Skip to main content

Advertisement

Log in

Fms-like tyrosine kinase 3 receptor ligand (Flt3L)-based vaccination administered with an adenoviral vector prevents tumor growth of colorectal cancer in a BALB/c mouse model

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Colorectal cancer is the third most frequent cancer in industrial nations. Therapeutic strategies to treat metastatic disease and prevent recurrence are needed. Anti-tumor immunity can be induced by dendritic cells. Dendritic cells can be expanded by the fms-like tyrosine kinase 3 ligand (Flt3L) in vivo. The aim of this study was to develop an adenoviral-based immune-gene therapy of colorectal cancer with Flt3L in a BALB/c mouse model.

Methods

A new Flt3L-encoding adenoviral vector (pAdFlt3L) was administered in two approaches in a CT26 colon cancer model in female BALB/c mice. In the therapeutic approach, pAdFlt3L was injected into the tail vein or directly into subcutaneous CT26 colon carcinoma tumors in BALB/c mice. In the vaccination protocol, mice were vaccinated with CT26 cell lysate and pAdFlt3L subcutaneous prior to subcutaneous application of vital CT26 cells.

Results

Application of pAdFlt3L led to high levels of Flt3L in vitro and in vivo. Significant expansion of dendritic cells after application of pAdFlt3L in vivo was confirmed by the use of CD11c and CD11b surface markers in immunohistochemistry and flow cytometry (p = 0.019). In the therapeutic approach, neither intravenous nor intratumoral treatments with pAdFlt3L lead to regression of CT26 tumors. In the vaccination protocol, vaccination completely prevented tumor growth and resulted in superior survival compared to control mice (p < 0.001).

Conclusions

Our results demonstrate that immunostimulatory therapy with pAdFlt3L is effective to prevent tumor development through vaccination and may represent a therapeutic tool to prevent metastatic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

CT26 cells:

Colon carcinoma cell line

DC:

Dendritic cells

DMEM:

Dulbecco’s modified Eagle medium supplemented with 10 % heat-inactivated fetal bovine serum

Flt3L:

Fms-like tyrosine kinase 3 receptor ligand

FCS:

Heat-inactivated fetal bovine serum

FITC:

Fluorescein isothiocyanate

FACS:

Fluorscence activated cell sorter flow cytometry

GM-CSF:

Granulocyte macrophage colony stimulating factor

GFP:

Green fluorescent protein (GFP)

HEK-293 cells:

Human embryonic kidney cell line

MOI:

Multiplicity of infection

pAdFlt3L:

Replication-deficient adenoviral vector encoding for Flt3L and GFP

pAdGFP:

Replication-deficient adenoviral vector encoding for GFP

PBS:

Phosphate-buffered saline

RIPA-buffer:

50, 150 mM sodiumchloride, 1 % Nonidet p-40, 0.5 % sodiumdeoxycholate, 1 % sodium dodecyl sulfate

Rpm:

Runs per minute

SDS:

Sodium dodecyl sulfate-plyacrylamide

TBS:

Tris-buffered saline

TBS Tween:

TRis-biffered saline Tween

References

  • Andre T, Afchain P, Barrier A, Blanchard P, Larsen AK, Tournigand C, Louvet C, de Gramont A (2007) Current status of adjuvant therapy for colon cancer. Gastrointest Cancer Res 1:90–97

    PubMed Central  PubMed  Google Scholar 

  • Austyn JM (1996) New insights into the mobilization and phagocytic activity of dendritic cells. J Exp Med 183:1287–1292

    Article  CAS  PubMed  Google Scholar 

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  CAS  PubMed  Google Scholar 

  • Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811

    Article  CAS  PubMed  Google Scholar 

  • Bernt KM, Ni S, Tieu AT, Lieber A (2005) Assessment of a combined, adenovirus-mediated oncolytic and immunostimulatory tumor therapy. Cancer Res 65:4343–4352

    Article  CAS  PubMed  Google Scholar 

  • Berzofsky JA, Ahlers JD, Janik J, Morris J, Oh S, Terabe M, Belyakov IM (2004) Progress on new vaccine strategies against chronic viral infections. J Clin Invest 114:450–462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bjorck P (2001) Isolation and characterization of plasmacytoid dendritic cells from Flt3 ligand and granulocyte-macrophage colony-stimulating factor-treated mice. Blood 98:3520–3526

    Article  CAS  PubMed  Google Scholar 

  • Borges L, Miller RE, Jones J, Ariail K, Whitmore J, Fanslow W, Lynch DH (1999) Synergistic action of fms-like tyrosine kinase 3 ligand and CD40 ligand in the induction of dendritic cells and generation of antitumor immunity in vivo. J Immunol 163:1289–1297

    CAS  PubMed  Google Scholar 

  • Burt RW (2000) Colon cancer screening. Gastroenterology 119:837–853

    Article  CAS  PubMed  Google Scholar 

  • Chouaib S, Asselin-Paturel C, Mami-Chouaib F, Caignard A, Blay JY (1997) The host-tumor immune conflict: from immunosuppression to resistance and destruction. Immunol Today 18:493–497

    Article  CAS  PubMed  Google Scholar 

  • Christofori G (2006) New signals from the invasive front. Nature 441:444–450

    Article  CAS  PubMed  Google Scholar 

  • Fearnley DB, Whyte LF, Carnoutsos SA, Cook AH, Hart DN (1999) Monitoring human blood dendritic cell numbers in normal individuals and in stem cell transplantation. Blood 93:728–736

    CAS  PubMed  Google Scholar 

  • Fong L, Hou Y, Rivas A, Benike C, Yuen A, Fisher GA, Davis MM, Engleman EG (2001) Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci USA 98:8809–8814

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gabrilovich DI, Nadaf S, Corak J, Berzofsky JA, Carbone DP (1996) Dendritic cells in antitumor immune responses. II. Dendritic cells grown from bone marrow precursors, but not mature DC from tumor-bearing mice, are effective antigen carriers in the therapy of established tumors. Cell Immunol 170:111–119

    Article  CAS  PubMed  Google Scholar 

  • Hadler-Olsen E, Wetting HL, Ravuri C, Omair A, Rikardsen O, Svineng G, Kanapathippillai P, Winberg JO, Uhlin-Hansen L (2011) Organ specific regulation of tumour invasiveness and gelatinolytic activity at the invasive front. Eur J Cancer 47:305–315

    Google Scholar 

  • He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 95:2509–2514

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He Y, Pimenov AA, Nayak JV, Plowey J, Falo LD Jr, Huang L (2000) Intravenous injection of naked DNA encoding secreted flt3 ligand dramatically increases the number of dendritic cells and natural killer cells in vivo. Hum Gene Ther 11:547–554

    Article  CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225–249

    Article  PubMed  Google Scholar 

  • Kanerva A, Hemminki A (2005) Adenoviruses for treatment of cancer. Ann Med 37:33–43

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Deng ZL, Luo X, Tang N, Song WX, Chen J, Sharff KA, Luu HH, Haydon RC, Kinzler KW, Vogelstein B, He TC (2007) A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat Protoc 2:1236–1247

    Article  CAS  PubMed  Google Scholar 

  • Lyman SD, James L, Vanden Bos T, de Vries P, Brasel K, Gliniak B, Hollingsworth LT, Picha KS, McKenna HJ, Splett RR et al (1993a) Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells. Cell 75:1157–1167

    Article  CAS  PubMed  Google Scholar 

  • Lyman SD, James L, Zappone J, Sleath PR, Beckmann MP, Bird T (1993b) Characterization of the protein encoded by the flt3 (flk2) receptor-like tyrosine kinase gene. Oncogene 8:815–822

    CAS  PubMed  Google Scholar 

  • Lyman SD, Brasel K, Rousseau AM, Williams DE (1994) The flt3 ligand: a hematopoietic stem cell factor whose activities are distinct from steel factor. Stem Cells 12(Suppl 1):99–107; discussion 108–110

    Google Scholar 

  • Macatonia SE, Hsieh CS, Murphy KM, O’Garra A (1993) Dendritic cells and macrophages are required for Th1 development of CD4+ T cells from alpha beta TCR transgenic mice: IL-12 substitution for macrophages to stimulate IFN-gamma production is IFN-gamma-dependent. Int Immunol 5:1119–1128

    Article  CAS  PubMed  Google Scholar 

  • Maraskovsky E, Brasel K, Teepe M, Roux ER, Lyman SD, Shortman K, McKenna HJ (1996) Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J Exp Med 184:1953–1962

    Article  CAS  PubMed  Google Scholar 

  • Meyerhardt JA, Mayer RJ (2005) Systemic therapy for colorectal cancer. N Engl J Med 352:476–487

    Article  CAS  PubMed  Google Scholar 

  • O’Connell MJ (2009) Oxaliplatin or irinotecan as adjuvant therapy for colon cancer: the results are in. J Clin Oncol 27:3082–3084

    Article  CAS  PubMed  Google Scholar 

  • Pande K, Ueda R, Machemer T, Sathe M, Tsai V, Brin E, Delano MJ, Van Rooijen N, McClanahan TK, Talmadge JE, Moldawer LL, Phillips JH, LaFace DM (2009) Cancer-induced expansion and activation of CD11b+ Gr-1+ cells predispose mice to adenoviral-triggered anaphylactoid-type reactions. Mol Ther 17:508–515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pulendran B (2004) Immune activation: death, danger and dendritic cells. Curr Biol 14:R30–R32

    Article  CAS  PubMed  Google Scholar 

  • Pulendran B, Banchereau J, Burkeholder S, Kraus E, Guinet E, Chalouni C, Caron D, Maliszewski C, Davoust J, Fay J, Palucka K (2000) Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo. J Immunol 165:566–572

    Article  CAS  PubMed  Google Scholar 

  • Pulendran B, Palucka K, Banchereau J (2001) Sensing pathogens and tuning immune responses. Science 293:253–256

    Article  CAS  PubMed  Google Scholar 

  • Rahbari NN, Lordick F, Fink C, Bork U, Stange A, Jager D, Luntz SP, Englert S, Rossion I, Koch M, Buchler MW, Kieser M, Weitz J (2012) Resection of the primary tumour versus no resection prior to systemic therapy in patients with colon cancer and synchronous unresectable metastases (UICC stage IV): SYNCHRONOUS—a randomised controlled multicentre trial (ISRCTN30964555). BMC Cancer 12:142

    Google Scholar 

  • Sallusto F, Cella M, Danieli C, Lanzavecchia A (1995) Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 182:389–400

    Article  CAS  PubMed  Google Scholar 

  • Seth P (2005) Vector-mediated cancer gene therapy: an overview. Cancer Biol Ther 4:512–517

    Article  CAS  PubMed  Google Scholar 

  • Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296

    Article  CAS  PubMed  Google Scholar 

  • Uthman IW, Gharavi AE (2002) Viral infections and antiphospholipid antibodies. Semin Arthritis Rheum 31:256–263

    Article  PubMed  Google Scholar 

  • Vremec D, Lieschke GJ, Dunn AR, Robb L, Metcalf D, Shortman K (1997) The influence of granulocyte/macrophage colony-stimulating factor on dendritic cell levels in mouse lymphoid organs. Eur J Immunol 27:40–44

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Cui Y, Weng Z, Gong X, Chen M, Zhong B (2009) Changes on the disease pattern of primary colorectal cancers in Southern China: a retrospective study of 20 years. Int J Colorectal Dis 24:943–949

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Stefan Urban and Anke Lonsdorf for helpful discussion. We also thank Ulrike Protzer for kindly providing pAdGFP and Sabine Tuma and Jasmin Geib for their excellent technical assistance.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carina Riediger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riediger, C., Wingender, G., Knolle, P. et al. Fms-like tyrosine kinase 3 receptor ligand (Flt3L)-based vaccination administered with an adenoviral vector prevents tumor growth of colorectal cancer in a BALB/c mouse model. J Cancer Res Clin Oncol 139, 2097–2110 (2013). https://doi.org/10.1007/s00432-013-1532-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-013-1532-z

Keywords

Navigation