Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrafast plasmonic nanowire lasers near the surface plasmon frequency

Abstract

Light–matter interactions are inherently slow as the wavelengths of optical and electronic states differ greatly. Surface plasmon polaritons — electromagnetic excitations at metal–dielectric interfaces — have generated significant interest because their spatial scale is decoupled from the vacuum wavelength, promising accelerated light–matter interactions. Although recent reports suggest the possibility of accelerated dynamics in surface plasmon lasers, this remains to be verified. Here, we report the observation of pulses shorter than 800 fs from hybrid plasmonic zinc oxide (ZnO) nanowire lasers. Operating at room temperature, ZnO excitons lie near the surface plasmon frequency in such silver-based plasmonic lasers, leading to accelerated spontaneous recombination, gain switching and gain recovery compared with conventional ZnO nanowire lasers. Surprisingly, the laser dynamics can be as fast as gain thermalization in ZnO, which precludes lasing in the thinnest nanowires (diameter less than 120 nm). The capability to combine surface plasmon localization with ultrafast amplification provides the means for generating extremely intense optical fields, with applications in sensing, nonlinear optical switching, as well as in the physics of strong-field phenomena.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sketch of the ZnO plasmonic nanowire laser geometry and its calculated transverse mode characteristics.
Figure 2: Comparison of measured plasmonic and photonic nanowire laser emission.
Figure 3: Numerical simulations of the temporal response under double-pump excitation.
Figure 4: Measured temporal response from plasmonic and photonic nanowires under double-pump excitation.
Figure 5: Measured spectra versus double-pump pulse delay for the plasmonic nanowire laser and its Fourier transform.
Figure 6: Comparison of measured characteristic response times in plasmonic and photonic lasers.

Similar content being viewed by others

References

  1. Bergman, D. & Stockman, M. Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 1–4 (2003).

    Article  Google Scholar 

  2. Ma, R., Oulton, R. F., Sorger, V. J. & Zhang, X. Plasmon lasers: Coherent light source at molecular scales. Laser Photon. Rev. 7, 1–21 (2012).

    Article  ADS  Google Scholar 

  3. Lu, Y-J. et al. Plasmonic nanolaser using epitaxially grown silver film. Science 337, 450–453 (2012).

    Article  ADS  Google Scholar 

  4. Oulton, R. F. Surface plasmon lasers: Sources of nanoscopic light. Mater. Today 15, 592–600 (2012).

    Article  Google Scholar 

  5. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    Article  ADS  Google Scholar 

  6. Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

    Article  ADS  Google Scholar 

  7. Ma, R., Oulton, R. F., Sorger, V. J., Bartal, G. & Zhang, X. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nature Mater. 10, 110–113 (2010).

    Article  ADS  Google Scholar 

  8. Hill, M. T. et al. Lasing in metal–insulator–metal sub-wavelength plasmonic waveguides. Opt. Express 17, 11107–11112 (2009).

    Article  ADS  Google Scholar 

  9. Stockman, M. I. The spaser as a nanoscale quantum generator and ultrafast amplifier. J. Opt. 12, 024004 (2010).

    Article  ADS  Google Scholar 

  10. Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997).

    Article  ADS  Google Scholar 

  11. Nie, S. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Article  Google Scholar 

  12. Anker, J., Hall, W., Lyandres, O. & Shah, N. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008).

    Article  ADS  Google Scholar 

  13. Danckwerts, M. & Novotny, L. Optical frequency mixing at coupled gold nanoparticles. Phys. Rev. Lett. 98, 026104 (2007).

    Article  ADS  Google Scholar 

  14. Aouani, H., Rahmani, M., Navarro-Cía, M. & Maier, S. A. Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna. Nature Nanotech. 9, 290–294 (2014).

    Article  ADS  Google Scholar 

  15. Kim, S. et al. High-harmonic generation by resonant plasmon field enhancement. Nature 453, 757–760 (2008).

    Article  ADS  Google Scholar 

  16. Yu, Z., Veronis, G., Fan, S. & Brongersma, M. L. Gain-induced switching in metal–dielectric–metal plasmonic waveguides. Appl. Phys. Lett. 92, 041117 (2008).

    Article  ADS  Google Scholar 

  17. Khajavikhan, M. et al. Thresholdless nanoscale coaxial lasers. Nature 482, 204–207 (2012).

    Article  ADS  Google Scholar 

  18. Ding, K. et al. Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection. Phys. Rev. B 85, 041301 (2012).

    Article  ADS  Google Scholar 

  19. Khurgin, J. B. & Sun, G. Comparative analysis of spasers, vertical-cavity surface-emitting lasers and surface-plasmon-emitting diodes. Nature Photon. 8, 468–473 (2014).

    Article  ADS  Google Scholar 

  20. Khurgin, J. B. & Sun, G. Scaling of losses with size and wavelength in nanoplasmonics and metamaterials. Appl. Phys. Lett. 99, 211106 (2011).

    Article  ADS  Google Scholar 

  21. Khurgin, J. B. & Sun, G. Injection pumped single mode surface plasmon generators: Threshold, linewidth, and coherence. Opt. Express 20, 15309–15325 (2012).

    Article  ADS  Google Scholar 

  22. Wuestner, S. et al. Control and dynamic competition of bright and dark lasing states in active nanoplasmonic metamaterials. Phys. Rev. B 85, 201406 (2012).

    Article  ADS  Google Scholar 

  23. Kinkhabwala, A. et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photon. 3, 654–657 (2009).

    Article  ADS  Google Scholar 

  24. Sorger, V. J. et al. Strong molecular fluorescence inside a nanoscale waveguide gap. Nano Lett. 11, 4907–4911 (2011).

    Article  ADS  Google Scholar 

  25. Russell, K., Liu, T., Cui, S. & Hu, E. Large spontaneous emission enhancement in plasmonic nanocavities. Nature Photon. 6, 459–462 (2012).

    Article  ADS  Google Scholar 

  26. Altug, H., Englund, D. & Vučković, J. Ultrafast photonic crystal nanocavity laser. Nature Phys. 2, 484–488 (2006).

    Article  ADS  Google Scholar 

  27. Oulton, R. F., Sorger, V. J., Genov, D. A., Pile, D. F. P. & Zhang, X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photon. 2, 496–500 (2008).

    Article  Google Scholar 

  28. Trebino, R. Measuring the seemingly immeasurable. Nature Photon. 5, 189–192 (2011).

    Article  ADS  Google Scholar 

  29. Zimmler, M. A., Capasso, F., Müller, S. & Ronning, C. Optically pumped nanowire lasers: Invited review. Semicond. Sci. Technol. 25, 024001 (2010).

    Article  ADS  Google Scholar 

  30. Yoshikawa, H. & Adachi, S. Optical constants of ZnO. Jpn. J. Appl. Phys. 36, 6237–6243 (1997).

    Article  ADS  Google Scholar 

  31. Shih, T., Mazur, E., Richters, J-P., Gutowski, J. & Voss, T. Ultrafast exciton dynamics in ZnO: Excitonic versus electron–hole plasma lasing. J. Appl. Phys. 109, 043504 (2011).

    Article  ADS  Google Scholar 

  32. Klingshirn, C. ZnO: Material, physics and applications. ChemPhysChem 8, 782–803 (2007).

    Article  Google Scholar 

  33. Röder, R. et al. Continuous wave nanowire lasing. Nano Lett. 13, 3602–3606 (2013).

    Article  ADS  Google Scholar 

  34. Zimmler, M. A., Bao, J., Capasso, F., Müller, S. & Ronning, C. Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation. Appl. Phys. Lett. 93, 051101 (2008).

    Article  ADS  Google Scholar 

  35. Versteegh, M. A. M., Vanmaekelbergh, D. & Dijkhuis, J. I. Room-temperature laser emission of ZnO nanowires explained by many-body theory. Phys. Rev. Lett. 108, 157402 (2012).

    Article  ADS  Google Scholar 

  36. Rakic, A. D., Djurisic, A. B., Elazar, J. M. & Majewski, M. L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271–5283 (1998).

    Article  ADS  Google Scholar 

  37. Palik, E. D. Handbook of Optical Constants of Solids, Author and Subject Indices for Volumes I, II, and III (Elsevier Science Technology, 1997).

    Google Scholar 

  38. Liu, X., Zhang, Q., Yip, J. N., Xiong, Q. & Sum, T. C. Wavelength tunable single nanowire lasers based on surface plasmon polariton enhanced Burstein–Moss effect. Nano Lett. 13, 5336–5343 (2013).

    Article  ADS  Google Scholar 

  39. Klingshirn, C. F. Semiconductor Optics (Springer, 2007).

    Book  Google Scholar 

  40. Lebedev, M. V. On the nature of ‘Coherent Artifact’. J. Exp. Theor. Phys. 100, 272–282 (2005).

    Article  ADS  Google Scholar 

  41. Hendry, E., Koeberg, M. & Bonn, M. Exciton and electron–hole plasma formation dynamics in ZnO. Phys. Rev. B 76, 045214 (2007).

    Article  ADS  Google Scholar 

  42. Casperson, L. W. Threshold characteristics of multimode laser oscillators. J. Appl. Phys. 46, 5194–5201 (1975).

    Article  ADS  Google Scholar 

  43. Huang, M. H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001).

    Article  ADS  Google Scholar 

  44. Böhringer, K. & Hess, O. A full-time-domain approach to spatio-temporal dynamics of semiconductor lasers. I. Theoretical formulation. Prog. Quantum Electron. 32, 159–246 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the UK Engineering and Physical Sciences Research Council (EPSRC), The Leverhulme Trust as well as the Deutsche Forschungsgemeinschaft (FOR 1616). R.F.O. is supported by an EPSRC Fellowship (EP/I004343/1) and Marie Curie IRG (PIRG08-GA-2010-277080).

Author information

Authors and Affiliations

Authors

Contributions

The nanowires where grown by R.R. and S.G.; the simulations were performed by T.P.H.S. and R.F.O.; the experimental measurements were conducted by T.P.H.S.; results were discussed and interpreted by all authors; the manuscript was written by T.P.H.S. and R.F.O. with feedback from all co-authors.

Corresponding authors

Correspondence to Themistoklis P. H. Sidiropoulos or Rupert F. Oulton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidiropoulos, T., Röder, R., Geburt, S. et al. Ultrafast plasmonic nanowire lasers near the surface plasmon frequency. Nature Phys 10, 870–876 (2014). https://doi.org/10.1038/nphys3103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing