Skip to main content
Log in

Charge Transport and Thermoelectric Properties of Ge-Doped Famatinites Cu3Sb1−yGeyS4

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Ge-doped famatinites Cu3Sb1−yGeyS4 (0 ≤ y ≤ 0.1) were prepared by mechanical alloying and hot pressing. The phase transition, microstructure, charge transport properties and thermoelectric properties were examined in accordance with the Ge content. The famatinites were maintained as a single phase with a tetragonal structure at temperatures below their melting point without secondary phases. The melting points of Cu3SbS4 and Cu3Sb0.92Ge0.08S4 were 817 and 819 K, respectively. The hot-pressed specimens exhibited high relative densities of 98.3–99.5%. The a-axis and c-axis were decreased from 0.5386 to 0.5378 nm and from 1.0744 to 1.0719 nm, respectively, by doping Sb sites with Ge. Both intrinsic and Ge-doped famatinites exhibited positive Hall and Seebeck coefficients. The carrier concentration and mobility of Cu3SbS4 were 2.2 × 1018 cm−3 and 1.6 cm2  V−1 s−1, but those of Ge-doped specimens increased to (0.4–3.3) × 1019 cm−3 and 29–71 cm2V−1 s−1, respectively. Cu3SbS4 exhibited non-degenerate semiconductor characteristics and demonstrated a dimensionless figure of merit, ZT, of 0.1 at 623 K owing to a power factor of 0.14 m Wm−1 K−2 and a thermal conductivity of 0.62 Wm−1 K−1. However, the Ge-doped specimens exhibited degenerate semiconductor behaviors, and Cu3Sb0.92Ge0.08S4 exhibited the highest ZT of 0.55 at 623 K owing to a power factor of 0.64 m W m−1 K−2 and a thermal conductivity of 0.72 Wm−1 K−1.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Goto, Y., Sakai, Y., Kamihara, Y., Matoba, M.: Effect of Sn-substitution on thermoelectric properties of copper-based sulfide, famatinite Cu3SbS4. J. Phys. Soc. Jpn. 84, 044706–044710 (2015)

    Article  Google Scholar 

  2. Wei, T.R., Qin, Y., Deng, T., Song, Q., Jiang, B., Liu, R., Qiu, P., Shi, X., Chen, L.: Copper chalcogenide thermoelectric materials. J. Electron. Mater. 62, 8–23 (2019)

    CAS  Google Scholar 

  3. Du, B., Zhang, R., Chen, K., Mahajan, A., Reece, M.J.: The impact of lone-pair electrons on the lattice thermal conductivity of the thermoelectric compound CuSbS2. J. Mater. Chem. A 5, 3249–3259 (2015)

    Article  Google Scholar 

  4. Goodman, C.H.L.: The prediction of semiconducting properties in inorganic compounds. J. Phys. Chem. Sol. 6, 305–314 (1958)

    Article  CAS  Google Scholar 

  5. Pamplin, B.R.: A systematic method of deriving new semiconducting compounds by structural analogy. J. Phys. Chem. Sol. 25, 675–684 (1964)

    Article  CAS  Google Scholar 

  6. Suzumura, A., Watanabe, M., Nagasako, N., Asahi, R.: Improvement in thermoelectric properties of Se-free Cu3SbS4 compound. J. Electron. Mater. 43, 2356–2361 (2014)

    Article  CAS  Google Scholar 

  7. Xu, B., Zhang, X., Sun, Y., Zhang, J., Wang, Y., Yi, L.: Elastic anisotropy and anisotropic transport properties of Cu3SbSe4 and Cu3SbS4. J. Phys. Soc. Jpn. 83, 094606–094613 (2014)

    Article  Google Scholar 

  8. Chen, K., Paola, C.D., Du, B., Zhang, R., Laricchia, S., Bonini, N., Weber, C., Abrahams, I., Yan, H., Reece, M.: Enhanced thermoelectric performance of Sn-doped Cu3SbS4. J. Mater. Chem. C 6, 8546–8552 (2018)

    Article  CAS  Google Scholar 

  9. Albuquerque, G.H., Kim, K.J., Lopez, J.I., Devaraj, A., Manandhar, S., Liu, Y.S., Guo, J., Chang, C.H., Herman, G.S.: Multimodal characterization of solution-processed Cu3SbS4 absorbers for thin film solar cells. J. Mater. Chem. A 6, 8682–8692 (2018)

    Article  CAS  Google Scholar 

  10. Chalapathi, U., Poornaprakash, B., Park, S.H.: Growth and properties of Cu3SbS4 thin films prepared by a two-stage process for solar cell applications. Ceram. Intl. 43, 5229–5235 (2017)

    Article  CAS  Google Scholar 

  11. Faghaninia, A., Yu, G., Aydemir, U., Wood, M., Chen, W., Rignanese, G.M., Snyder, G.J., Hautier, G., Jain, A.: A computational assessment of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS3) and related substitutions. Phys. Chem. Chem. Phys. 19, 6743–6756 (2017)

    Article  CAS  Google Scholar 

  12. Chen, D.S., Zhao, Y., Chen, Y.N., Lu, T.Y., Wang, Y.Y., Zhou, J., Liang, Z.Q.: Thermoelectric enhancement of ternary copper chalcogenide nanocrystals by magnetic nickel doping. Adv. Electron. Mater. 2, 1500473–1500477 (2016)

    Article  Google Scholar 

  13. Lee, G.E., Pi, J.H., Kim, I.H.: Preparation and thermoelectric properties of famatinite Cu3SbS4. J. Electron. Mater. 49, 2781–2788 (2019)

    Article  Google Scholar 

  14. Pi, J.H., Lee, G.E., Kim, I.H.: Effects of Sn-doping on the thermoelectric properties of famatinite. J. Electron. Mater. 49, 2755–2761 (2019)

    Article  Google Scholar 

  15. Chen, K., Du, B., Bonini, N., Weber, C., Yan, H., Reece, M.J.: Theory-guided synthesis of an eco-friendly and low-cost copper based sulfide thermoelectric material. J. Phys. Chem. C 120, 27135–27140 (2016)

    Article  CAS  Google Scholar 

  16. Gulay, L.D., Daszkiewicz, M.: Ternary and quaternary chalcogenides of Si, Ge, Sn, Pb, and In. Hand. Phys. Chem. Rare Earths 41, 157–273 (2011)

    Article  CAS  Google Scholar 

  17. Yang, C., Huang, F., Wu, L., Xu, K.: New stannite-like p-type thermoelectric material Cu3SbSe4. J. Phys. D: Appl. Phys. 44, 295404–295408 (2011)

    Article  Google Scholar 

  18. Madelung, O.: Semiconductors: Data Handbook, p. 385. Springer, New York (2004)

    Book  Google Scholar 

  19. Whitfield, H.J.: Polymorphism in skinnerite, Cu3SbS3. Solid State Commun. 33, 747–748 (1980)

    Article  CAS  Google Scholar 

  20. Skinner, B.J., Luce, F.D., Makovicky, E.: Studies of the sulfosalts of copper III; phases and phase relations in the system Cu-Sb-S. Econ. Geol. 67, 924–938 (1972)

    Article  CAS  Google Scholar 

  21. Brooks, H.: Theory of the electrical properties of germanium and silicon. Adv. Electron. Electron. Phys. 7, 85–182 (1955)

    Article  CAS  Google Scholar 

  22. Eum, A.Y., Choi, S.M., Lim, Y.S., Seo, W.S., Park, J.S., Yang, S.H., Kim, I.H.: Transport and thermoelectric properties of Bi2Te2.7Se0.3 prepared by mechanical alloying and hot pressing. J. Koren Phys. Soc. 66, 1726–1731 (2015)

    Article  CAS  Google Scholar 

  23. Wang, S., Tan, G., Xie, W., Zheng, G., Li, H., Yang, J., Tang, X.: Enhanced thermoelectric properties of Bi2(Te1 – xSex)3-based compounds as n-type legs for low-temperature power generation. J. Mater. Chem. 22, 20943–20951 (2012)

    Article  CAS  Google Scholar 

  24. Yan, Y., Wu, H., Wang, G., Lu, X., Zhou, X.: High thermoelectric performance balanced by electrical and thermal transport in tetrahedrites Cu12 + xSb4S12Se. Energy Storage Mater. 13, 127–133 (2018)

    Article  Google Scholar 

  25. Dou, Y., Zhu, Q., Du, Y., Xu, J., Li, D.: Enhanced thermoelectric performance of Cu3SbSe4 doped with alkali-ion (Na and K). Electron. Mater. Lett. 16, 99–105 (2020)

    Article  CAS  Google Scholar 

  26. Madavali, B., Hong, S.J.: Enhanced thermoelectric properties of p-type Bi0.5Sb1.5Te3 thermoelectric materials by mechanical alloying and spark plasma sintering. J. Electron. Mater. 45, 6059–6066 (2016)

    Article  CAS  Google Scholar 

  27. Kwak, S.G., Lee, G.E., Kim, I.H.: Effects of Se doping on thermoelectric properties of tetrahedrite Cu12Sb4S13 – zSez. Electron. Mater. Lett. 17, 164–171 (2021)

    Article  CAS  Google Scholar 

  28. Jung, J.Y., Kim, I.H.: Synthesis and thermoelectric properties of n-type Mg2 Si. Electron. Mater. Lett. 6, 178–191 (2010)

    Article  CAS  Google Scholar 

  29. Park, K.H., Kim, I.H.: Thermoelectric properties of Co4-xMnxSb12-ySny skutterudites. Electron. Mater. Lett. 7, 39–43 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Basic Science Research Capacity Enhancement Project (National Research Facilities and Equipment Center) through the Korea Basic Science Institute funded by the Ministry of Education (Grant No. 2019R1A6C1010047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Ho Kim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pi, JH., Lee, GE. & Kim, IH. Charge Transport and Thermoelectric Properties of Ge-Doped Famatinites Cu3Sb1−yGeyS4. Electron. Mater. Lett. 17, 427–435 (2021). https://doi.org/10.1007/s13391-021-00298-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-021-00298-5

Keywords

Navigation