Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Voltage dependent activation of potassium channels is coupled to T1 domain structure

Abstract

The T1 domain, a highly conserved cytoplasmic portion at the N-terminus of the voltage-dependent K+ channel (Kv) α-subunit, is responsible for driving and regulating the tetramerization of the α-subunits. Here we report the identification of a set of mutations in the T1 domain that alter the gating properties of the Kv channel. Two mutants produce a leftward shift in the activation curve and slow the channel closing rate while a third mutation produces a rightward shift in the activation curve and speeds the channel closing rate. We have determined the crystal structures of T1 domains containing these mutations. Both of the leftward shifting mutants produce similar conformational changes in the putative membrane facing surface of the T1 domain. These results suggest that the structure of the T1 domain in this region is tightly coupled to the channel's gating states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location of T1 domain point mutations.
Figure 2: T1 mutations alter channel gating.
Figure 3: Analysis of T1 domain tetramer stability.
Figure 4: T1 domain mutations cause specific structural changes in the T1 domain.

Similar content being viewed by others

References

  1. Hille, B. Ionic channels of excitatble membranes 2nd Ed. (Sinauer Associates Inc., Sunderland, Massachusetts; 1992).

    Google Scholar 

  2. Kreusch, A., Pfaffinger, P.J., Stevens, C.F. & Choe, S. Nature 392, 945–948 (1998).

    Article  CAS  Google Scholar 

  3. Bixby, K.A. et al. Nature Struct. Biol. 6, 38–43 (1999).

    Article  CAS  Google Scholar 

  4. Doyle, D.A. et al. Science 280, 69–77 (1998).

    Article  CAS  Google Scholar 

  5. Shen, N.V., Chen X., Boyer M.M. & Pfaffinger, P J. Neuron 11, 67–76 (1993).

    Article  CAS  Google Scholar 

  6. Shen, N.V. & Pfaffinger, P.J. Neuron 14, 625–633 (1995),

    Article  CAS  Google Scholar 

  7. Xu, J., Yu, W., Jan, Y.N., Jan, L.Y., Li., M., J. Biol. Chem. 270, 24761–24768 (1995).

    Article  CAS  Google Scholar 

  8. Li, M., Jan, Y.N., Jan., L.Y., Science 257, 1225–1230 (1992).

    Article  CAS  Google Scholar 

  9. Huang, X., Morielli, A.D. & Peralta, E.G. Cell 75, 1145–1156 (1993).

    Article  CAS  Google Scholar 

  10. Holmes, T.C., Fadool, D.A., Ren, R. & Levitan, I.B. Science 274, 2089–2091 (1999).

    Article  Google Scholar 

  11. Jing, J. et al. EMBO J. 18, 1245–1256 (1999).

    Article  CAS  Google Scholar 

  12. Rettig, J. et al. Nature 369, 289–294 (1994).

    Article  CAS  Google Scholar 

  13. Roeper, J. et al. Nature 391, 390–393 (1998).

    Article  CAS  Google Scholar 

  14. Choe, S., Kreusch, A. & Pfaffinger P.J. TIBS 24, 345–349 (1999).

    CAS  PubMed  Google Scholar 

  15. Sewing, S., Roeper J. & Pongs O., Neuron 16, 455–463 (1996).

    Article  CAS  Google Scholar 

  16. Yu, W., Xu, J. & Li, M. Neuron 16, 441–453 (1996).

    Article  CAS  Google Scholar 

  17. Uebele, V.S., England, S.K., Chaudhary, A., Tamkun, M.M. & Snyders, D.J. J. Biol. Chem. 271, 2406–2414 (1996).

    Article  CAS  Google Scholar 

  18. Johnstone, D.B., Wei, A., Butler, A., Salkoff, L. & Thomas, J.H. Neuron 19, 151–164 (1997).

    Article  CAS  Google Scholar 

  19. Elkes, D.A., Cardozo, D.L., Madison, J. & Kaplan, J.M. Neuron 19, 165–174 (1997).

    Article  CAS  Google Scholar 

  20. Pfaffinger, P.J. & DeRubeis D., J. Biol. Chem. 270, 28595–28600 (1995).

    Article  CAS  Google Scholar 

  21. VanDongen, A.M., Frech, G.C., Drewe, J.A., Joho, R.H. & Brown, Neuron 5, 433–443 (1990).

    Article  CAS  Google Scholar 

  22. Lee, T.E., Philipson, L H., Kuznetsov, A. & Nelson, D.J. Biophys. J. 66, 667–673 (1994).

    Article  CAS  Google Scholar 

  23. Lee, T.E., Philipson, L H. & Nelson, D.J. J. Membr. Biol. 151, 225–235 (1996).

    Article  CAS  Google Scholar 

  24. Tu, L. et al. J. Biol. Chem. 271, 18904–18911 (1996).

    Article  CAS  Google Scholar 

  25. Kobertz, W.R. & Miller, C. Nature Struct. Biol. 6, 1122–1125 (1999).

    Article  CAS  Google Scholar 

  26. Lockless, S.W. & Ranganathan, R. Science 286, 295–299 (1999).

    Article  CAS  Google Scholar 

  27. Monks, S.A., Needleman, D.J. & Miller, C. J. Gen. Physiol. 113, 415–423 (1999).

    Article  CAS  Google Scholar 

  28. Li-Smerin, Y., Hackos, D.H. & Swartz, K.J. J. Gen. Physiol. 115, 33–49 (2000).

    Article  CAS  Google Scholar 

  29. Hong, K.H. & Miller, C. J. Gen. Physiol. 115, 51–58 (2000).

    Article  CAS  Google Scholar 

  30. Yool, A.J. & Schwarz T.L. Biophys. J. 68, 448–458 (1995).

    Article  CAS  Google Scholar 

  31. Isacoff, E.Y., Jan, Y.N. & Jan, L.Y. Nature 353, 86–90 (1991).

    Article  CAS  Google Scholar 

  32. Aravind, L. & Koonin, E.V. J. Mol. Biol. 285, 1353–1361 (1999).

    Article  CAS  Google Scholar 

  33. Ahmad, K.F., Engel, C.K. & Prive, G.G. Proc. Natl. Acad. Sci. USA 95, 12123–12128 (1998).

    Article  CAS  Google Scholar 

  34. Stebbins, C.E., Kaelin, W.G. Jr. & Pavletich N.P. Science 284, 455–461 (1999).

    Article  CAS  Google Scholar 

  35. Morais Cabral, J.H. et al. Cell 95, 649–655 (1998).

    Article  CAS  Google Scholar 

  36. Tanabe, T., Beam, K.G., Adams, B.A., Niidome, T. & Numa, S. Nature 346, 567–569 (1990).

    Article  CAS  Google Scholar 

  37. Gulbis, J.M., Mann, S. & MacKinnon R. Cell 97, 943–952 (1999).

    Article  CAS  Google Scholar 

  38. Pfaffinger, P.J., Furukawa, Y., Zhao, B., Dugan, D. & Kandel, E.R. Neuron 19, 151–164 (1991).

    Google Scholar 

  39. Kellis, J.T., Nyberg, K. & Fersht A.R. Biochemistry 28, 4914–4922 (1989).

    Article  CAS  Google Scholar 

  40. Otwinowski, Z. In Data collection and processing (eds. Sawyer, L., Isaacs, N., Bailey, S.) 56–62 (SERC Daresbury Laboratory, Warrington, UK; 1993).

    Google Scholar 

  41. Brunger, A.T. et al. Acta Crystallogr. D, 905–921 (1998).

  42. Jones, T.A., Zou, J.Y., Cowen, S.W. & Kjelgard M.W. Acta Crystallogr. A 47, 110–119 (1191).

    Article  Google Scholar 

  43. Brunger, A.T. X-plor version 3.8 (Yale University Press, New Haven, Connecticut; 1996).

    Google Scholar 

  44. Ants, C. et al. Nature 385, 272–274 (1997).

    Article  Google Scholar 

  45. Evans, S.V. SETOR: hardware-lighted three-dimensional solid model representations of macromolecules (Department of Biochemistry, University of British Columbia, Vancouver, Canada; 1993).

    Google Scholar 

Download references

Acknowledgements

P.J.P. acknowledges the support of the NIH and the American Heart Association. M.H.N. acknowledges the fellowship from the American Heart Association. We thank T. Earnest at ALS for data collection. ALS is supported by the Department of Energy. S.C. acknowledges the support from the NIH and the Klingenstein Fellowship award in Neuroscience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Pfaffinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cushman, S., Nanao, M., Jahng, A. et al. Voltage dependent activation of potassium channels is coupled to T1 domain structure. Nat Struct Mol Biol 7, 403–407 (2000). https://doi.org/10.1038/75185

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75185

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing