Skip to main content

Carbon-Based Smart Nanomaterials: An Overview

  • Chapter
  • First Online:
Carbon-Based Nanomaterials

Abstract

Carbon-based nanomaterials (CNMs) have different structures, such as tube-like, spherical, horn-like, or ellipsoidal. They are mainly classified into three types of dimensionality: zero-dimensional, one-dimensional, and two-dimensional. CNMs show unique chemical, biological, optical, thermal, and mechanical properties. CNMs can be synthesized and tailored toward smart materials with characteristic applications. Currently, CNMs have attracted the interest of many researchers because of their diversified shapes and applications. Physicochemical parameters responsible for toxicity, such as size, shape and morphology, surface charge, composition, coatings, surface roughness, aggregation, and biological and chemical reactivity, are required to monitor the properties of CNMs. This chapter summarizes the types, synthesis, characterization, challenges of fabrication, current research trends, future aspects, toxicity, and environmental impacts of CNMs and their regulatory bodies, risk assessment, and mitigation, emphasizing their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Serag E, El-Maghraby A, El Nemr A (2022) Recent developments in the application of carbon-based nanomaterials in implantable and wearable enzyme-biofuel cells. Carbon Lett 32:395–412

    Article  Google Scholar 

  2. Godeto YG, Ayele A, Ahmed IN, Husen A, Bachheti RK (2023) Medicinal plant-based metabolites in nanoparticles synthesis and their cutting-edge applications: an overview. In: Bachheti RK, Bachheti A (eds) Secondary metabolites from medicinal plants. CRC Press, Boca Raton, USA, pp 1–34

    Google Scholar 

  3. Gonfa YH, Tessema FB, Tadesse MG, Bachheti A, Bachheti RK (2023) Medicinally important plant roots and their role in nanoparticles synthesis and applications. In: Bachheti RK, Bachheti A (eds) Secondary metabolites from medicinal plants. CRC Press, Boca Raton, USA, pp 227–242

    Chapter  Google Scholar 

  4. Mengstu A, Esubalew S, Abate L, Husen RKBA, Bachheti A (2023) Medicinal plant-based flavonoid-mediated nanoparticles synthesis, characterization, and applications. In: Bachheti RK, Bachheti A (eds) Secondary metabolites from medicinal plants. CRC Press, Boca Raton, USA, pp 35–52

    Chapter  Google Scholar 

  5. Nazeruddin GM, Prasad NR, Prasad SR, Shaikh YI, Waghmare SR, Adhyapak P (2014) Coriandrum sativum seed extract assisted in situ green synthesis of silver nanoparticle and its anti-microbial activity. Ind Crops Prod 60:212–216

    Article  CAS  Google Scholar 

  6. Patil S, Chandrasekaran R (2020) Biogenic nanoparticles: a comprehensive perspective in synthesis, characterization, application and its challenges. J Genetic Eng Biotechnol 18:1–23

    Article  Google Scholar 

  7. Bachheti RK, Konwarh R, Gupta V, Husen A, Joshi A (2019) Green synthesis of iron oxide nanoparticles: cutting edge technology and multifaceted applications. In: Nanomaterials and plant potential. Springer, Cham, pp 239–259. https://doi.org/10.1007/978-3-030-05569-1_9

  8. Bachheti RK, Fikadu A, Bachheti A, Husen A (2020) Biogenic fabrication of nanomaterials from flower-based chemical compounds, characterization and their various applications: a review. Saudi J Biol Sci 27(10):2551–2562

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bachheti RK, Godebo Y, Bachheti A, Yassin MO, Husen A (2020) Root-based fabrication of metal/metal-oxide nanomaterials and their various applications. In: Husen A, Jawaid M (eds) Nanomaterials for agriculture and forestry applications. Elsevier, pp 135–166. https://doi.org/10.1016/B978-0-12-817852-2.00006-8

  10. Bachheti A, Bachheti RK, Abate L, Husen A (2022) Current status of Aloe-based nanoparticle fabrication, characterization and their application in some cutting-edge areas. S Afr J Bot 147:1058–1069

    Article  Google Scholar 

  11. Bachheti RK, Abate L, Bachheti A, Madhusudhan A, Husen A (2021) Algae-, fungi-, and yeast-mediated biological synthesis of nanoparticles and their various biomedical applications. In: Handbook of greener synthesis of nanomaterials and compounds. Elsevier, Amsterdam, pp 701–734. https://doi.org/10.1016/B978-0-12-821938-6.00022-0

  12. Husen A, Rahman QI, Iqbal M, Yassin MO, Bachheti RK (2019) Plant-mediated fabrication of gold nanoparticles and their applications. In: Nanomaterials and plant potential. Springer, Cham, pp 71–110. https://doi.org/10.1007/978-3-030-05569-1_3

  13. Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9(229):1–24

    CAS  Google Scholar 

  14. Ayinde WB, Gitari WM, Samie A (2019) Optimization of microwave-assisted synthesis of silver nanoparticle by Citrus paradisi peel and its application against pathogenic water strain. Green Chem Lett Rev 12:225–234

    Article  CAS  Google Scholar 

  15. Bachheti RK, Bachheti A, Husen A (2023) Metal and metal-oxide based nanomaterials (Synthesis, Agricultural, Biomedical and Environmental Interventions). Springer Nature Singapore Pte Ltd., 152 Beach Road, #21–01/04 Gateway East, Singapore 189721, Singapore. https://link.springer.com/book/9789819976720

  16. Chawla S, Singh S, Husen A (2023) Smart nanomaterials targeting pathological hypoxia. Springer Nature Singapore Pte Ltd., 152 Beach Road, #21–01/04 Gateway East, Singapore 189721, Singapore. https://doi.org/10.1007/978-981-99-1718-1

  17. Dahlan AS (2019) Smart and functional materials based nanomaterials in construction styles in nano-architecture. SILICON 11:1949–1953

    Article  CAS  Google Scholar 

  18. Husen A, Siddiqi KS (2014) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 12(1):1–16

    Article  Google Scholar 

  19. Husen A, Siddiqi KS (2023) Advances in smart nanomaterials and their applications. Elsevier Inc., 50 Hampshire St., 5th Floor, Cambridge, MA 02139, USA

    Google Scholar 

  20. Husen A (2022) Engineered nanomaterials for sustainable agricultural production, soil improvement and stress management. Elsevier Inc., 50 Hampshire St., 5th Floor, Cambridge, MA 02139, USA

    Google Scholar 

  21. Husen A (2023) Nanomaterials and nanocomposites exposures to plants (Response, Interaction, Phytotoxicity and Defense Mechanisms). Springer Nature Singapore Pte Ltd., 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore. https://doi.org/10.1007/978-981-99-2419-6

  22. Husen A (2023) Nanomaterials from agricultural and horticultural products. Springer Nature Singapore Pte Ltd., 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore. https://doi.org/10.1007/978-981-99-3435-5

  23. Husen A, Bachheti RK, Bachheti A (2023) Current trends in green nano-emulsions (Food, Agriculture and Biomedical Sectors). Springer Nature Singapore Pte Ltd., 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

    Google Scholar 

  24. Huq MA, Ashrafudoulla M, Rahman MM, Balusamy SR, Akter S (2022) Green synthesis and potential antibacterial applications of bioactive silver nanoparticles: a review. Polymers 14:1–22

    Google Scholar 

  25. Madhusudhan A, Purohit SD, Prasad R, Husen A (2023) Functional smart nanomaterials and their theranostics approaches. Springer Nature Singapore Pte Ltd., 152 Beach Road, #21–01/04 Gateway East, Singapore 189721, Singapore. https://link.springer.com/book/9789819965960

  26. Singh R, Sharma A, Saji J, Umapathi A, Kumar S, Daima HK (2022) Smart nanomaterials for cancer diagnosis and treatment. In Nano Convergence 9:1–39

    Article  Google Scholar 

  27. Umapathi A, Kumawat M, Daima HK (2022) Engineered nanomaterials for biomedical applications and their toxicity-a review. Environ Chem Lett 20:445–468

    Article  CAS  Google Scholar 

  28. de Menezes FD, Alencar LMR, dos Santos CC, da Silva MIB, Santos-Oliveira R (2020) Using graphene quantum dots for treating radioactive liquid waste. Environ Sci Pollut Res 27:3508–3512

    Article  Google Scholar 

  29. Tang J, Wu Y, Ma S, Yan T, Pan Z (2022) Sensing mechanism of a flexible strain sensor developed directly using electrospun composite nanofiber yarn with ternary carbon nanomaterials. IScience 25:1–20

    Article  Google Scholar 

  30. Zhu L, Chen L, Gu J, Ma H, Wu H (2022) Carbon-based nanomaterials for sustainable agriculture: their application as light converters, nanosensors, and delivery tools. Plants 11:1–12

    Article  Google Scholar 

  31. Ramezanzadeh B, Karimi B, Ramezanzadeh M, Rostami M (2019) Synthesis and characterization of polyaniline tailored graphene oxide quantum dot as an advance and highly crystalline carbon-based luminescent nanomaterial for fabrication of an effective anti-corrosion epoxy system on mild steel. J Taiwan Inst Chem Eng 95:369–382

    Article  CAS  Google Scholar 

  32. Guo R, Suo Y, Xia H, Yang Y, Ma Q, Yan F (2021) Study of piezoresistive behavior of smart cement filled with graphene oxide. Nanomaterials 11:1–12

    Google Scholar 

  33. Ma X, Li X, Zhang W, Meng F, Wang X, Qin Y, Zhang M (2021) Carbon-based nanocomposite smart sensors for the rapid detection of mycotoxins. Nanomaterials 11:1–24

    Article  Google Scholar 

  34. Landi G, La Notte L, Palma AL, Sorrentino A, Maglione MG, Puglisi G (2022) A comparative evaluation of sustainable binders for environmentally friendly carbon-based supercapacitors. Nanomaterials 12:1–16

    Google Scholar 

  35. De Armentia SL, Del Real JC, Paz E, Dunne N (2020) Advances in biodegradable 3D printed scaffolds with carbon-based nanomaterials for bone regeneration. Materials 13:1–49

    Google Scholar 

  36. Mitura K, Kornacka J, Kopczyńska E, Kalisz J, Czerwińska E, Affeltowicz M, Kaczorowski W, Kolesińska B, Frączyk J, Bakalova T, Svobodová L, Louda P (2021) Active carbon-based nanomaterials in food packaging. Coatings 11:1–31

    Article  Google Scholar 

  37. Lu D, Zhong J (2022) Carbon-based nanomaterials engineered cement composites: a review. J Infrastructure Preservation and Resilience 3:1–20

    Article  Google Scholar 

  38. Castro KPR, Colombo RNP, Iost RM, da Silva BGR, Crespilho FN (2023) Low-dimensionality carbon-based biosensors: the new era of emerging technologies in bioanalytical chemistry. Anal Bioanal Chem 415:3879–3895

    Article  CAS  PubMed  Google Scholar 

  39. Kumar R, Aadil KR, Ranjan S, Kumar VB (2020) Advances in nanotechnology and nanomaterials based strategies for neural tissue engineering. J Drug Deliv Sci Technol 57:1–21

    Google Scholar 

  40. Liang X, Li N, Zhang R, Yin P, Zhang C, Yang N, Liang K, Kong B (2021) Carbon-based SERS biosensor: from substrate design to sensing and bioapplication. NPG Asia Mater 13:1–36

    Article  CAS  Google Scholar 

  41. Riley PR, Narayan RJ (2021) Recent advances in carbon nanomaterials for biomedical applications: a review. Curr Opin Biomed Eng 17:1–9

    Google Scholar 

  42. Rana A, Khan I, Saleh TA (2021) Advances in carbon nanostructures and nanocellulose as additives for efficient drilling fluids: trends and future perspective-a review. Energy Fuels 35:7319–7339

    Article  CAS  Google Scholar 

  43. Deshmukh MA, Park SJ, Hedau BS, Ha TJ (2021) Recent progress in solar cells based on carbon nanomaterials. Sol Energy 220:953–990

    Article  CAS  Google Scholar 

  44. Zadeh Mehrizi T, Eshghi P (2021) Investigation of the effect of nanoparticles on platelet storage duration 2010–2020. Int Nano Lett 1–31

    Google Scholar 

  45. Shayan Nasr M, Esmaeilnezhad E, Choi HJ (2021) Effect of carbon-based and metal-based nanoparticles on enhanced oil recovery: a review. J Mol Liq 338:1–17

    Article  Google Scholar 

  46. Sheikh TM, Anwar MP, Muthoosamy K, Jaganathan J, Chan A, Mohamed AA (2021) The mechanics of carbon-based nanomaterials as cement reinforcement-a critical review. Constr Build Mater 303:1–21

    Article  Google Scholar 

  47. Srivastava VK, Jain PK, Kumar P, Pegoretti A, Bowen CR (2020) Smart manufacturing process of carbon-based low-dimensional structures and fiber-reinforced polymer composites for engineering applications. J Mater Eng Perform 29:4162–4186

    Article  CAS  Google Scholar 

  48. Her SC, Liang YM (2022) Carbon-based nanomaterials thin film deposited on a flexible substrate for strain sensing application. Sensors 22:1–12

    Article  Google Scholar 

  49. Kang K, Park J, Kim K, Yu KJ (2021) Recent developments of emerging inorganic, metal and carbon-based nanomaterials for pressure sensors and their healthcare monitoring applications. Nano Res 14:3096–3111

    Article  CAS  Google Scholar 

  50. Jha R, Singh A, Sharma PK, Porwal O, Fuloria NK (2021) Graphene-based nanomaterial system: a boon in the era of smart nanocarriers. J Pharm Invest 51:245–280

    Article  CAS  Google Scholar 

  51. Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, Daima HK (2019) Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Convergence 6:1–30

    Article  CAS  Google Scholar 

  52. Villaseñor MJ, Ríos Á (2018) Nanomaterials for water cleaning and desalination, energy production, disinfection, agriculture and green chemistry. Environ Chem Lett 16:11–34

    Article  Google Scholar 

  53. Olabi AG, Wilberforce T, Elsaid K, Sayed ET, Ramadan M, Atiqure Rahman SM, Abdelkareem MA (2021) Recent progress on carbon-based nanomaterial for phase change materials: prospects and challenges. Thermal Sci Eng Progr 23:1–16

    Article  Google Scholar 

  54. Tao S, Feng T, Zheng C, Zhu S, Yang B (2019) Carbonized polymer dots: a brand new perspective to recognize luminescent carbon-based nanomaterials. [Review-article]. J Phys Chem Lett 10:5182–5188

    Article  CAS  PubMed  Google Scholar 

  55. Debnath SK, Srivastava R (2021) Drug delivery with carbon-based nanomaterials as versatile nanocarriers: progress and prospects. Front Nanotechnol 3:1–22

    Article  Google Scholar 

  56. Thapa S, Singh KRB, Verma R, Singh J, Singh RP (2022) State-of-the-art smart and intelligent nanobiosensors for SARS-CoV-2 diagnosis. Biosensors 12:1–27

    Article  Google Scholar 

  57. Marinescu L, Ficai D, Oprea O, Marin A, Ficai A, Andronescu E, Holban AM (2020) Optimized synthesis approaches of metal nanoparticles with antimicrobial applications. J Nanomater 2020:1–14

    Article  Google Scholar 

  58. Jovanović S, Marković Z, Budimir M, Prekodravac J, Zmejkoski D, Kepić D, Bonasera A, Marković BT (2023) Lights and dots toward therapy-carbon-based quantum dots as new agents for photodynamic therapy. Pharmaceutics 15:1–40

    Article  Google Scholar 

  59. Permatasari FA, Irham MA, Bisri SZ, Iskandar F (2021) Carbon-based quantum dots for supercapacitors: recent advances and future challenges. Nanomaterials 11:1–34

    Article  Google Scholar 

  60. Heidari G, Hassanpour M, Nejaddehbashi F, Sarfjoo MR, Yousefiasl S, Sharifi E, Bigham A, Agarwal T, Borzacchiello A, Lagreca E, Natale CD, Nikfarjam N, Vasseghian Y (2022) Biosynthesized nanomaterials with antioxidant and antimicrobial properties. Mater Chem Horizons 2022:35–48

    Google Scholar 

  61. Diez-Pascual AM (2020) Carbon-based polymer nanocomposites for high-performance applications. Polymers 12:1–6

    Article  Google Scholar 

  62. Pawar S, Duadi H, Fixler D (2023) Recent advances in the spintronic application of carbon-based nanomaterials. Nanomaterials 13:1–19

    Article  Google Scholar 

  63. Lee HK, Nam IW, Tafesse M, Kim HK (2019) Fluctuation of electrical properties of carbon-based nanomaterials/cement composites: case studies and parametric modeling. Cement Concr Compos 102:55–70

    Article  CAS  Google Scholar 

  64. Athanassiou CG, Kavallieratos NG, Benelli G, Losic D, Usha Rani P, Desneux N (2017) Nanoparticles for pest control: current status and future perspectives. J Pest Sci 10:1–15

    Google Scholar 

  65. Alshammari A, Kalevaru VN, Martin A (2012) Metal nanoparticles as emerging green catalysts. Intech, pp 1–35

    Google Scholar 

  66. Tomić M, Šetka M, Vojkůvka L, Vallejos S (2021) Vocs sensing by metal oxides, conductive polymers, and carbon-based materials. Nanomaterials 11:1–34

    Article  Google Scholar 

  67. Zan X, Bai H (2021) Review-novel carbon nanomaterials based flexible electrochemical biosensors. J Electrochem Soc 168:1–15

    Article  Google Scholar 

  68. Dobrzański LA, Dobrzańska-Danikiewicz AD (2019) Why are carbon-based materials important in civilization progress and especially in the industry 4.0 stage of the industrial revolution. Mater Perform Characterization 8:1–25

    Google Scholar 

  69. Roselin LS, Juang RS, Hsieh CT, Sagadevan S, Umar A, Selvin R, Hegazy HH (2019) Recent advances and perspectives of carbon-based nanostructures as anode materials for Li-ion batteries. Materials 12:1–46

    Article  Google Scholar 

  70. Noamani S, Niroomand S, Rastgar M, Sadrzadeh M (2019) Carbon-based polymer nanocomposite membranes for oily wastewater treatment. Npj Clean Water 2:1–14

    Article  Google Scholar 

  71. Sanivada UK, Esteves D, Arruda LM, Silva CA, Moreira IP, Fangueiro R (2022) Joule-heating effect of thin films with carbon-based nanomaterials. Materials 15:1–16

    Article  Google Scholar 

  72. Bagyalakshmi S, Sivakami A, Pal K, Sarankumar R, Mahendran C (2022) Manufacturing of electrochemical sensors via carbon nanomaterials novel applications: a systematic review. J Nanopart Res 24:1–28

    Article  Google Scholar 

  73. Dutta V, Verma R, Gopalkrishnan C, Yuan MH, Batoo KM, Jayavel R, Chauhan A, Lin KYA, Balasubramani R, Ghotekar S (2022) Bio-inspired synthesis of carbon-based nanomaterials and their potential environmental applications: a state-of-the-art review. Inorganics 10:1–33

    Article  Google Scholar 

  74. Zhao Y, Ji H, Lu M, Tao J, Ou Y, Wang Y, Chen Y, Huang Y, Wang J, Mao Y (2022) Thermochromic smart windows assisted by photothermal nanomaterials. Nanomaterials 12:1–16

    Article  Google Scholar 

  75. Yan T, Wang Z, Pan ZJ (2018) Flexible strain sensors fabricated using carbon-based nanomaterials: a review. Curr Opin Solid State Mater Sci 22:213–228

    Article  CAS  Google Scholar 

  76. Armenta S, Esteve-Turrillas FA, Garrigues S, de la Guardia M (2021) Smart materials for sample preparation in bioanalysis: a green overview. Sustain Chem Pharm 21:1–20

    Google Scholar 

  77. Yin F, Yue W, Li Y, Gao S, Zhang C, Kan H, Niu H, Wang W, Guo Y (2021) Carbon-based nanomaterials for the detection of volatile organic compounds: a review. Carbon 180:274–297

    Article  CAS  Google Scholar 

  78. Verma G, Gupta A (2022) Recent development in carbon nanotubes based gas sensors. J Mater NanoSci 2022:3–12

    Google Scholar 

  79. Abd-Elsalam KA (2019) Carbon nanomaterials: 30 years of research in agroecosystems. In: Carbon nanomaterials for agri-food and environmental applications, pp 1–18

    Google Scholar 

  80. Adorinni S, Rozhin P, Marchesan S (2021) Smart hydrogels meet carbon nanomaterials for new frontiers in medicine. Biomedicines 9:1–22

    Article  Google Scholar 

  81. Rahmati M, Mozafari M (2019) Biological response to carbon-family nanomaterials: interactions at the nano-bio interface. Front Bioeng Biotechnol 7:1–22

    Article  Google Scholar 

  82. Sharma A, Sharma N, Kumari A, Lee HJ, Kim TY, Tripathi KM (2020) Nano-carbon based sensors for bacterial detection and discrimination in clinical diagnosis: a junction between material science and biology. Appl Mater Today 18:1–28

    Google Scholar 

  83. Belay T, Worku LA, Bachheti RK, Bachheti A, Husen A (2023) Nanomaterials: introduction, synthesis, characterization, and applications. In: Husen A, Siddiqi KS (eds) Advances in smart nanomaterials and their applications. Elsevier, Amsterdam, Netherlands, pp 1–21

    Google Scholar 

  84. Hosu O, Tertiş M, Cernat A, Feier B, Săndulescu R (2020) Recent approaches to the synthesis of smart nanomaterials for nanodevices in disease diagnosis. In: Nanomaterials in diagnostic tools and devices, pp 1–55

    Google Scholar 

  85. Zare EN, Padil VVT, Mokhtari B, Venkateshaiah A, Wacławek S, Černík M, Tay FR, Varma RS, Makvandi P (2020) Advances in biogenically synthesized shaped metal and carbon-based nanoarchitectures and their medicinal applications. Adv Coll Interface Sci 283:1–17

    Article  Google Scholar 

  86. Onyancha RB, Ukhurebor KE, Aigbe UO, Osibote OA, Kusuma HS, Darmokoesoemo H (2022) A Methodical review on carbon-based nanomaterials in energy-related applications. Adsorpt Sci Technol 2022:1–21

    Article  Google Scholar 

  87. Thangadurai D, Naik J, Sangeetha J, Shettar AK, Adetunji JB (2020) Nanomaterials from agrowastes: past, present, and the future. In: Handbook of nanomaterials and nanocomposites for energy and environmental applications, pp 1–18

    Google Scholar 

  88. Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12:908–931

    Article  CAS  Google Scholar 

  89. Restrepo CV, Villa CC (2021) Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: a review. Environ Nanotechnol, Monit Manage 15:1–11

    Google Scholar 

  90. Patra JK, Baek KH (2014) Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater 2014:1–13

    Article  Google Scholar 

  91. Fu Y, Zeng G, Lai C, Huang D, Qin L, Yi H, Liu X, Zhang M, Li B, Liu S, Li L, Li M, Wang W, Zhang Y, Pi Z (2020) Hybrid architectures based on noble metals and carbon-based dots nanomaterials: a review of recent progress in synthesis and applications. Chem Eng J 399:1–22

    Article  Google Scholar 

  92. Piaskowski K, Zarzycki PK (2020) Carbon-based nanomaterials as promising material for wastewater treatment processes. Int J Environ Res Public Health 17:1–14

    Article  Google Scholar 

  93. de Oliveira TC, Ferreira FV, de Menezes BRC, da Silva DM, dos Santos AS, Kawachi EY, Simonetti EAN, Cividanes LS (2021) Engineering the surface of carbon-based nanomaterials for dispersion control in organic solvents or polymer matrices. Surf Interfaces 24:1–10

    Google Scholar 

  94. Eisa WH, Zayed MF, Anis B, Abbas LM, Ali SSM, Mostafa AM (2019) Clean production of powdery silver nanoparticles using Zingiber officinale: The structural and catalytic properties. J Clean Prod 241:1–12

    Article  Google Scholar 

  95. Campuzano S, Yáñez-Sedeño P, Pingarrón JM (2019) Carbon dots and graphene quantum dots in electrochemical biosensing. Nanomaterials 9:1–18

    Article  Google Scholar 

  96. Zaytseva O, Neumann G (2016) Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chem Biol Technol Agric 3:1–26

    Article  Google Scholar 

  97. Husen A (2023) Secondary metabolites based green synthesis of nanomaterials and their applications. Springer Nature Singapore Pte Ltd., 152 Beach Road, #21–01/04 Gateway East, Singapore 189721, Singapore

    Google Scholar 

  98. Sohail MI, Waris AA, Ayub MA, Usman M, Zia ur Rehman M, Sabir M, Faiz T (2019) Environmental application of nanomaterials: a promise to sustainable future. Comprehensive Anal Chem 87:1–54

    Google Scholar 

  99. Innocenzi P, Stagi L (2020) Carbon-based antiviral nanomaterials: graphene, C-dots, and fullerenes. A perspective. Chem Sci 11:6606–6622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lochab A, Sharma R, Kumar S, Saxena R (2020) Recent advances in carbon based nanomaterials as electrochemical sensor for toxic metal ions in environmental applications. Mater Today: Proc 45:3741–3753

    Google Scholar 

  101. Cardano F, Frasconi M, Giordani S (2018) Photo-responsive graphene and carbon nanotubes to control and tackle biological systems. Front Chem 6:1–17

    Article  Google Scholar 

  102. Alavi M, Jabari E, Jabbari E (2021) Functionalized carbon-based nanomaterials and quantum dots with antibacterial activity: a review. Expert Rev Anti Infect Ther 19:35–44

    Article  CAS  PubMed  Google Scholar 

  103. Mahor A, Singh PP, Bharadwaj P, Sharma N, Yadav S, Rosenholm JM, Bansal KK (2021) Carbon-based nanomaterials for delivery of biologicals and therapeutics: a cutting-edge technology. J Carbon Res 7:19

    Article  CAS  Google Scholar 

  104. Demirbas AK, Cevik S (2020) Regulatory policies for safety of nanomaterials. Open J Nano 5:1–16

    Google Scholar 

  105. Kumari R, Suman K, Karmakar S, Mishra V, Lakra SG, Saurav GK, Mahto BK (2023) Regulation and safety measures for nanotechnology-based agri-products. Front Genome Editing 5:1–12

    Article  Google Scholar 

  106. Tsunemi K, Yoshida M, Kawamoto A (2022) Screening risk assessment at the production and use stage of carbon nanomaterials generated in hydrogen manufacture by methane decomposition. Sustainability 14:1–12

    Article  Google Scholar 

  107. Kuempel ED, Geraci CL, Schulte PA (2012) Risk assessment and risk management of nanomaterials in the workplace: translating research to practice. Ann Occup Hyg 56:491–505

    PubMed  Google Scholar 

  108. Mohan VB (2019) Handling and risk mitigation of nanoscale graphene and related materials: some considerations and recommendations. C-J Carbon Res 5:1–9

    Article  Google Scholar 

  109. Bachheti RK, Sharma A, Bachheti A, Husen A, Shanka GM, Pandey DP (2020) Nanomaterials from various forest tree species and their biomedical applications. In: Husen A, Jawaid M (eds) Nanomaterials for agriculture and forestry applications. Elsevier, pp 81–106. https://doi.org/10.1016/B978-0-12-817852-2.00004-4

  110. Husen A (2023b) Smart nanomaterials from agricultural and horticultural products. Springer Nature Singapore Pte Ltd., 152 Beach Road, #21–01/04 Gateway East, Singapore 189721, Singapore

    Google Scholar 

  111. Husen A (2020) Interactions of metal and metal-oxide nanomaterials with agricultural crops: an overview. In: Husen A, Jawaid M (eds) Nanomaterials for agriculture and forestry applications. Elsevier Inc. 50 Hampshire St., 5th Floor, Cambridge, MA 02139, USA, pp 167–197 https://doi.org/10.1016/B978-0-12-817852-2.00007-X

  112. Husen A (2020) Carbon-based nanomaterials and their interactions with agricultural crops. In: Husen A, Jawaid M (eds) Elsevier Inc. 50 Hampshire St., 5th Floor, Cambridge, MA 02139, USA, pp 199–218 https://doi.org/10.1016/B978-0-12-817852-2.00008-1

  113. Jeerapan, & Ma. (2019) Challenges and opportunities of carbon nanomaterials for biofuel cells and supercapacitors: personalized energy for futuristic self-sustainable devices. C -J Carbon Res 5:1–27

    Google Scholar 

  114. Liu X, Huang D, Lai C, Qin L, Zeng G, Xu P, Li B, Yi H, Zhang M (2019) Peroxidase‐like activity of smart nanomaterials and their advanced application in colorimetric glucose biosensors, pp 1–27

    Google Scholar 

  115. Mandal AK, Ghorai S, Husen A (2023) Functionalized smart nanomaterials for point-of-care testing. Springer Nature Singapore Pte Ltd., 152 Beach Road, #21–01/04 Gateway East, Singapore 189721, Singapore. https://link.springer.com/book/9789819957866

  116. Wang G, Wang Y, Luo Y, Luo S (2018) Carbon nanomaterials based smart fabrics with selectable characteristics for in-line monitoring of high-performance composites. Materials 11:1–12

    Google Scholar 

  117. Wang H, Chen Q, Zhou S (2018) Carbon-based hybrid nanogels: a synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chem Soc Rev 47:4198–4232

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar Bachheti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gonfa, Y.H., Bachheti, A.(., Husen, A., Bachheti, R.K. (2024). Carbon-Based Smart Nanomaterials: An Overview. In: Bachheti, A.(., Bachheti, R.K., Husen, A. (eds) Carbon-Based Nanomaterials. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-97-0240-4_1

Download citation

Publish with us

Policies and ethics