Skip to main content

Silicon Nanowires as a Potential Material for Terahertz Applications

  • Chapter
  • First Online:
Advanced Materials for Future Terahertz Devices, Circuits and Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 727))

  • 503 Accesses

Abstract

Terahertz is an important but underutilized frequency range which lies in between 0.3 and 10 THz in electromagnetic spectrum, occupying middle ground of both microwave and infrared region. It can carry few properties of both the wavelengths. As conventional electronic devices have failed to generate and detect the terahertz wave, there is a high demand to find alternatives. Silicon nanowire and its geometry are still under research as terahertz emitter. Here, two-stage metal-assisted chemical etching (MaCE) process has been employed to synthesize the grass like silicon nanowires. The lengths and diameters of the nanowires are modified by varying different conditions. The silicon nanowires (SiNW) without HF treatment contain superficial silicon oxide layer which is different in properties compare to HF treated SiNW (SiNW-HF). It is evident that, HF/H2O2 etching rate has been enhanced with the rise of the temperature, which results in highly dense, more fine nanowires in the same area (SiNW-HF-T). Additionally, by providing a carbon made conductive back, the etching rate of silicon wafer is enhanced in a particular orientation (SiNW-HF/C). SiNW, SiNW-HF, SiNW-HF-T, and SiNW-HF/C consist of silicon nanowires with average length of 1.6 μm, 3 μm, 7 μm, and 14.4 μm, respectively. Here, two important mechanisms are proposed for utilizing silicon nanowires as terahertz emitter. As terahertz detector, silicon nanowires have few shortcomings. To overcome such difficulties, silicon nanowire-reduced graphene oxide (SiNW-HF-T/RGO(s) &SiNW-HF-T/RGO(h)) hybrid is synthesized in different methods. Deposition of RGO on silicon nanowires enhances the roughness to an extent that hydrophilic nature of the nanowire is converted into hydrophobic for SiNW-HF-T/RGO(s). This material can be utilized as broadband photodetector from visible to terahertz range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.Y. Pawar, D.D. Sonawane, K.B. Erande, D.V. Derle, Terahertz technology and its applications. Drug Invent. Today 5(2), 157–163 (2013)

    Article  Google Scholar 

  2. X.-C. Zhang, J. Xu. Introduction to THz wave photonics, Springer (2010)

    Google Scholar 

  3. Y.-S. Lee, Principles of terahertz science and technology. Springer (2009)

    Google Scholar 

  4. T. Shibuya, K. Kawase, Terahertz applications in tomographic imaging and material spectroscopy: a review. Handbook of Terahertz Technology for Imaging, Sensing and Communications, Elsevier, pp. 493–509 (2013)

    Google Scholar 

  5. K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H.J. Joyce, J.L. Boland, H.H. Tan, Single nanowire photoconductive terahertz detectors. Nano Lett. 15(1), 206–210 (2015)

    Article  CAS  Google Scholar 

  6. H.J. Joyce, J.L. Boland, C.L. Davies, S.A. Baig, M.B. Johnston, A review of the electrical properties of semiconductor nanowires: insights gained from terahertz conductivity spectroscopy. Semicond. Sci. Technol. 31(10), 103003 (2016)

    Article  Google Scholar 

  7. S.A. Dayeh, W. Tang, F. Boioli, K.L. Kavanagh, H. Zheng, J. Wang, N.H. Mack, G. Swadener, J.Y. Huang, L. Miglio, Direct measurement of coherency limits for strain relaxation in heteroepitaxial core/shell nanowires. Nano Lett. 13(5), 1869–1876 (2013)

    Article  CAS  Google Scholar 

  8. M.D. Kelzenberg, S.W. Boettcher, J.A. Petykiewicz, D.B. Turner-Evans, M.C. Putnam, E.L. Warren, J.M. Spurgeon, R.M. Briggs, N.S. Lewis, H.A. Atwater, Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat Mater 9(3), 239–244 (2010)

    Article  CAS  Google Scholar 

  9. P. Krogstrup, H.I. Jørgensen, M. Heiss, O. Demichel, J.V. Holm, M. Aagesen, J. Nygard, A.F.I. Morral, Single-nanowire solar cells beyond the Shockley-Queisser limit. Nature Photon. 7(4), 306–310 (2013)

    Article  CAS  Google Scholar 

  10. M. Yao, S. Cong, S. Arab, N. Huang, M.L. Povinelli, S.B. Cronin, P.D. Dapkus, C. Zhou, Tandem solar cells using GaAs nanowires on Si: design, fabrication, and observation of voltage addition. Nano Lett. 15(11), 7217–7224 (2015)

    Article  CAS  Google Scholar 

  11. M.S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, A. Tredicucci, Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors. Nano Lett. 12(1), 96–101 (2012)

    Article  CAS  Google Scholar 

  12. M.J. Holmes, K. Choi, S. Kako, M. Arita, Y. Arakawa, Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot. Nano Lett. 14(2), 982–986 (2014)

    Article  CAS  Google Scholar 

  13. Y. Chen, J. He, Y. Wang, X. Lin, L. Zhang, M. Chan, Terahertz wave generation and detection analysis of silicon nanowire MOS field-effect transistor. IETE Tech. Rev. 26(6), 430–439 (2009)

    Article  Google Scholar 

  14. T.P.H. Sidiropoulos, R. Röder, S. Geburt, O. Hess, S.A. Maier, C. Ronning, R.F. Oulton, Ultrafast plasmonic nanowire lasers near the surface plasmon frequency. Nat. Phys. 10(11), 870–876 (2014)

    Article  CAS  Google Scholar 

  15. M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber, Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415(6872), 617–620 (2002)

    Article  CAS  Google Scholar 

  16. S. Balci, D.A. Czaplewski, I.W. Jung, J.-H. Kim, F. Hatami, P. Kung, S.M. Kim, High efficient THz emission from unbiased and biased semiconductor nanowires fabricated using electron beam lithography. IEEE J. Sel. Top. Quant. Electr. 23(4), 1–7 (2017)

    Article  Google Scholar 

  17. D. Seletskiy, M.P. Hasselbeck, M. Sheik-Bahae, J.G. Cederberg, L.C. Chuang, M. Moewe, C. Chang-Hasnain, Observation of THz emission from InAs nanowires. IEEE, pp. 1–2

    Google Scholar 

  18. M. Reid, I.V. Cravetchi, R. Fedosejevs, I.M. Tiginyanu, L. Sîrbu, Enhanced terahertz emission from porous InP (111) membranes. Appl. Phys. Lett. 86(2), 021904 (2005)

    Article  Google Scholar 

  19. S. He, X. Chen, X. Wu, G. Wang, F. Zhao, Enhanced terahertz emission from ZnSe nano-grain surface. J. Lightw. Tech. 26(11), 1519–1523 (2008)

    Article  CAS  Google Scholar 

  20. A. Arlauskas, J. Treu, K. Saller, I. Beleckaitė, G. Koblmüller, A.N. Krotkus, Strong terahertz emission and its origin from catalyst-free InAs nanowire arrays. Nano Lett. 14(3), 1508–1514 (2014)

    Article  CAS  Google Scholar 

  21. V.N. Trukhin, A.S. Buyskikh, N.A. Kaliteevskaya, A.D. Bourauleuv, L.L. Samoilov, Y.B. Samsonenko, G.E. Cirlin, M.A. Kaliteevski, A.J. Gallant, Terahertz generation by GaAs nanowires. Appl. Phys. Lett. 103(7), 072108 (2013)

    Article  Google Scholar 

  22. V.N. Trukhin, A.D. Bouravleuv, I.A. Mustafin, J.-P. Kakko, T. Huhtio, G.E. Cirlin, H. Lipsanen, Generation of terahertz radiation in ordered arrays of GaAs nanowires. Appl. Phys. Lett. 106(25), 252104 (2015)

    Article  Google Scholar 

  23. P. Hoyer, M. Theuer, R. Beigang, E.B. Kley, Terahertz emission from black silicon. Appl. Phys. Lett. 93(9), 091106 (2008)

    Article  Google Scholar 

  24. G.B. Jung, Y.J. Cho, Y. Myung, H.S. Kim, Y.S. Seo, J. Park, C. Kang, Geometry-dependent terahertz emission of silicon nanowires. Opt. Expr. 18(16), 16353–16359 (2010)

    Article  CAS  Google Scholar 

  25. R. Cheng, Y. Zhou, H. Liu, J. Liu, G. Sun, X. Zhou, H. Shen, Q. Wang, Y. Zha, Tunable graphene-based terahertz absorber via an external magnetic field. Opt. Mater. Expr. 10(2), 501–512 (2020)

    Article  CAS  Google Scholar 

  26. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308 (2008)

    Article  CAS  Google Scholar 

  27. V. Ryzhii, M. Ryzhii, N. Ryabova, V. Mitin, T. Otsuji, Graphene nanoribbon phototransistor: Proposal and analysis. Japanese Journal of Applied Physics 48(4S), 04C144 (2009)

    Google Scholar 

  28. V. Ryzhii, V. Mitin, M. Ryzhii, N. Ryabova, T. Otsuji, Device model for graphene nanoribbon phototransistor. Appl. Phys. Expr. 1(6), 063002 (2008)

    Article  Google Scholar 

  29. G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, M. Chhowalla, Insulator to semimetal transition in graphene oxide. J. Phys. Chem. C 113(35), 15768–15771 (2009)

    Article  CAS  Google Scholar 

  30. B. Chitara, L.S. Panchakarla, S.B. Krupanidhi, C.N.R. Rao, Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons. Adv. Mater. 23(45), 5419–5424 (2011)

    Article  CAS  Google Scholar 

  31. K. Peng, Y. Xu, Y. Wu, Y. Yan, S.T. Lee, J. Zhu, Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small 1(11), 1062–1067 (2005)

    Article  CAS  Google Scholar 

  32. Y. Cao, J. Zhu, J. Xu, J. He, J.L. Sun, Y. Wang, Z. Zhao, Ultra-broadband photodetector for the visible to terahertz range by self-assembling reduced graphene oxide-silicon nanowire array heterojunctions. Small 10(12), 2345–2351 (2014)

    Article  CAS  Google Scholar 

  33. S. Ghosh, S. Dey, B. Das, N.S. Das, S. Sarkar, K.K. Chattopadhyay, Wettability of metal assisted chemically etched (MaCE) grass like silicon nanowires. IEEE, pp. 213–217 (2018)

    Google Scholar 

  34. R.-P. Wang, G.-W. Zhou, Y.-L. Liu, S.-H. Pan, H.-Z. Zhang, D.-P. Yu, Z. Zhang, Raman spectral study of silicon nanowires: high-order scattering and phonon confinement effects. Phys. Rev. B 61(24), 16827 (2000)

    Article  CAS  Google Scholar 

  35. U.N. Maiti, S. Maiti, T.P. Majumder, K.K. Chattopadhyay, Ultra-thin graphene edges at the nanowire tips: a cascade cold cathode with two-stage field amplification. Nanotechnology 22(50), 505703 (2011)

    Article  Google Scholar 

  36. A. Jha, R. Roy, D. Sen, K.K. Chattopadhyay, Curvature aided efficient axial field emission from carbon nanofiber–reduced graphene oxide superstructures on tungsten wire substrate. Appl. Surf. Sci. 366, 448–454 (2016)

    Article  CAS  Google Scholar 

  37. W.-F. Kuan, L.J. Chen, The preparation of superhydrophobic surfaces of hierarchical silicon nanowire structures. Nanotechnology 20(3), 035605 (2008)

    Article  Google Scholar 

  38. Y. Coffinier, G. Piret, M.R. Das, R. Boukherroub, Effect of surface roughness and chemical composition on the wetting properties of silicon-based substrates. C. R. Chim. 16(1), 65–72 (2013)

    Article  CAS  Google Scholar 

  39. A. Egatz-Gomez, R. Majithia, C. Levert, K.E. Meissner, Super-wetting, wafer-sized silicon nanowire surfaces with hierarchical roughness and low defects. RSC Adv. 2(30), 11472–11480 (2012)

    Article  CAS  Google Scholar 

  40. P.H. Siegel, Terahertz technology. IEEE Transactions on microwave theory and techniques 50(3), 910–928 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

One of us (SG) wishes to thank the Council for Scientific and Industrial Research (CSIR), the Government of India, for providing her a senior research fellowship through “CSIR-SRF” (File no: 09/096(0926)/2018-EMR-I) while other (AC) wants to thank Technical Education Quality Improvement Programme (TEQIP phase III scheme, Jadavpur University) for providing fellowship during the work. The authors wish to acknowledge the University Grants Commission (UGC), the Government of India for the support under the “University with Potential for Excellence (UPE-II)” scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Chattopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, S., Chandra, A., Sarkar, S., Chattopadhyay, K.K. (2021). Silicon Nanowires as a Potential Material for Terahertz Applications. In: Acharyya, A., Das, P. (eds) Advanced Materials for Future Terahertz Devices, Circuits and Systems. Lecture Notes in Electrical Engineering, vol 727. Springer, Singapore. https://doi.org/10.1007/978-981-33-4489-1_10

Download citation

Publish with us

Policies and ethics