Skip to main content
Log in

1.2 Å X-ray Structure of the Renal Potassium Channel Kv1.3 T1 Domain

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Here we present the structure of the T1 domain derived from the voltage-dependent potassium channel Kv1.3 of Homo sapiens sapiens at 1.2 Å resolution crystallized under near-physiological conditions. The crystals were grown without precipitant in 150 mM KPi, pH 6.25. The crystals show I4 symmetry typical of the natural occurring tetrameric assembly of the single subunits. The obtained structural model is based on the highest resolution currently achieved for tetramerization domains of voltage-gated potassium channels. We identified an identical fold of the monomer but inside the tetramer the single monomers show a significant rotation which leads to a different orientation of the tetramer compared to other known structures. Such a rotational movement inside the tetrameric assembly might influence the gating properties of the channel. In addition we see two distinct side chain configurations for amino acids located in the top layer proximal to the membrane (Tyr109, Arg116, Ser129, Glu140, Met142, Arg146), and amino acids in the bottom layer of the T1-domain distal from the membrane (Val55, Ile56, Leu77, Arg86). The relative populations of these two states are ranging from 50:50 for Val55, Tyr109, Arg116, Ser129, Glu140, 60:40 for Met142, 65:35 for Arg86, 70:30 for Arg146, and 80:20 for Ile56 and Leu77. The data suggest that in solution these amino acids are involved in an equilibrium of conformational states that may be coupled to the functional states of the whole potassium channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

NMR:

Nuclear magnetic resonance

NMM:

New minimal medium

TROSY:

Transversed relaxation optimized spectroscopy

HSQC:

Heteronuclear single quantum coherence

DSS:

4,4-dimethyl-4-silapentane-1-sulfonic acid

MR:

Molecular replacement

SLS:

Swiss light source

CCP4:

Collaborative Computational Project No. 4

References

  1. Ader C, Schneider R, Hornig S, Velisetty P, Wilson EM, Lange A, Giller K, Ohmert I, Martin-Eauclaire MF, Trauner D, Becker S, Pongs O, Baldus M (2008) Nat Struct Mol Biol 15:605–612

    Article  CAS  Google Scholar 

  2. Antz C, Geyer M, Fakler B, Schott MK, Frank R, Guy HR, Ruppersberg JP, Kalbitzer HR (1997) Nature 385:272–275

    Article  CAS  Google Scholar 

  3. Bähring R, Covarrubias M (2011) J Physiol 589(3):461–479

    Article  Google Scholar 

  4. Beeton C, Wulff H, Standifer NE, Azam P, Mullen KM, Pennington MW, Kolski-Andreaco A, Wei E, Grino A, Counts DR, Wang PH, LeeHealey CJ, Andrews BS, Sankaranarayanan A, Homerick D, Roeck WW, Tehranzadeh J, Stanhope KL, Zimin P, Havel PJ, Griffey S, Knaus HG, Nepom GT, Gutman GA, Calabresi PA, Chandy KG (2006) Proc Natl Acad Sci USA 103:17414–17419

    Article  CAS  Google Scholar 

  5. Bixby KA, Nanao MH, Shen NV, Kreusch A, Bellamy H, Pfaffinger PJ, Choe S (1999) Nat Struct Biol 6:38–43

    Article  CAS  Google Scholar 

  6. Budisa N, Steipe B, Demange P, Eckerskorn C, Kellerman J, Huber R (1995) Eur J Biochem 230:788–796

    Article  CAS  Google Scholar 

  7. Chen X, Wang Q, Ni F, Ma J (2010) Proc Natl Acad Sci USA 107:11352–11357

    Article  CAS  Google Scholar 

  8. Choe S, Kreusch A, Pfaffinger PJ (1999) Trends Biochem Sci 24:345–349

    Article  CAS  Google Scholar 

  9. Collaborative Computational Project, Number 4 (1994). Acta Cryst D50:760–763

    Google Scholar 

  10. Covarrubias M, Bhattacharji A, De Santiago-Castillo JA, Dougherty K, Kaulin YA, Na-Phuket TR, Wang G (2008) Neurochem Res 33:1558–1567

    Article  CAS  Google Scholar 

  11. Cushman SJ, Nanao MH, Jahng AW, DeRubeis D, Choe S, Pfaffinger PJ (2000) Nat Struct Biol 7:403–407

    Article  CAS  Google Scholar 

  12. Diederichs K, Karplus PA (1997) Nat Struct Biol 4:269–275

    Article  CAS  Google Scholar 

  13. Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) Science 280:69–77

    Article  CAS  Google Scholar 

  14. Emsley P, Cowtan K (2004) Acta Cryst D60:2126–2132

    CAS  Google Scholar 

  15. Escobar LI, Martínez-Téllez JC, Salas M, Castilla SA, Carrisoza R, Tapia D, Vázquez M, Bargas J, Bolívar JJ (2004) Am J Physiol Cell Physiol 286:C965–C974

    Article  CAS  Google Scholar 

  16. Garcia ML (2004) Nature 430:153–155

    Article  CAS  Google Scholar 

  17. Gronwald W, Kalbitzer HR (2004) Progr NMR Spectr 44:33–96

    Article  CAS  Google Scholar 

  18. Grunnet M, Rasmussen HB, Hay-Schmidt A, Klaerke DA (2003) Biochim Biophys Acta 1616:85–94

    Article  CAS  Google Scholar 

  19. Gulbis JM, Zhou M, Mann S, MacKinnon R (2000) Science 289:123–127

    Article  CAS  Google Scholar 

  20. Jan LY, Jan YN (1994) Nature 371:119–122

    Article  CAS  Google Scholar 

  21. Jan LY, Jan YN (2012) J Physiol 590(11):2591–2599

    Google Scholar 

  22. Jensen MO, Jogini V, Borhani DW, Leffler AE, Dror RO, Shaw DE (2012) Science 336:229–233

    Article  CAS  Google Scholar 

  23. Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) Nature 417:515–522

    Article  CAS  Google Scholar 

  24. Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (2003) Nature 423:33–41

    Article  CAS  Google Scholar 

  25. Kosolapov A, Tu L, Wang J, Deutsch C (2004) Neuron 44:295–307

    Article  CAS  Google Scholar 

  26. Kreusch A, Pfaffinger PJ, Stevens CF, Choe S (1998) Nature 392:945–948

    Article  CAS  Google Scholar 

  27. Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe ED, Zimmer J, Cuthbertson J, Ashcroft FM, Ezaki T, Doyle DA (2003) Science 300:1922–1926

    Article  CAS  Google Scholar 

  28. Lange A, Giller K, Hornig S, Martin-Eauclaire MF, Pongs O, Becker S, Baldus M (2006) Nature 440:959–962

    Article  CAS  Google Scholar 

  29. Live DH, Davis DG, Agosta WC, Cowburn D (1984) J Am Chem Soc 106:1939–1941

    Article  CAS  Google Scholar 

  30. Long SB, Campbell EB, MacKinnon R (2005) Science 309:897–903

    Article  CAS  Google Scholar 

  31. Long SB, Tao X, Campbell EB, MacKinnon R (2007) Nature 450:376–382

    Article  CAS  Google Scholar 

  32. MacKinnon R, Cohen SL, Kuo A, Lee A, Chait BT (1998) Science 280:106–109

    Article  CAS  Google Scholar 

  33. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) J Appl Cryst 40:658–674

    Article  CAS  Google Scholar 

  34. Minor DL Jr, Lin YF, Mobley BC, Avelar A, Jan YN, Jan LY, Berger JM (2000) Cell 102:657–670

    Article  CAS  Google Scholar 

  35. Murshudov GN, Vagin AA, Dodson EJ (1997) Acta Crystallogr D53:240–255

    CAS  Google Scholar 

  36. Nanao MH, Zhou W, Pfaffinger PJ, Choe S (2003) Proc Natl Acad Sci USA 100:8670–8675

    Article  CAS  Google Scholar 

  37. Panyi G, Vámosi G, Bacsó Z, Bagdány M, Bodnár A, Varga Z, Gáspár R, Mátyus L, Damjanovich S (2004) Proc Natl Acad Sci USA 101:1285–1290

    Article  CAS  Google Scholar 

  38. Pervushin K, Riek R, Wider G, Wüthrich K (1997) Proc Natl Acad Sci USA 94:12366–12371

    Article  CAS  Google Scholar 

  39. Pervushin K (2000) Q Rev Biophys 33:161–197

    Article  CAS  Google Scholar 

  40. Pioletti M, Findeisen F, Hura GL, Minor DL Jr (2006) Nat Struct. Mol Biol 13:987–995

    CAS  Google Scholar 

  41. Prince-Carter A, Pfaffinger PJ (2009) J Gen Physiol 134:15–34

    Google Scholar 

  42. Roosild TP, Lê KT, Choe S (2004) Trends Biochem Sci 29:39–45

    Article  CAS  Google Scholar 

  43. Rus H, Pardo CA, Hu L, Darrah E, Cudrici C, Niculescu T, Niculescu F, Mullen KM, Allie R, Guo L, Wulff H, Beeton C, Judge SIV, Kerr DA, Knaus HG, Chandy KG, Calabresi PA (2005) Proc Natl Acad Sci USA 102:11094–11099

    Article  CAS  Google Scholar 

  44. Scannevin RH, Wang K, Jow F, Megules J, Kopsco DC, Edris W, Carroll KC, Lü Q, Xu W, Xu Z, Katz AH, Olland S, Lin L, Taylor M, Stahl M, Malakian K, Somers W, Mosyak L, Bowlby MR, Chanda P, Rhodes KJ (2004) Neuron 41:87–598

    Article  Google Scholar 

  45. Szabó I, Bock J, Grassmé H, Soddemann M, Wilker B, Lang F, Zoratti M, Gulbins E (2008) Proc Natl Acad Sci USA 105:14861–14866

    Article  Google Scholar 

  46. Tao X, Lee A, Limapichat W, Dougherty DA, MacKinnon R (2010) Science 328:67–73

    Article  CAS  Google Scholar 

  47. Wang G, Shahidullah M, Rocha CA, Strang C, Pfaffinger PJ, Covarrubias M (2005) J Gen Physiol 126:55–69

    Article  CAS  Google Scholar 

  48. Wang G, Covarrubias M (2006) J Gen Physiol 127:391–400

    Article  CAS  Google Scholar 

  49. Wang G, Strang C, Pfaffinger PJ, Covarrubias M (2007) J Biol Chem 282:13637–13647

    Article  CAS  Google Scholar 

  50. Wang H, Yan Y, Liu Q, Huang Y, Shen Y, Chen L, Chen Y, Yang Q, Hao Q, Wandg K, Chai J (2007) Nat Neurosci 10:32–39

    Article  Google Scholar 

  51. Winklmeier A, Weyand M, Schreier C, Kalbitzer HR, Kremer W (2009) Acta Cryst F65:688–691

    Google Scholar 

  52. Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E, Markley JL, Sykes BD (1995) J Biomol NMR 6:135–140

    Article  CAS  Google Scholar 

  53. Xu J, Wang P, Li Y, Li G, Kaczmarek LK, Wu Y, Koni PA, Flavell RA, Desir GV (2004) Proc Natl Acad Sci USA 101:3112–3117

    Article  CAS  Google Scholar 

  54. Yellen G (2002) Nature 419:35–42

    Article  CAS  Google Scholar 

  55. Yellen G (1998) Q Rev Biophys 31:239–295

    Article  CAS  Google Scholar 

  56. Yi BA, Minor DL Jr, Lin YF, Jan YN, Jan LY (2001) Proc Natl Acad Sci USA 98:11016–11023

    Article  CAS  Google Scholar 

  57. Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R (2001) Nature 414:43–48

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Union, the Fonds der Chemischen Industrie (FCI), and the Deutsche Forschungsgemeinschaft (SFB 699). The crystallographic experiments were performed on the X10SA beamline at the SLS, Paul Scherrer Institut, Villigen, Switzerland.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Werner Kremer or Hans Robert Kalbitzer.

Additional information

The coordinates and structure factors have been deposited in the Protein Data Bank under accession number 4BGC.

Werner Kremer and Michael Weyand have contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 488 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kremer, W., Weyand, M., Winklmeier, A. et al. 1.2 Å X-ray Structure of the Renal Potassium Channel Kv1.3 T1 Domain. Protein J 32, 533–542 (2013). https://doi.org/10.1007/s10930-013-9513-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-013-9513-2

Keywords

Navigation