Skip to main content

Bioinformatics in Drug Discovery

  • Chapter
  • First Online:
Advances in Bioinformatics

Abstract

Drug discovery requires high cost and is a time-consuming process, and the facilitation of computer-based drug design methods is one of the most potential approaches to change this challenging situation. In fact, along with the current advancement of science and technology, especially in the field of bioinformatics, the stages of drug discovery can be significantly shortened while the cost is reduced and the efficacy of treatment increases. Bioinformatics tools and platforms can not only advance drug target identification and screening, but also support drug candidate selection and evaluate effectiveness of drug candidates. In recent years, bioinformatics tools have often been used to screen the sequences of gene fragments, uncovering potential binding sites for therapeutic drugs or also known as drug targets. Besides, the high-throughput screen method is a popular method for drug candidate identification for detecting potential small molecules among a large amount of information in available data libraries. Since the early years of the twenty-first century, research has applied bioinformatics to screen targeted molecules using the high-throughput screening model. Bioinformatics also has a huge contribution in virtual screening through the early elimination of substances with undesirable properties through computers and in silico screening, thereby finding the closest compounds to the desired drug. Based on these tools and techniques, the efficacy of drug candidates can be easily and quickly determined, especially in individuals, which revolutionarily benefits drug validation and personalized pharmacological therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agamah FE et al (2020) Computational/in silico methods in drug target and lead prediction. Brief Bioinform 21(5):1663–1675

    Article  PubMed  Google Scholar 

  • Araujo PHF et al (2020) Identification of potential COX-2 inhibitors for the treatment of inflammatory diseases using molecular modeling approaches. Molecules 25(18):4183

    Article  CAS  PubMed  Google Scholar 

  • Baig MH et al (2016) Computer aided drug design: success and limitations. Curr Pharm Des 22(5):572–581

    Article  CAS  PubMed  Google Scholar 

  • Bayat A (2002) Science, medicine, and the future: bioinformatics. BMJ 324(7344):1018–1022

    Article  PubMed  Google Scholar 

  • Bhatia B et al (2014) Identification of glutamate ABC-transporter component in Clostridium perfringens as a putative drug target. Bioinformation 10(7):401–405

    Article  PubMed  Google Scholar 

  • Boxall AB et al (2012) Pharmaceuticals and personal care products in the environment: what are the big questions? Environ Health Perspect 120(9):1221–1229

    Article  PubMed  Google Scholar 

  • Center for Devices and Radiological Health and Center for Biologics Evaluation and Research (2002) General principles of software validation. FDA-1997-D-0029. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/general-principles-software-validation

  • Chang PL (2005) Clinical bioinformatics. Chang Gung Med J 28(4):201–211

    PubMed  Google Scholar 

  • Chen Z et al (2021) Applications of artificial intelligence in drug development using real-world data. Drug Discov Today 26(5):1256–1264

    Article  CAS  PubMed  Google Scholar 

  • Ching T et al (2018) Opportunities and obstacles for deep learning in biology and medicine. J R Soc Interface 15(141):20170387

    Article  PubMed  Google Scholar 

  • Corsello SM et al (2020) Discovering the anti-cancer potential of non-oncology drugs by systematic viability profiling. Nat Cancer 1(2):235–248

    Article  CAS  PubMed  Google Scholar 

  • David E, Tramontin T, Zemmel R (2009) Pharmaceutical R&D: the road to positive returns. Nat Rev Drug Discov 8(8):609–610

    Article  CAS  PubMed  Google Scholar 

  • DiMasi JA, Grabowski HG, Hansen RW (2016) Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ 47:20–33

    Article  PubMed  Google Scholar 

  • Ding H et al (2014) Similarity-based machine learning methods for predicting drug–target interactions: a brief review. Brief Bioinform 15(5):734–747

    Article  PubMed  Google Scholar 

  • Doolittle RF et al (1983) Simian sarcoma virus onc gene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor. Science 221(4607):275–277

    Article  CAS  PubMed  Google Scholar 

  • Drews J, Ryser S (1997) The role of innovation in drug development. Nat Biotechnol 15(13):1318–1319

    Article  CAS  PubMed  Google Scholar 

  • Fox S et al (2006) High-throughput screening: update on practices and success. J Biomol Screen 11(7):864–869

    Article  PubMed  Google Scholar 

  • Gal-Mor O, Finlay BB (2006) Pathogenicity islands: a molecular toolbox for bacterial virulence. Cell Microbiol 8(11):1707–1719

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann A et al (1998) Computer system validation: an overview of official requirements and standards. Pharm Acta Helv 72(6):317–325

    Article  CAS  PubMed  Google Scholar 

  • Hughes JP et al (2011) Principles of early drug discovery. Br J Pharmacol 162(6):1239–1249

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M (2013) Molecular network analysis of diseases and drugs in KEGG. Methods Mol Biol 939:263–275

    Article  CAS  PubMed  Google Scholar 

  • Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3(8):711–715

    Article  CAS  PubMed  Google Scholar 

  • Kotokorpi P et al (2010) The human ADFP gene is a direct liver-X-receptor (LXR) target gene and differentially regulated by synthetic LXR ligands. Mol Pharmacol 77(1):79–86

    Article  CAS  PubMed  Google Scholar 

  • Kuenzi BM et al (2020) Predicting drug response and synergy using a deep learning model of human cancer cells. Cancer Cell 38(5):672–684 e6

    Article  CAS  PubMed  Google Scholar 

  • Manigrasso J, Marcia M, De Vivo M (2021) Computer-aided design of RNA-targeted small molecules: a growing need in drug discovery. Chem 7(11):2965–2988

    Article  CAS  Google Scholar 

  • Martin WJ, Grandi P, Marcia M (2021) Screening strategies for identifying RNA- and ribonucleoprotein-targeted compounds. Trends Pharmacol Sci 42(9):758–771

    Article  CAS  PubMed  Google Scholar 

  • McLean L (2015) 49—Drug development. In: Hochberg MC et al (eds) Rheumatology, 6th edn. Mosby, Philadelphia, pp 395–400

    Chapter  Google Scholar 

  • Meloni R, Khalfallah O, Biguet NF (2004) DNA microarrays and pharmacogenomics. Pharmacol Res 49(4):303–308

    Article  CAS  PubMed  Google Scholar 

  • Mills RJ et al (2019) Drug screening in human PSC-cardiac organoids identifies pro-proliferative compounds acting via the mevalonate pathway. Cell Stem Cell 24(6):895–907.e6

    Article  CAS  PubMed  Google Scholar 

  • Moffat JG, Rudolph J, Bailey D (2014) Phenotypic screening in cancer drug discovery—past, present and future. Nat Rev Drug Discov 13(8):588–602

    Article  CAS  PubMed  Google Scholar 

  • Moore H, Allen R (2019) What can mathematics do for drug development? Bull Math Biol 81(9):3421–3424

    Article  PubMed  Google Scholar 

  • Muhseen ZT et al (2021) Computational determination of potential multiprotein targeting natural compounds for rational drug design against SARS-COV-2. Molecules 26(3):674

    Article  CAS  PubMed  Google Scholar 

  • Murdoch WJ et al (2019) Definitions, methods, and applications in interpretable machine learning. Proc Natl Acad Sci U S A 116(44):22071–22080

    Article  CAS  PubMed  Google Scholar 

  • Nature (2023) Drug screening articles from across Nature Portfolio. Nature

    Google Scholar 

  • Nemmani KVS (2021) Pharmacological screening: drug discovery. In: Poduri R (ed) Drug discovery and development: from targets and molecules to medicines. Springer Singapore, Singapore, pp 211–233

    Chapter  Google Scholar 

  • Nguyen LV, Caldas C (2021) Functional genomics approaches to improve pre-clinical drug screening and biomarker discovery. EMBO Mol Med 13(9):e13189

    Article  CAS  PubMed  Google Scholar 

  • Pan S et al (2022) Identification of cross-talk pathways and ferroptosis-related genes in periodontitis and type 2 diabetes mellitus by bioinformatics analysis and experimental validation. Front Immunol 13:1015491

    Article  CAS  PubMed  Google Scholar 

  • Papillon-Cavanagh S et al (2013) Comparison and validation of genomic predictors for anticancer drug sensitivity. J Am Med Inform Assoc 20(4):597–602

    Article  PubMed  Google Scholar 

  • Paul SM et al (2010) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9(3):203–214

    Article  CAS  PubMed  Google Scholar 

  • Pedersen LL, Turco SJ (2003) Galactofuranose metabolism: a potential target for antimicrobial chemotherapy. Cell Mol Life Sci 60(2):259–266

    Article  CAS  PubMed  Google Scholar 

  • Pietras K et al (2003) PDGF receptors as cancer drug targets. Cancer Cell 3(5):439–443

    Article  CAS  PubMed  Google Scholar 

  • Preziosi P (2007) 2.06—Drug development. In: Taylor JB, Triggle DJ (eds) Comprehensive medicinal chemistry II. Elsevier, Oxford, pp 173–202

    Chapter  Google Scholar 

  • Shi YQ, Qi WF, Kong CY (2020) Drug screening and identification of key candidate genes and pathways of rheumatoid arthritis. Mol Med Rep 22(2):986–996

    Article  CAS  PubMed  Google Scholar 

  • Smith A (2002a) Screening for drug discovery: the leading question. Nature 418(6896):453–459

    PubMed  Google Scholar 

  • Smith A (2002b) Screening for drug discovery: the leading question. Nature 418(6896):453–455

    PubMed  Google Scholar 

  • Thomford NE et al (2018) Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int J Mol Sci 19(6):1578

    Article  PubMed  Google Scholar 

  • Tutone M, Almerico AM (2021) Computational approaches: drug discovery and design in medicinal chemistry and bioinformatics. Molecules 26(24):7500

    Article  CAS  PubMed  Google Scholar 

  • van Driel MA, Brunner HG (2006) Bioinformatics methods for identifying candidate disease genes. Hum Genom 2(6):429–432

    Article  Google Scholar 

  • Wang J et al (2022) Identification of immune cell infiltration and diagnostic biomarkers in unstable atherosclerotic plaques by integrated bioinformatics analysis and machine learning. Front Immunol 13:956078

    Article  CAS  PubMed  Google Scholar 

  • Waterfield MD et al (1983) Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus. Nature 304(5921):35–39

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS (2016) Introduction to cheminformatics. Curr Protoc Bioinform 53(1):14.1.1–14.1.21

    Article  Google Scholar 

  • Wooller SK et al (2017) Bioinformatics in translational drug discovery. Biosci Rep 37(4):BSR20160180

    Article  CAS  PubMed  Google Scholar 

  • Xia X (2012) Position weight matrix, Gibbs sampler, and the associated significance tests in motif characterization and prediction. Scientifica (Cairo) 2012:917540

    PubMed  Google Scholar 

  • Xia X (2017) Bioinformatics and drug discovery. Curr Top Med Chem 17(15):1709–1726

    Article  CAS  PubMed  Google Scholar 

  • Xia J et al (2009) MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res 37(Web Server issue):W652–W660

    Article  CAS  PubMed  Google Scholar 

  • Yeh SJ, Lin JF, Chen BS (2021) Multiple-molecule drug design based on systems biology approaches and deep neural network to mitigate human skin aging. Molecules 26(11):3178

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9(1):28–39

    Article  PubMed  Google Scholar 

  • Zhong F et al (2018) Artificial intelligence in drug design. Sci China Life Sci 61(10):1191–1204

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh-Toi Chu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dao, N.A., Vu, TD., Chu, DT. (2024). Bioinformatics in Drug Discovery. In: Singh, V., Kumar, A. (eds) Advances in Bioinformatics. Springer, Singapore. https://doi.org/10.1007/978-981-99-8401-5_11

Download citation

Publish with us

Policies and ethics