Skip to main content
Log in

Scaling of the equilibrium magnetization in the mixed state of type-II superconductors

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We discuss the analysis of mixed-state magnetization data of type-II superconductors using a recently developed scaling procedure. It is based on the fact that, if the Ginzburg-Landau parameter κ does not depend on temperature, the magnetic susceptibility χ(H,T) is a universal function of H/Hc2(T), leading to a simple relation between magnetizations at different temperatures. Although this scaling procedure does not provide absolute values of the upper critical field Hc2(T), its temperature variation can be established rather accurately. This provides an opportunity to validate theoretical models that are usually employed for the evaluation of Hc2(T) from equilibrium magnetization data. In the second part of the paper we apply this scaling procedure for a discussion of the notorious first order phase transition in the mixed state of high-Tc superconductors. Our analysis, based on experimental magnetization data available in the literature, shows that the shift of the magnetization accross the transition may adopt either sign, depending on the particular chosen sample. We argue that this observation is inconsistent with the interpretation that this transition always represents the melting transition of the vortex lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Müller, M. Takashige, and J. G. Bednorz,Phys. Rev. Lett. 58, 1143 (1987).

    Article  ADS  Google Scholar 

  2. I. L. Landau and H. R. Ott,Phys. Rev. B 66, 144506 (2002).

    Article  ADS  Google Scholar 

  3. I. L. Landau and H. R. Ott,Physica C 385, 544 (2003).

    Article  ADS  Google Scholar 

  4. I. L. Landau and H. R. Ott,Phys. Rev. B 67, 92505 (2003).

    Article  ADS  Google Scholar 

  5. I. L. Landau and H. R. Ott,Physica C 411, 83 (2004).

    Article  ADS  Google Scholar 

  6. I. L. Landau and H. R. Ott., submitted toPhys. Rev. B, (cond-mat/0405286).

  7. H. Safar, P. L. Gammel, D. A. Huse, D. J. Bishop, J. P. Rice, D. M. Ginzberg,Phys. Rev. Lett. 69, 824 (1992).

    Article  ADS  Google Scholar 

  8. W. K. Kwok, S. Fleshler, U. Welp, V. M. Vinokur, J. Downey, G. W. Crabtree, M. M. Miller,Phys. Rev. Lett. 69, 3370 (1992).

    Article  ADS  Google Scholar 

  9. H. Pastoriza, M. F. Goffman, A. Arribére, F. de la Cruz,Phys. Rev. Lett. 72, 2951 (1994).

    Article  ADS  Google Scholar 

  10. R. Liang, D. A. Bonn, W. N. Hardy,Phys. Rev. Lett. 76, 835 (1996).

    Article  ADS  Google Scholar 

  11. U. Welp, J. A. Fendrich, W. K. Kwok, G. W. Crabtree, B. W. Veal,Phys. Rev. Lett. 76, 4809 (1996).

    Article  ADS  Google Scholar 

  12. D. R. Nelson,Phys. Rev. Lett. 60, 1973 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  13. D. R. Nelson and H. S. Seung,Phys. Rev. B 39, 9153 (1989)

    Article  ADS  Google Scholar 

  14. G. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin,Rev. Mod. Phys. 66, 1125 (1994).

    Article  ADS  Google Scholar 

  15. U. Welp, W. K. Kwok, G. W. Crabtree, K. G. Vandervoort, J. Z. Liu,Phys. Rev. Lett. 62, 1908 (1989).

    Article  ADS  Google Scholar 

  16. We note that these arguments are not completely justified. A short discussion of this matter may be found in Ref. 2

  17. U. Welp, W. K. Kwok, G. W. Crabtree, K. G. Vandervoort, J. Z. Liu,Phys. Rev. B 40, 5263 (1989).

    Article  ADS  Google Scholar 

  18. U. Welp, M. Grimsditch, H. You, W. K. Kwok, M. M. Fang, G. W. Crabtree, J. Z. Liu,Physica C 161, 1 (1989).

    Article  ADS  Google Scholar 

  19. U. Welp, M. Grimsditch, H. You, W. K. Kwok, M. M. Fang, G. W. Crabtree, J. Z. Liu,Physica C 163, 473 (1990).

    Article  Google Scholar 

  20. K. G. Vandervoort, U. Welp, J. E. Kessler, H. Claus, G. W. Crabtree, W. K. Kwok, A. Umezawa, B. W. Veal, J. W. Downey, A. P. Paulikas,Phys. Rev. B 43, 13042 (1991).

    Article  ADS  Google Scholar 

  21. W. Kritscha, F. M. Sauerzopf, H. W. Weber, G. W. Crabtree, Y. C. Chang, P. Z. Jiang,Physica C 179, 59 (1991).

    Article  ADS  Google Scholar 

  22. Z. Hao and J. R. Clem,Phys. ev. Lett,67, 2371 (1991). Z. Hao and J. R. Clem, M. W. McElfresh, L. Civale, A. P. Malozemoff, and F. Holtzberg,Phys. Rev. B 43, 2844 (1991). 9. Y. Zhuo, J.-H. Choi, M.-S. Kim, W.-S. Kim, Z. S. Lim, S.-I. Lee, S. Lee,Phys. Rev. B 55, 12719 (1997).

    Article  ADS  Google Scholar 

  23. Y. Zhuo, J.-H. Choi, M.-S. Kim, W.-S. Kim, Z. S. Lim, S.-I. Lee, S. LeePhys. Rev. B 55, 12719 (1997).

    Article  ADS  Google Scholar 

  24. J. Gohng and D. K. Finnemore,Phys. Rev. B 46, 398 (1992).

    Article  ADS  Google Scholar 

  25. Q. Li, M. Suenaga, J. Gohng, D. K. Finnemore, T. Hikata, K. Sato,Phys. Rev. B 46, 3195 (1992).

    Article  ADS  Google Scholar 

  26. J. H. Cho, Z. Hao, D. C. Johnston,Phys. Rev. B 46, 8679 (1992).

    Article  ADS  Google Scholar 

  27. D. N. Zheng, A. M. Campbell, R. S. Liu,Phys. Rev. B 48, 6519 (1993).

    Article  ADS  Google Scholar 

  28. Q. Li, K. Shibutani, M. Suenaga, I. Shigaki, R. Ogawa,Physica B 194–196 1501 (1994).

    Article  Google Scholar 

  29. Y. C. Kim, J. R. Thompson, J. G. Ossandon, D. K. Christen, M. Paranthaman,Phys. Rev. B 51, 11767 (1995).

    Article  ADS  Google Scholar 

  30. M.-S. Kim, S.-I Lee, S.-C. Yu, N. H. Hur,Phys. Rev. B 53, 9460 (1996).

    Article  ADS  Google Scholar 

  31. J. R. Thompson, J. G. Ossandon, D. K. Christen, M. Paranthaman, E. D. Specht, Y. C. Kim,Phys. Rev. B 54, 7505 (1996).

    Article  ADS  Google Scholar 

  32. Y. Zhuo, J.-H. Choi, M.-S. Kim, J.-N. Park, M.-K. Bae, S.-I. Lee,Phys. Rev. B 56, 8381 (1997).

    Article  ADS  Google Scholar 

  33. M.-S. Kim, S.-I. Lee, S.-C. Yu, I. Kuzemskaya, E. S. Itskevich, K. A. Lokshin,Phys. Rev. B 57, 6121 (1998).

    Article  ADS  Google Scholar 

  34. M. Y. Cheon, G. C. Kim, G. C. Kim, Y. C. Kim,Physica C 302, 215 (1998).

    Article  ADS  Google Scholar 

  35. Y. Zhuo, S.-M. Oh, J.-H. Choi, M.-S. Kim, S.-I. Lee, N. P. Kiryakov, M. S. Kuznetsov, S. Lee,Phys. Rev. B 60, 13094 (1999).

    Article  ADS  Google Scholar 

  36. H.-J. Kim, P. Chowdhury, I.-S. Jo, S.-I. Lee,Phys. Rev. B 66, 134508 (2002).

    Article  ADS  Google Scholar 

  37. V. G. Kogan, M. Ledvij J. H. Cho, D. C. Jonston, M. Xu, J. R. Tompson, and A. Martynovich,Phys. Rev. B 70, 1870 (1993).

    Article  ADS  Google Scholar 

  38. V. G. Kogan, M. Ledvij, A. Yu. Simonov, J. H. Cho, D. C. Johnston,Phys. Rev. Lett 70, 1870 (1993).

    Article  ADS  Google Scholar 

  39. L. N. Bulaevskii, M. Ledvij and V. G. Kogan,Phys. Rev Lett. 68, 3773 (1992).

    Article  ADS  Google Scholar 

  40. In framework of the Ginzburg-Landau theory κ is temperature independent. The BCS theory predicts, however, a slight increase off κ with decreasing temperature.42 If the temperature dependence of κ is knowna priori, the scaling procedure can be modified to take κ(T) into account.41

  41. I. L. Landau and H. R. Ott,Physica C 398, 73 (2003).

    Article  ADS  Google Scholar 

  42. L. P. Gor'kov,Zh. Eksp. Teor. Fiz. 37, 833 (1959) [Soviet Phys.? JETP 10, 593 (1960)]. E. Helfand and N. R. Werthamer,Phys. Rev. 147, 288 (1966).

    MathSciNet  Google Scholar 

  43. I. L. Landau and H. R. Ott,Journal of Phys.: Cond. Mat. 14, L313 (2002).

    Article  ADS  Google Scholar 

  44. J.-Y. Genoud, T. Graf, A. Junod, D. Sanchez, G. Triscone, J. Muller,Physica C 177, 315 (1991).

    Article  ADS  Google Scholar 

  45. G. Triscone, A. F. Khode, C. Opagiste, J.-Y. Genoud, T. Graf, E. Janod, T. Tdukamoto, M. Couach, A. Junod, J. Muller,Physica C 224, 263 (1994).

    Article  ADS  Google Scholar 

  46. A. Poddar, R. Prozorov, Y. Wolfus, M. Ghinovker, B. Ya. Shapiro, A. Shaulov, Y. Yeshurun,Physica C 282–287, 1299 (1997).

    Article  Google Scholar 

  47. M. Däumling,Physica C 183, 293 (1991).

    Article  ADS  Google Scholar 

  48. T. Sasagawa, Y. Togawa, J. Shimoyama, A. Kapitulnik, K. Kitazawa, K. Kishio,J. of Low Temp. Phys. 117, 1399 (1999).

    Article  Google Scholar 

  49. T. Sasagawa, Y. Togawa, J. Simoyama, A. Kapitulnik, K. Kitazawa, K. Kishio,Phys. Rev. B 61, 1610 (2000).

    Article  ADS  Google Scholar 

  50. K. Kimura, R. Koshida, W. K. Kwok, G. W. Crabtree, S. Okayasu, M. Sataka, Y. Kazumata, and K. Kadowaki,J. of Low Temp. Phys. 117, 1471 (1999).

    Article  Google Scholar 

  51. N. Kobayashi, T. Nishizaki, K. Shibata, T. Sato, M. Maki, T. Sasaki,Physica C 362, 121 (2001).

    Article  ADS  Google Scholar 

  52. T. Sasagawa, K. Kishio, Y. Togawa, J. Shimoyama, K. Kitazawa,Phys. Rev. Lett. 80, 4297 (1998).

    Article  ADS  Google Scholar 

  53. T. Hanaguri, T. Tsuboi, A. Maeda, T. Nishizaki, N. Kobayashi, Y. Kotaka, Jun-ichi Shimo-yama, K. Kishio,Physca C 256, 111 (1996).

    Article  ADS  Google Scholar 

  54. I. L. Landau and H. R. Ott, submitted toPhys. Rev. B (cond-mat/0404340).

  55. K. Kimura, S. Kamisawa, K. Kadowaki,Physica C 357–360, 442 (2001).

    Article  Google Scholar 

  56. S. J. Feng, H. D. Zhou, G. Li, X. F. Sun, and X.-G. Li,Supercond. Sci. Technol. 15, 1068 (2002).

    Article  ADS  Google Scholar 

  57. M. R. Koblichka and M. Murakami,phys. stat. sol. (b) 218, R3 (2000).

    Article  Google Scholar 

  58. H. H. Wen, W. L. Yang, Z. X. Zhao, and Y. M. Ni,Phys. Rev. Lett. 82, 410 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landau, I.L., Ott, H.R. Scaling of the equilibrium magnetization in the mixed state of type-II superconductors. J Low Temp Phys 139, 175–193 (2005). https://doi.org/10.1007/BF02769576

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02769576

PACS numbers

Navigation