

  9. Lee, K.H., Kim, H.S., Choo, S.S., Shin, W.H., Lim, J.H., Kim, S.W., Kim, S.I.: Improved carrier transport properties by I-doping in n-type Cu0.008Bi2Te2.7Se0.3 thermoelectric alloys. Scr. Mater. 186, 357–361 (2020)

    Article  CAS  Google Scholar 

  10. Han, Y.M., Zhao, H., Zhou, M., Jiang, X.X., Leng, H.Q., Li, L.F.: Thermoelectric performance of SnS and SnS–SnSe solid solution. J. Mater. Chem. A. 3, 4555–4559 (2015)

    Article  CAS  Google Scholar 

  11. Sung-Gyu, Kwak Go-Eun, Lee Il-Ho, Kim (2021) Effects of Se Doping on Thermoelectric Properties of Tetrahedrite Cu12Sb4S13−zSez. Electronic Materials Letters 17(2):164-171. https://doi.org/10.1007/s13391-021-00270-3

    Article  CAS  Google Scholar 

  12. Ji-Hee, Pi Go-Eun, Lee Il-Ho, Kim (2021) Charge Transport and Thermoelectric Properties of Ge-Doped Famatinites Cu3Sb1−yGeyS4. Electronic Materials Letters 17(5):427–435. https://doi.org/10.1007/s13391-021-00298-5

    Article  CAS  Google Scholar 

  13. Mavrokefalos, A., Nguyen, N.T., Pettes, M.T., Johnson, D.C., Shi, L.: In-plane thermal conductivity of disordered layered WSe2 and (W)x(WSe2)y superlattice films. Appl. Phys. Lett. 91, 171912 (2007)

    Article  Google Scholar 

  14. Muratore, C., Varshney, V., Gengler, J.J., Hu, J.E., Bultman, J.E., Smith, T.M., Shamberger, P.J., Qiu, B., Ruan, X., Roy, A.K., Voevodin, A.A.: Cross-plane thermal properties of transition metal dichalcogenides. Appl. Phys. Lett. 102, 081604 (2013)

    Article  Google Scholar 

  15. Ji Hoon, Jeon Dong Ho, Kim Seokown, Hong Weon Ho, Shin Nguyen, Van Du Hyun-Sik, Kim TaeWan, Kim Sang-il, Kim (2021) Thermoelectric Properties of Te-doped In0.9Si0.1Se with Enhanced Effective Mass. Electronic Materials Letters 17(4):340-346. https://doi.org/10.1007/s13391-021-00278-9

    Article  CAS  Google Scholar 

  16. Li, G., Zhang, B., Rao, J., Gonzalez, D.H., Blake, G.R., de Groot, R.A., Palstra, T.T.M.: Effect of vacancies on magnetism, electrical transport, and thermoelectric performance of marcasite FeSe2–δ (δ = 0.05). Chem. Mater. 27, 8220–8229 (2015)

    Article  CAS  Google Scholar 

  17. Aliev, F.F., Guseinov, G.G., Pashaev, G.P., Agamirzoeva, G.M., Magerramov, A.B.: Electrical and thermoelectric properties of Cu0.75Ni0.125FeTe2. Inorg. Mater. 44, 115 (2008)

    Article  CAS  Google Scholar 

  18. Li, G., Zhang, B., Rao, J., Gonzalez, D.H., Blake, G.R., de Groot, R.A., Palstra, T.T.M.: Effect of vacancies on magnetism, electrical transport, and thermoelectric performance of marcasite FeSe2–δ (δ = 0.05). Chem. Mater. 27, 8220–8229 (2015)

    Article  CAS  Google Scholar 

  19. Sharma, D.K., Joshi, B., Patel, K.R., Ganeshan, V., Sharma, Y.K.: Effect of tellurium substitution on the properties of Iron Di-selenide. Int. J. Rec Res. Rev 6, 22 (2013)

    Google Scholar 

  20. Zheng, W., Hong, S., Min, B., Wu, Y.: Solution-phase synthesized iron telluride nanostructures with controllable thermally triggered p-type to n-type transition. Nanoscale. 10, 20664–20670 (2018)

    Article  CAS  Google Scholar 

  21. Park, O., Kim, T.W., Lee, S.W., Kim, H.S., Shin, W.H., Rahman, J.U., Kim, S.I.: Study of phase formation behavior and electronic transport properties in the FeSe2–FeTe2 system. Korean J. Met. Mater. 60, 315 (2022)

    Article  CAS  Google Scholar 

  22. Kishimoto, K., Kondo, K., Koyanagi, T.: Preparation and thermoelectric properties of sintered Fe1 – xCoxTe2 (0 ≤ x ≤ 0.4). J. Appl. Phys. 100, 093710 (2006)

    Article  Google Scholar 

  23. Kayestha, R., Sumati, Hajela, K.: ESR studies on the effect of ionic radii on displacement of Mn2+ bound to a soluble β-galactoside binding hepatic lectin. FEBS Lett. 368, 285–288 (1995)

    Article  CAS  Google Scholar 

  24. Pathak, N., Gupta, S.K., Sanyal, K., Kumar, M., Kadam, R.M., Natarajan, V.: Photoluminescence and EPR studies on Fe3+ doped ZnAl2O4: an evidence for local site swapping of Fe3+ and formation of inverse and normal phase. Dalton Trans 43, 9313–9323 (2014)

    Article  CAS  Google Scholar 

  25. Park, O., Kim, H.-S., Lee, S.W., Lee, Y.J., Park, S.J., Kim, S.-I.: Thermoelectric properties of a series of polycrystalline Mo(Se1 – xTex)2. Int. J. Appl. Ceram. Technol. 19, 3170–3178 (2022)

    Article  CAS  Google Scholar 

  26. Lee, K.H., Kim, S.-I., Lim, J.-C., Cho, J.Y., Yang, H., Kim, H.-S.: Approach to determine the density-of-states effective mass with carrier concentration-dependent seebeck coefficient. Adv. Funct. Mater 32, 33 (2022)

    Article  Google Scholar 

  27. An, Y.B., Park, S.J., Park, O., Kim, S.: Electrical, thermal, and thermoelectric transport properties of Se-doped polycrystalline Re2Te5. Korean J. Met. Mater 60, 919 (2022)

    Article  Google Scholar 

  28. An, Y.B., Park, S.J., Park, O., Kim, S.: -i. transition to n-type thermoelectric conduction in Ni-doped FeSe2 alloys. Korean J. Met. Mater. 60, 926 (2022)

    Article  CAS  Google Scholar 

  29. Snyder, G.: Weighted mobility. Adv. Mater. 32, 25 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF-2019R1C1C1005254 and NRF-2022R1F1A1063054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-il Kim.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Y.B., Park, S.J., Park, O. et al. Electronic, Thermal, and Thermoelectric Properties of Ni-Doped FeTe2 Polycrystalline Alloys. Electron. Mater. Lett. 19, 260–266 (2023). https://doi.org/10.1007/s13391-022-00396-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-022-00396-y

Keywords

Navigation