Skip to main content
Log in

Effects of Sulpiride on Prolactin and mRNA Levels of Steroid 5α-reductase Isozymes in Adult Rat Brain

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Prolactin (PRL) promotes maternal behavior (MB), a complex pattern of behavior aimed at maximizing offspring survival. 3α,5α-reduced neurosteroids may also regulate MB. Indeed, PRL, 3α,5α-reduced neurosteroids, and 5α-reductase (5α-R), the key enzyme in the biosynthesis of these neuroactive steroids, are all increased in stress situations These facts led us to hypothesize a possible interrelation between PRL levels and 5α-R. In the present study we quantified mRNA levels of both 5α-R isozymes in prefrontal cortex of male and female rats after administration of sulpiride, an inductor of PRL secretion. Our results demonstrated that mRNA levels of both 5α-R isozymes were significantly increased in male and female rats by sulpiride, directly or via sulpiride-induced hyperprolactinemia. Since 3α,5α-reduced neurosteroids and PRL exert anxiolytic effects in response to stress, these molecules and 5α-R may possibly participate in a common pathway of significant adaptation to stress situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Torner L, Maloumby R, Nava G et al (2004) In vivo release and gene upregulation of brain prolactin in response to physiological stimuli. Eur J Neurosci 19:1601–1608

    Article  PubMed  Google Scholar 

  2. Donner N, Bredewold R, Maloumby R et al (2007) Chronic intracerebral prolactin attenuates neuronal stress circuitries in virgin rats. Eur J Neurosci 25:1804–1814

    Article  PubMed  Google Scholar 

  3. Bridges RS, Numan M, Ronsheim PM, et al (1990) Central prolactin infusions stimulate maternal behavior in steroid-treated, nulliparous female rats. Proc Natl Acad Sci USA 87:8003–8007

    Article  PubMed  CAS  Google Scholar 

  4. Bridges RS, DiBiase R, Loundes DD et al (1985) Prolactin stimulation of maternal behavior in female rats. Science 227:782–784

    Article  PubMed  CAS  Google Scholar 

  5. Bridges RS, Ronsheim PM (1990) Prolactin (PRL) regulation of maternal behavior in rats: bromocriptine treatment delays and PRL promotes the rapid onset of behavior. Endocrinology 126(2):837–848

    PubMed  CAS  Google Scholar 

  6. Mattson MP (1988) Neurotransmitters in the regulation of neural cytoarchitecture. Brain Res Rev 13:179–212

    Article  CAS  Google Scholar 

  7. Lipton SA, Kater SB (1989) Neurotransmitter regulation of neural outgrowth, plasticity and survival. Trends Neurosci 12:265–270

    Article  PubMed  CAS  Google Scholar 

  8. Dörner G (1979) Hormones and sexual differentiation of the brain. Sex hormones and behavior, Ciba Foundation Symposium 62. Elsevier, Amsterdam, pp 81–110

    Google Scholar 

  9. Mattson MP (1988) Neurotransmitters in the regulation of neural cytoarchitecture. Brain Res Rev 13:179–212

    Article  CAS  Google Scholar 

  10. Dölher KD (1991) The pre- and postnatal influence of hormones and neurotransmitters on sexual differentiation of the mammalian hypothalamus. Int Rev Cytol 131:1–57

    Google Scholar 

  11. Segovia S, Pérez-Laso C, Rodríguez-Zafra M et al (1991) Early postnatal diazepam exposure alters sex differences in the rat brain. Brain Res Bull 26:899–907

    Article  PubMed  CAS  Google Scholar 

  12. Bach F, Flugge G, Wuttke W (1992) GABAergic influences on the development of the sexually dimorphic nucleus in male and female rats. Brain Res 573:341–344

    Article  PubMed  CAS  Google Scholar 

  13. Pérez-Laso C, Valencia A, Rodríguez-Zafra M et al (1994) Perinatal administration of diazepam alters sexual dimorphism in the rat accessory olfactory bulb. Brain Res 634:1–6

    Article  PubMed  Google Scholar 

  14. Segovia S, Del Cerro MCR, Ortega E et al (1996) Role of GABAA receptor in the organization of brain and behavioral sex differences. NeuroReport 7:2553–2557

    Article  PubMed  CAS  Google Scholar 

  15. Kincl FA, Maqueo M (1965) Prevention by progesterone of steroidinduced sterility in neonatal male and female rats. Endocrinol 77:859–862

    Article  CAS  Google Scholar 

  16. Purdy RH, Morrow AL, Moore PH Jr et al (1991) Stress-induced elevations of gamma-aminobutyric acid type A receptor-active steroids in the rat brain. Proc Natl Acad Sci USA 88:4553–4557

    Article  PubMed  CAS  Google Scholar 

  17. Majewska MD (1992) Neurosteroids: endogenous bimodal modulators of the GABAA receptor. Mechanism of action and physiological significance. Prog Neurobiol 38:379–395

    Article  PubMed  CAS  Google Scholar 

  18. Mellon SH, Griffin LD, Compagnone NA (2001) Biosynthesis and action of neurosteroids. Brain Res Brain Rev 37:3–12

    Article  CAS  Google Scholar 

  19. Torres JM, Ortega E (2003) Differential regulation of steroid 5alpha-Reductase isozymes expression by androgens in the adult rat brain. FASEB J 17:1428–1433

    Article  PubMed  CAS  Google Scholar 

  20. Sánchez P, Torres JM, Ortega E (2005) Effects of dihydrotestosterone on brain mRNA levels of steroid 5alpha-Reductase isozymes in early postnatal life of rat. Neurochem Res 30:577–581

    Article  PubMed  CAS  Google Scholar 

  21. Sánchez P, Torres JM, Del Moral RG et al (2006) Effects of testosterone on brain mRNA levels of steroid 5alpha-reductase isozymes in early postnatal life of rat. Neurochem Int 49:626–630

    Article  PubMed  CAS  Google Scholar 

  22. Torres JM, Ortega E (2006) Steroid 5α-Reductase isozymes in the adult female rat brain: central role of dihydrotestosterone. J Mol Endocrinol 36:239–245

    Article  PubMed  CAS  Google Scholar 

  23. Smith JW, Seckl JR, Evans AT et al (2004) Gestational stress induces post-partum depression-like behaviour and alters maternal care in rats. Psychoneuroendocrinology 29:227–244

    Article  PubMed  CAS  Google Scholar 

  24. Patin V, Lordi B, Vincent A et al (2002) Effects of prenatal stress on maternal behavior in the rat. Brain Res Dev Brain Res 139:1–8

    Article  PubMed  CAS  Google Scholar 

  25. Torres JM, Ortega E (2003) Alcohol intoxication increases allopregnanolone levels in female adolescent humans. Neuropsychopharmacology 28(6):1207–1209

    PubMed  CAS  Google Scholar 

  26. Torres JM, Ortega E (2004) Alcohol intoxication increases allopregnanolone levels in male adolescent humans. Psychopharmacology 172:352–355

    Article  PubMed  CAS  Google Scholar 

  27. Sánchez P, Torres JM, Gavete P, et al (2007) Effects of swim stress on mRNA and protein levels of steroid 5α-reductase isozymes in prefrontal cortex of adult male rats. Neurochem Int (in press)

  28. Drago F, Continella G, Conforto G et al (1985) Prolactin inhibits the development of stress-induced ulcers in the rat. Life Sci 36:191–197

    Article  PubMed  CAS  Google Scholar 

  29. Torner L, Toschi N, Pohlinger A et al (2001) Anxiolytic and anti-stress effects of brain prolactin: improved efficacy of antisense targeting of the prolactin receptor by molecular modeling. J Neurosci 21:3207–3214

    PubMed  CAS  Google Scholar 

  30. Torner L, Neumann ID (2002) The brain prolactin system: involvement in stress response adaptations in lactation. Stress 5:249–257

    Article  PubMed  CAS  Google Scholar 

  31. Fujikawa T, Tamura K, Kawase T et al (2005) Prolactin receptor knockdown in the rat paraventricular nucleus by a morpholinoantisense oligonucleotide causes hypocalcemia and stress gastric erosion. Endocrinology 146:3471–3480

    Article  PubMed  CAS  Google Scholar 

  32. Crawley JN, Glowa JR, Majewska MD et al (1986) Anxiolytic activity of an endogenous adrenal steroid. Brain Res 29:382–385

    Article  Google Scholar 

  33. Barbaccia ML, Roscetti G, Trabucchi M et al (1997) The effects of inhibitors of GABAergic transmission and stress on brain and plasma allopregnanolone concentrations. Br J Pharmacol 120:1582–1588

    Article  PubMed  CAS  Google Scholar 

  34. Van Coppenolle F, Slomianny C, Carpentier F et al (2001) Effects of hyperprolactinemia on rat prostate growth: evidence of androgeno-dependence. Am J Physiol Endocrinol Metab 280:120–129

    Google Scholar 

  35. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, New York

    Google Scholar 

  36. Torres JM, Ortega E (2004) Quantitation of mRNA levels of steroid 5alpha-Reductase isozymes: a novel method that combines quantitative RT-PCR and capillary electrophoresis. Int J Biochem Cell Biol 36:78–88

    Article  PubMed  CAS  Google Scholar 

  37. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  38. Debeljuk L, Rozados R, Daskal H et al (1975) Acute and chronic effects of sulpiride on serum prolactin and gonadotropin levels in castrated male rats (38581). Proc Soc Biol Med 148:550–552

    CAS  Google Scholar 

  39. Amenta D, Cavallotti C, Amenta F (1987) Dopamine receptors mediating the stimulation and the inhibition of adenylate cyclase in rat prostate gland. Neurosci Lett 77:66–70

    Article  PubMed  CAS  Google Scholar 

  40. Van Coppenolle F, Le Bourhis X, Carpentier F et al (2000) Pharmacological effects of the lipidosterolic extract of Serenoa repens (Permixon) on rat prostate hyperplasia induced by hyperprolactinemia: comparison with finasteride. Prostate 43:49–58

    Article  PubMed  Google Scholar 

  41. Yamanaka H, Kirdani RY, Saroff J et al (1975) Effects of testosterone and prolactin on rat prostatic weight, 5alpha-reductase, and arginase. Am J Physiol 229:1102–1109

    PubMed  CAS  Google Scholar 

  42. Mahendroo MS, Cala KM, Landrum DP et al (1997) Fetal death in mice lacking 5alpha-Reductase type 1 caused by estrogen excess. Mol Endocrinol 11:917–927

    Article  PubMed  CAS  Google Scholar 

  43. Poletti A, Coscarella A, Negri-Cesi P et al (1998) 5 alpha-Reductase isozymes in the central nervous system. Steroids 63:246–251

    Article  PubMed  CAS  Google Scholar 

  44. Torres JM, Ruiz E, Ortega E (2001) Effects of CRH and ACTH administration on plasma and brain eurosteroid levels. Neurochem Res 26:555–558

    Article  PubMed  CAS  Google Scholar 

  45. Torres JM, Ruiz E, Ortega E (2003) Development of a quantitative RT-PCR method to study 5alpha-Reductase mRNA isozymes in rat prostate in different androgen status. Prostate 56:74–79

    Article  PubMed  CAS  Google Scholar 

  46. Negri-Cesi P, Poletti A, Celotti F (1996) Metabolism of steroids in the brain: a new insight into the role of 5alpha-Reductase and Aromatase in brain differentiation and functions. J Steroid Biochem Mol Biol 58:455–466

    Article  PubMed  CAS  Google Scholar 

  47. Biggio G, Concas A, Mostallino MC et al (1996) Inhibition of GABAergic transmission enhances neurosteroid concentrations in the rat brain. In: Genazzi AR, Petraglia F, Purdy RH (eds) The brain: source and target for sex steroid hormones. Parthenon Press, New York pp 43–62

    Google Scholar 

  48. Biggio G, Barbaccia ML, Follesa P et al (2000) Neurosteroids and GABAA receptor plasticity. In: Olsen RW, Martin DL (eds) GABA in the nervous system. Lippincott, New York pp 207–232

    Google Scholar 

  49. Barbaccia ML, Serra M, Purdy RH et al (2001) Stress and neuroactive steroids. Int Rev Neurobiol 46:243–272

    Article  PubMed  CAS  Google Scholar 

  50. Russell JA, Johnstone H, Douglas AJ et al (1999) Neuroendocrine stress mechanisms regulating ACTH and oxytocin in pregnancy. In: Yamashita H (ed) Control mechanisms of stress and emotions: neuroendocrine-based studies. Elsevier, Amsterdam, pp 33–51

    Google Scholar 

  51. Toufexis DJ, Walker CD (1996) Noradrenergic facilitation of the adrenocorticotropin response to stress is absent during lactation in the rat. Brain Res 737:71–77

    Article  PubMed  CAS  Google Scholar 

  52. Lightman S, Windle R, Wood S et al (2001) Peripartum plasticity within the hypothalamo-pituitary-adrenal axis. Prog Brain Res 133:111–129

    Article  PubMed  CAS  Google Scholar 

  53. Neumann ID, Toschi N, Ohl F et al (2001) Maternal defence as an emotional stressor in female rats: correlation of neuroendocrine and behavioural parameters and involvement of brain oxytocin. Eur J Neurosci 13:1016–1024

    Article  PubMed  CAS  Google Scholar 

  54. DeWeerth C, Buitelaar J (2005) Physiological stress reactivity in human pregnancy—a review. Neurosci Biobehav Rev 29:295–312

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank R. Davies for revising the English text. This study was funded in part by the European Regional Development Fund (FEDER-BFU2005–06843) and the Andalusian Regional Government (Endocrinology & Metabolism Group).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esperanza Ortega.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez, P., Torres, J.M., Vílchez, P. et al. Effects of Sulpiride on Prolactin and mRNA Levels of Steroid 5α-reductase Isozymes in Adult Rat Brain. Neurochem Res 33, 820–825 (2008). https://doi.org/10.1007/s11064-007-9512-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9512-9

Keywords

Navigation