Skip to main content

Plant Phenolics Compounds and Stress Management: A Review

  • Chapter
  • First Online:
Plant Phenolics in Biotic Stress Management

Abstract

Plant polyphenols are naturally occurring bioactive compounds that are present in a variety of plant species. There are two major pathways, viz., shikimic acid or phenylpropanoid and the malonic acid pathway through which phenolic compounds are synthesized. Phenylalanine is a crucial compound that originates from the phenylpropanoid metabolites of plants. Secondary metabolites apparently act as plant resistance against (microorganisms including pathogens) the gauntlet of biotic and abiotic stresses. Several varieties of large known phenolic compounds have been synthesized by higher plants. The compounds of plant polyphenols generally have a limited response to certain chemicals such as tannins and phytoalexins, signal compounds like salicylic acid and flavonoids, ultraviolet screens like flavonoids, and structural polymers like lignin, and fascinates like carotenoids and flavonoids can act as antioxidants. The therapeutic potential of these compounds lessens the risk of life-threatening diseases like cardiovascular, diabetes mellitus, hypertension, obesity, and neurodegenerative epidemics. Hence, this chapter covers different sources of polyphenols, and their chemical nature and its advantageous pharmacological properties have been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas ZK, Saggu S, Sakeran MI, Zidan N, Rehman H, Ansari AA (2014) Phytochemical, antioxidant and mineral composition of hydroalcoholic extract of chicory (Cichorium intybus L.) leaves. Saudi J Biol Sci 22:322–326

    Article  PubMed  PubMed Central  Google Scholar 

  • Abdin M, Hamed YS, Akhtar HMS, Chen D, Chen G, Wan P, Zeng X (2020) Antioxidant and anti-inflammatory activities of target anthocyanins di-glucosides isolated from Syzygium cumini pulp by high speed counter-current chromatography. J Food Biochem 44:1050. https://doi.org/10.1111/jfbc.13209

    Article  CAS  PubMed  Google Scholar 

  • Abdulkhaleq LA, Assi MA, Abdullah R, Zamri-Saad M, Taufiq-Yap YH, Hezmee MNM (2018) The crucial roles of inflammatory mediators in inflammation: a review. Vet World 11(5):627–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akinwumi BC, Bordun KM, Anderson HD (2018) Biological activities of stilbenoids. Int J Mol Sci 19(3):792

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Jitan S, Alkhoori SA, Yousef LF (2018) Phenolic acids from plants: extraction and application to human health. Stud Nat Prod Chem 58:389–417

    Article  CAS  Google Scholar 

  • Alvarez-Suarez JM, Giampieri F, Battino M (2013) Honey as a source of dietary antioxidants: structures, bioavailability and evidence of protective effects against human chronic diseases. Curr Med Chem 30(5):621–638

    Article  Google Scholar 

  • Alzagameem A, Klein SE, Bergs M, Do XT, Korte I, Dohlen S, Huwe C, Kreyenschmidt J, Kamm B, Larkins M, Schulze M (2019) Antimicrobial activity of lignin and lignin-derived cellulose and chitosan composites against selected pathogenic and spoilage microorganisms. Polymers 11:670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bain P, Milfont T, Kashima Y, Bilewicz M, Doron G, Garðarsdóttir RB, Gouveia VV, Guan Y, Johansson LO, Pasquali C, Corral-Verdugo C, Aragones JI, Utsugi A, Demarque C, Otto S, Park J, Soland M, Steg L, González R, Lebedeva N, Madsen OJ, Wagner C, Akotia CS, Kurz T, Saiz JL, Schultz PW, Einarsdóttir G, Saviolidis NM (2016) Co-benefits of addressing climate change can motivate action around the world. Nat Clim Chang 6:154–157

    Article  Google Scholar 

  • Batra P, Sharma AK (2013) Anti-cancer potential of flavonoids: recent trends and future perspectives. 3 Biotech 3(6):439–459

    Article  PubMed  PubMed Central  Google Scholar 

  • Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506

    Article  CAS  PubMed  Google Scholar 

  • Bento-Silva A, Koistinen VM, Mena P, Bronze MR, Hanhineva K, Sahlstrom S, Kitryte V, Moco S, Aura AM (2019) Factors affecting intake, metabolism and health benefits of phenolic acids: do we understand individual variability? Eur J Nutr 59:1275. https://doi.org/10.1007/s00394-019-01987-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya A, Sood P, Citovsky V (2010) The roles of plant phenolics in defense and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathol 11(5):705–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhuyan DJ, Basu A (2017) Phenolic compounds potential health benefits and toxicity. Utilization of bioactive compounds from agricultural and food production waste. 33. isbn:9781315151540

    Google Scholar 

  • Blando F, Calabriso N, Berland H, Maiorano G, Gerardi C, Carluccio MA, Andersen OM (2018) Radical scavenging and anti-inflammatory activities of representative anthocyanin groupings from pigment-rich fruits and vegetables. Int J Mol Sci 19:169

    Article  PubMed  PubMed Central  Google Scholar 

  • Chikezie PC, Ibegbulem CO, Mbagwu FN (2015) Bioactive principles from medicinal plants. Res J Phytochem 9(3):88–115. https://doi.org/10.3923/rjphyto.2015.88.115

    Article  CAS  Google Scholar 

  • Chong J, Poutaraud A, Hugueney P (2009) Metabolism and roles of stilbenes in plants. Plant Sci 177(3):143–155

    Article  CAS  Google Scholar 

  • Cle C, Hill LM, Niggeweg R, Martin CR, Guisez Y, Prinsen E, Jansen MAK (2008) Modulation of chlorogenic acid biosynthesis in Solanum lycopersicum; consequences for phenolic accumulation and UV-tolerance. Phytochemistry 69:2149–2156

    Article  CAS  PubMed  Google Scholar 

  • Cooper J (2004) Multiple responses of rhizobia to flavonoids during legume root infection. Adv Bot Res 41:1–62

    Article  CAS  Google Scholar 

  • D’Archivio M, Filesi C, Di Benedetto R, Gargiulo R, Giovannini C, Masella R (2007) Polyphenols, dietary sources and bioavailability. Ann Ist Super Sanita 43(4):348–361

    PubMed  Google Scholar 

  • Daayf F, El Hadrami A, El-Bebany AF, Henriquez MA, Yao Z, Derksen H, El-Hadrami I, Adam LR (2012) Phenolic compounds in plant defense and pathogen counter-defense mechanisms. In: Recent advances in polyphenol research, pp 191–208

    Google Scholar 

  • Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15(10):7313–7352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniels AJ, Poblete-Echeverría C, Nieuwoudt HH, Botha N, Opara UL (2021) Classification of browning on intact table grape bunches using near-infrared spectroscopy coupled with partial least squares-discriminant analysis and artificial neural networks. Front Plant Sci 12:768046

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Rio D, Rodriguez-Mateos A, Spencer JPE, Tognolini M, Borges G, Crozier A (2013) Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 18(14):1818–1892

    Article  PubMed  PubMed Central  Google Scholar 

  • Durazzo A, Lucarini M, Souto EB, Cicala C, Caiazzo E, Izzo AA, Novellino E, Santini A (2019) Polyphenols: a concise overview on the chemistry, occurrence, and human health. Phytother Res 33:2221–2243

    Article  PubMed  Google Scholar 

  • DziaÅ‚o M, Mierziak J, Korzun U, Preisner M, Szopa J, Kulma A (2016) The potential of plant phenolics in prevention and therapy of skin disorders. Int J Mol Sci 17:160

    Article  PubMed  PubMed Central  Google Scholar 

  • Emus-Medina A, Contreras-Angulo LA, Ambriz-Perez DL, Vazquez-Olivo G, Heredia JB (2023) UV light stress induces phenolic compounds in plants. In: Plant phenolics in abiotic stress management. https://doi.org/10.1007/978-981-19-6426-8_19

  • Epifano F, Genovese S, Miller R, Majumdar AP (2013) Auraptene and its effects on the re-emergence of colon cancer stem cells. Phytother Res 27:784–786

    Article  CAS  PubMed  Google Scholar 

  • Espinoza-Acosta JL, Torres-Chávez PI, Ramírez-Wong B, López-Saiz CM, Montaño-Leyva B (2016) Antioxidant, antimicrobial, and antimutagenic properties of technical lignins and their applications. BioRes 11(2):5452–5481

    Article  Google Scholar 

  • Freeman BL, Eggett DL, Parker TL (2010) Synergistic and antagonistic interactions of phenolic compounds found in navel oranges. J Food Sci 75(6):570–576

    Article  Google Scholar 

  • Fuchs G, Rupperecht H (1983) Interaction of phenolic compounds with polyethylene glycols. Colloids Surf 6:175–187

    Article  CAS  Google Scholar 

  • Galland M, Rajjou L (2015) Regulation of mRNA translation controls seed germination and is critical for seedling vigor. Front Plant Sci 6:284

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganseen K, Xu B (2017) Polyphenol-rich dry common beans (Phaseolus vulgaris L.) and their health benefits. Int J Mol Sci 18(11):2331

    Article  Google Scholar 

  • Giovinazzo JA, Thomson RP, Khalizova N, Zager PJ, Malani N, Rodriguez-Boulan E, Raper J, Schreiner R (2020) Apolipoprotein L-1 renal risk variants form active channels at the plasma membrane driving cytotoxicity. Elife 9:e51185. https://doi.org/10.7554/eLife.51185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Gallego J, Garcia-Mediavilla MV, Sanchez-Campos S, Tunon MJ (2010) Fruit polyphenols, immunity and inflammation. Br J Nutr 104(3):15–27

    Article  Google Scholar 

  • González-Villagra J, Cohen JD, Reyes-Díaz M (2018) Abscisic acid (ABA) is involved in phenolic compounds biosynthesis, mainly anthocyanins, in leaves of Aristotelia chilensis plants (Mol.) subjected to drought stress. Physiol Plant 165:855–866. https://doi.org/10.1111/ppl.12789

    Article  CAS  PubMed  Google Scholar 

  • Gugleva V, Ivanova N, Sotirova Y, Andonova V (2021) Dermal drug delivery of phytochemicals with phenolic structure via lipid-based nanotechnologies. Pharmaceuticals 14:837. https://doi.org/10.3390/ph14090837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez-Grijalva EP, Santos-Zea L, Ambriz-Pérez DL, López-Martínez LX, Heredia JB (2020) Flavones and flavonols: bioactivities and responses under light stress in herbs. In: Plant phenolics in sustainable agriculture. https://doi.org/10.1007/978-981-15-4890-1_4

  • Hajam YA, Lone R, Kumar R (2023) Role of plant phenolics against reactive oxygen species (ROS) induced oxidative stress and biochemical alterations. In: Plant phenolics in abiotic stress management. https://doi.org/10.1007/978-981-19-6426-8_7

  • Hamid S, Yatoo AM, Meer MY, Ali S, Mohamed HI (2023) Historical perspective of plant phenolics. In: Plant phenolics in abiotic stress management. https://doi.org/10.1007/978-981-19-6426-8_1

  • Haminiuk CWI, Maciel GM, Plata-Oviedo MSV, Peralta RM (2012) Phenolic compounds in fruits—an overview. Food Sci Technol 47(10):2023

    CAS  Google Scholar 

  • Hammerbacher A, Paetz C, Wright LP, Fischer TC, Bohlmann J, Andrew J, Davis AJ, Fenning TM, Gershenzon J, Schmidt A (2014) Flavan-3-ols in Norway spruce: biosynthesis, accumulation, and function in response to attack by the bark beetle-associated fungus Ceratocystis polonica. Front Plant Sci 164(4):2107

    CAS  Google Scholar 

  • Hassan S, Mathesius U (2012) The role of flavonoids in root–rhizosphere signalling: opportunities and challenges for improving plant–microbe interactions. J Exp Bot 63(9):3429–3444

    Article  CAS  PubMed  Google Scholar 

  • Heleno SA, Martins A, Queiroz MJ, Ferreira IC (2015) Bioactivity of phenolic acids: metabolites versus parent compounds: a review. Food Chem 173:501–513

    Article  CAS  PubMed  Google Scholar 

  • Ho CT (1992) Phenolic compounds in food. ACS symposium series; American Chemical Society, Washington 1, pp 2–7. issn:0097-6156

    Google Scholar 

  • Huang WY, Yi-Zhong C, Yanbo Z (2010) Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer 62(1):1–20

    Article  PubMed  Google Scholar 

  • Hutzler P, Fischbach R, Heller W, Jungblut TP, Reuber S, Schmitz R, Veit M, Weissenbo G (1998) Tissue localization of phenolic compounds in plants by confocal laser scanning microscopy. J Exp Bot 49(323):953–965

    Article  CAS  Google Scholar 

  • Hwang J, Hodis HN, Sevanian A (2001) Soy and alfalfa phytoestrogen extracts become potent low-density lipoprotein antioxidants in the presence of acerola cherry extract. J Agric Food Chem 49:308–314

    Article  CAS  PubMed  Google Scholar 

  • Ionkova I (2011) Anticancer lignans-from discovery to biotechnology. Mini Rev Med Chem 10:843–856

    Article  Google Scholar 

  • Isah T (2019) Stress and defense responses in plant secondary metabolites production. Biol Res 52:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Hua J, Wang B, Yuan H, Ma H (2018) Effects of variety, season, and region on Theaflavins content of fermented Chinese congou black tea. J Food Qual 2018:5427302

    Article  Google Scholar 

  • Kaushik P, Andujar I, Vilanova S, Plazas M, Gramazio P, Herraiz FJ, Brar NS, Prohens J (2015) Breeding vegetables with increased content in bioactive phenolic acids. Molecules 20:18464–18481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khadem S, Marles RJ (2010) Monocyclic phenolic acids; hydroxy- and polyhydroxybenzoic acids: occurrence and recent bioactivity studies. Molecules 15:7985–8005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalil AA, Rahman U, Khan MR, Sahar A, Mehmood T, Khan M (2017) Essential oil eugenol: sources, extraction techniques and nutraceutical perspectives. RSC Adv 7:32669–32681

    Article  CAS  Google Scholar 

  • Kim IS (2021) Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans. Antioxidants (Basel) 10:1064. https://doi.org/10.3390/antiox10071064

    Article  CAS  PubMed  Google Scholar 

  • Kristina SA, Wiedyaningsih C, Widyakusuma NN, Aditama H (2017) Extemporaneous compounding practice by pharmacists: a systematic review. Int J Pharm Pharm Sci 9(2):42

    Article  Google Scholar 

  • Kumar N, Goel N (2019) Phenolic acids: natural versatile molecules with promising therapeutic applications. Biotechnol Rep 24:e00370

    Article  Google Scholar 

  • Lakshmi BKM, Muni Kumar D, Hemalatha KPJ (2018) Purification and characterization of alkaline protease with novel properties from Bacillus cereus strain S8. J Genet Eng 16:12. https://doi.org/10.1016/j.jgeb.2018.05.009

    Article  Google Scholar 

  • Lamuela-Raventós RM, Vallverdú-Queralt A, Jáuregui O, Martínez-Huélamo M, Quifer-Rada P (2014) Improved characterization of polyphenols using liquid chromatography. In: Polyphenols in plants, vol 14, pp 261–292

    Google Scholar 

  • Lattanzio V (2013) Phenolic compounds: introduction. In: Natural products, pp 1543–1580

    Google Scholar 

  • Lea MA (2015) Flavonol regulation in tumor cells. Cell Biochem 116:1190–1194

    Article  CAS  Google Scholar 

  • Lee YH, Song NY, Suh J, Kim DH, Kim W, Ann J, Lee J, Baek JH, Na HK, Surh YJ (2018) Curcumin suppresses oncogenicity of human colon NSCLC cells by covalently modifying the cysteine 67 residue ofsirt1. Cancer Lett 431:219–229

    Article  CAS  PubMed  Google Scholar 

  • Lestari ML, Indrayanto G (2014) Curcumin. Profiles of drug substances, excipients and related methodology 39, pp 113–204

    Google Scholar 

  • Liu Q, Luo L, Zheng L (2018) Lignins: biosynthesis and biological functions in plants. Int J Mol Sci 19(2):335

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Lu YC, Hu HQ, Xie FJ, Wei XY, Fan X (2017) Structural characterization of lignin and its degradation products with spectroscopic methods. J Spectroscopy 15:8951658

    Google Scholar 

  • Ma L, He J, Liu H, Zhou H (2017) The phenylpropanoid pathway affects apple fruit resistance to Botrytis cinerea. Phytopathology 166(3):1–10

    Google Scholar 

  • Maisetta G, Batoni G, Caboni P, Esin S, Rinaldi AC, Zucca P (2019) Tannin profile, antioxidant properties, and antimicrobial activity of extracts from two Mediterranean species of parasitic plant Cytinus. BMC Complement Altern Med 19(1):82

    Article  PubMed  PubMed Central  Google Scholar 

  • Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79(5):727–747

    Article  CAS  PubMed  Google Scholar 

  • Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5:359–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maru GB, Kumar G, Ghantasala S, Tajpara P (2014) Polyphenol-mediated in vivo cellular responses during carcinogenesis. In: Polyphenols in human health and disease, vol 2, pp 1141–1179

    Google Scholar 

  • Meagher LP, Beecher GR (2000) Assessment of data on the lignan content of foods. J Food Compos Anal 13(6):935–947

    Article  CAS  Google Scholar 

  • Menon S, Nayeem N (2013) Vanilla Planifolia: a review of a plant commonly used as flavouring agent. Int J Pharm Sci Rev Res 20(2):225–228

    CAS  Google Scholar 

  • Moon KM, Kwon EB, Lee B, Kim CY (2020) Recent trends in controlling the enzymatic browning of fruit and vegetable products. Molecules 25:2754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosquera G, Giraldo MC, Khang CH, Coughlan S, Valen B (2009) Interaction transcriptome analysis identifies Magnaportheoryzae BAS1-4 as biotrophy-associated secreted proteins in Rice blast disease. Plant Cell 21:1273–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naikoo MI, Dar MI, Raghib F, Jaleel H, Ahmad B, Raina A, Khan FA, Naushin F (2019) Role and regulation of plants phenolics in abiotic stress tolerance: an overview. In: Plant signaling molecules, pp 157–168

    Google Scholar 

  • Narayanana BA, Geoffroy O, Willingham MC, Re GG, Nixon DW (1999) P53/p21(WAF1/CIP1) expression and its possible role in G1 arrest and apoptosis in ellagic acid treated cancer cells. Cancer Lett 36:215–221

    Article  Google Scholar 

  • Narayani M, Srivastava S (2018) Elicitation: a stimulation of stress in in vitro plant cell/tissue cultures for enhancement of secondary metabolite production. Phytochem Rev 16(6):1227–1252

    Article  Google Scholar 

  • Nawrath C (2002) The biopolymers Cutin and Suberin. Arabidopsis Book 1:e0021. https://doi.org/10.1199/tab.0021

    Article  PubMed  PubMed Central  Google Scholar 

  • Neto CC, Vinson JA (2010) Cranberry herbal medicine: biomolecular and clinical aspects. 2nd edn. Boca Raton. https://www.ncbi.nlm.nih.gov/books/NBK92762/

  • Nielsen DC, Anderson RL, Bowman RA, Aiken RM, Vigil MF, Benjamin JG (1999) Winter wheat and Proso millet yield reduction due to sunflower in rotation. J Prod Agric 12(2):193–197

    Article  Google Scholar 

  • Oldroyd GE, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45:119–144

    Article  CAS  PubMed  Google Scholar 

  • Ozturk M, Hakeem KR (2019) Plant and human health, vol 2. Phytochemistry and molecular. https://doi.org/10.1007/978-3-319-93997-1

  • Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2(5):270–278

    Article  PubMed  PubMed Central  Google Scholar 

  • Parker TL, Miller SA, Myers LE, Miguez FE, Engeseth NJ (2010) Evaluation of synergistic antioxidant potential of complex mixtures using oxygen radical absorbance capacity (ORAC) and electron paramagnetic resonance (EPR). J Agric Food Chem 58:209–217

    Article  CAS  PubMed  Google Scholar 

  • Pathak S, Kesavan P, Banerjee A, Banerjee A, Bissi L, Marotta F (2018) Metabolism of dietary polyphenols by human gut microbiota and their health benefits. In: Mechanisms of action in human health and disease, 2nd edn., pp 347–359

    Google Scholar 

  • Pereira DM, Valentão P, Pereira JA, Andrade PB (2009) Phenolics: from chemistry to biology. Molecules 14:2202–2211. https://doi.org/10.3390/molecules14062202

    Article  CAS  PubMed Central  Google Scholar 

  • Pillai GR, Srivastava AS, Hassanein TI, Chauhan DP, Carrier E (2004) Induction of apoptosis in human lung cancer cells by curcumin. Cancer Lett 208:163–117

    Article  Google Scholar 

  • Radhiga T, Agilan B, Muzaffer U, Karthikeyan R, Kanimozhi G, Paul VI, Prasad NR (2016) Phytochemicals as modulators of ultraviolet-b radiation induced cellular and molecular events: a review. J Radiat Cancer Res 7:2–12

    Article  Google Scholar 

  • Rahman Md. M, Rahaman Md. S, Islam Md. R, FirozaRahman FMM, Taha A, Almikhlafi MA, Alghamdi SQ, Alruwaili AS, Hossain MS, Ahmed M, Das R, Emran TB, Uddin MS (2022) Role of phenolic compounds in human disease: current knowledge and future prospects. Molecules 27(1):233

    Article  Google Scholar 

  • Rodríguez-Garcia C, Sanchez-Quesada C, Toledo E, Delgado-Rodríguez M, Gaforio JJ (2019) Naturally lignan-rich foods: a dietary tool for health promotion. Molecules 24(5):917

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Ruiz JC, Matus-Basto AJ, Acereto-Escoffié P, Segura-Campos MB (2017) Antioxidant and anti-inflammatory activities of phenolic compounds isolated from Melipona beecheii honey. Food Agric Immunol 28(6):1424–1437

    Article  CAS  Google Scholar 

  • Saibabu V, Fatima Z, Khan LA, Hameed S (2015) Therapeutic potential of dietary phenolic acids. Adv Pharm Sci 10:1

    Google Scholar 

  • Saito A (2017) Challenges and complexity of functionality evaluation of flavan-3-ol derivatives. Biosci Biotechnol Biochem 81(6):1055–1060

    Article  CAS  PubMed  Google Scholar 

  • Salazar-Orbea GL, García-Villalba R, Tomás-Barberán FA, Sánchez-Siles LM (2021) High–pressure processing vs. thermal treatment: effect on the stability of polyphenols in strawberry and apple products. Foods 10(12):2919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saltveit ME (2009) Synthesis and metabolism of phenolic compounds. In: Fruit and vegetable phytochemicals, pp 89–100

    Google Scholar 

  • Samantaray S, Ngangkham U (2017) Evaluation of genetic diversity in Chlorophytum borivilianum (Santp. and Fernan.) using molecular markers: an endangered medicinal plant. Active ingredients from aromatic and medicinal plants. https://doi.org/10.5772/66536

  • Shahidi FV, Ramraj C, Sod-Erdene O, Hildebrand V, Siddigi A (2019) The impact of social assistance programs on population health: a systematic review of research in high-income countries. BMC Public Health 19:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Shalaby S, Horwitz BA (2014) Plant phenolic compounds and oxidative stress: integrated signals in fungal–plant interactions. Curr Genet 61(3):347–357

    Article  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Mohammad P (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:217037

    Google Scholar 

  • Sheng J, Citovsky V (1996) Agrobacterium-plant cell DNA transport: have virulence proteins, will travel. Plant Cell 8(10):1699–1710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shin SA, Moon SY, Kim WY, Paek SM, Park HH, Lee CS (2018) Structure-based classification and anti-cancer effects of plant metabolites. Int J Mol Sci 19:2651

    Article  PubMed  PubMed Central  Google Scholar 

  • Sieniawska E (2015) Activities of tannins—from in vitro studies to clinical trials. Nat Prod Commun 10:1877–1884

    PubMed  Google Scholar 

  • Silva LR, Costa R (2014) Health benefits of nongallated and gallated flavan-3-ols: a prospectus. In: Kinsey AL (ed) Recent advances in gallate research. Nova Science Publishers, Hauppauge, pp 1–191

    Google Scholar 

  • Singh AP, Kumar S (2019) Applications of tannins in industry. In: Structural properties, biological properties and current knowledge, pp 1–19

    Google Scholar 

  • Sinha AK, Sharma UK, Sharma N (2008) A comprehensive review on vanilla flavor: extraction, isolation and quantification of vanillin and others constituents. Int J Food Sci Nutr 59(4):299–326

    Article  CAS  PubMed  Google Scholar 

  • Sirerol JA, Rodríguez ML, Mena S, Asensi MA, Estrela JM, Ortega AL (2016) Role of natural stilbenes in the prevention of cancer. Oxid Medi Cell Longev 2016:3128951. https://doi.org/10.1155/2016/3128951

    Article  CAS  Google Scholar 

  • Smeriglio A, Barreca D, Bellocco E, Trombetta D (2017) Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. Br J Pharmacol 174(11):1244–1262

    Article  CAS  PubMed  Google Scholar 

  • Song WO, Chun OK (2008) Tea is the major source of flavan-3-ol and flavonol in the U.S. diet. J Nutr 138:1543–1547

    Article  Google Scholar 

  • Tamagnone L, Merida A, Stacey N, Plaskitt K, Parr A, Chang C, Lynn D, Maxwell DJ, Roberts K, Martin C (1998) Inhibition of phenolic acid metabolism results in precocious cell death and altered cell morphology in leaves of transgenic tobacco plants. Plant Cell 10:1801–1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teponno RB, Kusari S, Spiteller M (2016) Recent advances in research on lignans and neolignans. Nat Prod Rep 33:1044

    Article  CAS  PubMed  Google Scholar 

  • Thakur M, Sohal BS (2013) Role of elicitors in inducing resistance in plants against pathogen infection: a review. ISRN Biochem 2013:762412

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomás-Navarro M, Vallejo F, Tomás-Barberán FA (2014) Bioavailability and metabolism of citrus fruit beverage flavanones in humans. In: Polyphenols in human health and disease, pp 537–551

    Google Scholar 

  • Tressera-Rimbau A, Arranz S, Eder M, Vallverdú-Queralt A (2017) Dietary polyphenols in the prevention of stroke. Oxid Med Cell Longev 2017:7467962. https://doi.org/10.1155/2017/7467962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A (2018) Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines (Basel) 5(3):93

    Article  CAS  PubMed  Google Scholar 

  • United States Department of Agriculture (2008) A Database for the Isoflavone Content of Selected Foods, Release 2.0. September

    Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153(3):895–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vazquez-Olivo G, Cota-Pérez JL, García-Carrasco M, Zamudio-Sosa VE, Heredia JB (2023) Antioxidant phenolics from vegetable by-products. In: Plant phenolics in abiotic stress management. https://doi.org/10.1007/978-981-19-6426-8_5

  • Velderrain-Rodríguez GR, Palafox-Carlos H, Wall-Medrano A, Ayala-Zavala JF, Chen CYO, Robles-Sánchez M, Astiazaran-García H, Alvarez-Parrilla E, González-Aguilar GA (2014) Phenolic compounds: their journey after intake. Food Funct 5:189–197

    Article  PubMed  Google Scholar 

  • Verma AK, Pratap R (2010) The biological potential of flavones. Nat Prod Rep 27:1571–1593

    Article  CAS  PubMed  Google Scholar 

  • Vicente O, Boscaiu M (2018) Flavonoids: antioxidant compounds for plant defence and for a healthy human diet. Not Bot Horti Agrobot 46(1):14–21

    Article  CAS  Google Scholar 

  • Vitale DC, Piazza C, Melilli B, Drago F, Salomone S (2013) Isoflavones: estrogenic activity, biological effect and bioavailability. Eur J Drug Metab Pharmacokinet 38(1):15–25. https://doi.org/10.1007/s13318-012-0112-y

    Article  CAS  PubMed  Google Scholar 

  • Vuolo MM, Lima VS, Maróstica Junior MR (2019) Phenolic compounds: structure, classification, and antioxidant power. In: Phenolic compounds, pp 33–50

    Google Scholar 

  • Wang H, Khor TO, Shu L, Su ZY, Fuentes F, Lee JH, Kong AN (2012) Plants vs. cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer Agents Med Chem 12(10):1281–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Liu J, Zhu H (2018) Genetic and molecular mechanisms underlying symbiotic specificity in legume-rhizobium interactions. Front Plant Sci 9:313

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu S, Chappell J (2008) Metabolic engineering of natural products in plants; tools of the trade and challenges for the future. Curr Opin Biotechnol 19(2):145–152

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Liu RH (2009) Synergistic effect of apple extracts and quercetin 3-β-D-glucoside combination on antiproliferative activity in MCF-7 human breast cancer cells in vitro. J Agric Food Chem 57:8581–8586

    Article  CAS  PubMed  Google Scholar 

  • Yong Y, Matthew S, Wittwer J, Pan L, Shen Q, Kinghorn AD, Swanson SM, De Blanco EJ (2013) Dichamanetin inhibits cancer cell growth by affecting Ros-related signaling components through mitochondrial-mediated apoptosis. Anticancer Res 33:5349–5355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Chen J, Liang Z, Zhao C (2014) New Lignans and their biological activities. Chem Biodivers 11(1):1–54

    Article  PubMed  Google Scholar 

  • Zhu F (2015) Interactions between starch and phenolic compound. Trends Food Sci Technol 43:129–143

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author Dr. Azharuddin Daphedar is thankful to the HOD of Botany and Principal, Anjuman Degree College, Vijayapura, Karnataka, India, for their support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Daphedar, A.B., Khan, S., Kakkalamel, S., Taranath, T.C. (2024). Plant Phenolics Compounds and Stress Management: A Review. In: Lone, R., Khan, S., Mohammed Al-Sadi, A. (eds) Plant Phenolics in Biotic Stress Management. Springer, Singapore. https://doi.org/10.1007/978-981-99-3334-1_20

Download citation

Publish with us

Policies and ethics