Skip to main content

Nanobiosensors: A Novel Approach in Precision Agriculture

  • Chapter
  • First Online:
Nanotechnology for Agriculture

Abstract

The interdisciplinary nanobiosensors have endless applications in agriculture which directly and indirectly enhance the agricultural yield. After green revolution, farmers started blind application of chemical fertilizers, pesticides, insecticides, and herbicides which caused loss of soil biodiversity and resulted in resistance against pathogens and pests. To know the threshold level of biological interactions at very small scale which helps the farmer to achieve the maximum yield through nanoparticle-mediated material delivery to plants and advanced biosensors. Presently, several kinds of biosensors are considered and utilized that include enzyme-based biosensor, immunosensors, cell- or tissue-based biosensor, nucleic acid biosensors, and thermal and piezoelectric biosensors. Enzyme-based biosensors are being established using immobilization techniques, i.e., covalent or ionic bonding and adsorption of enzymes via van der Waals forces by exploiting enzymes such as oxidoreductases, amino oxidases, polyphenol oxidases, and peroxidases. Antibody-based biosensors had additional affinity in the direction of particular antigens, viz., the antibodies bind specifically to the toxins or pathogens or interact with different components of the immune system of the host. The applications of nanobiosensors are very diverse and vast which includes different areas like virology, ligand fishing, cell biology, cell adhesion, epitope mapping, bacteriology, nucleotide–nucleotide binding, molecular engineering, nucleotide–protein, enzyme mechanisms, and signal transduction. Applications of nanobiosensors are nursing soil conditions for the monitoring of herbicides, pesticides, insecticides, pathogens, fertilizers, and crop growth, detecting food-borne contaminants, and determining the heavy metals (e.g., Hg2+, As3+, and Cu2+), antibiotics, secondary antibody, and residue analysis. These techniques have potential to overcome the various problems in agriculture and will be revolutionized in this sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd-Elsalam KA, Alghuthaymi MA (2015) Nanobiofungicides: are they the next-generation of fungicides? J Nanotech Mater Sci 2(2):38–40

    Google Scholar 

  • Al-Amin Sadek MD, Jayasuriya HP (2007) Nanotechnology prospects in agricultural context: an overview. In: Proceedings of the international agricultural engineering conference 3–6 December 2007 Bangkok, p. 548

    Google Scholar 

  • Alloway BJ (2008) Micronutrients and crop production: an introduction. In: Alloway BJ (ed) Micronutrient deficiencies in global crop production. Springer, New York, pp 1–39

    Chapter  Google Scholar 

  • Andreescu S, Marty JL (2006) Twenty years research in cholinesterase biosensors: from basic research to practical applications. Biomol Eng 23:1–15

    Article  CAS  PubMed  Google Scholar 

  • Bakhtiari M, Moaveni P, Sani B (2015) The effect of iron nanoparticles spraying time and concentration on wheat. Biol Forum Int J 7:679–683

    CAS  Google Scholar 

  • Bakirhan NK, Uslu B, Ozkan SA (2018) Chapter 5: The detection of pesticide in foods using electrochemical sensors. In: Food safety and preservation, Modern biological approaches to improving consumer health. Academic, London, pp 91–141

    Chapter  Google Scholar 

  • Borgne BL, Salaun AC, Pichon L, Jolivet-Gougeon A, Martin S, Roge R, Sagazan O (2017) Silicon nanowires based resistors for bacteria detection. PRO 1(496):1–4. https://doi.org/10.3390/proceedings1040496

    Article  Google Scholar 

  • Brady NR, Weil RR (1999) In: Brady NR, Weil RR (eds) The nature and properties of soils. Prentice Hall, New Jersey, pp 415–473

    Google Scholar 

  • Chakravarthy AK, Chandrashekharaiah Kandakoor SB, Bhattacharya A, Dhanabala K, Gurunatha K, Ramesh P (2012) Bio efficacy of inorganic nanoparticles CdS, Nano-Ag and Nano-TiO2 against Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Curr Biotica 6:271–281

    Google Scholar 

  • Chandra JH, Raj LFAA, Amasivayam SKR, Bharani RSA (2013) Improved pesticidal activity of fungal metabolite from nomureae rileyi with chitosan nanoparticles. In: Proceedings of the international conference on advanced nanomaterials and emerging engineering technologies, July 24–26, 2013, Chennai, pp. 387–390

    Google Scholar 

  • Chen H, Zuo X, Su S, Tang Z, Wu A, Song S, Zhang D, Fan C (2008) An electrochemical sensor for pesticide assays based on carbon nanotube-enhanced acetylcholinesterase activity. Analyst 133(9):1182–1186. https://doi.org/10.1039/b805334k

    Article  CAS  PubMed  Google Scholar 

  • Clemente Z, Grillo R, Jonsson M, Santos NZ, Feitosa LO, Lima R (2014) Ecotoxicological evaluation of poly(ε-caprolactone) nanocapsules containing triazine herbicides. J Nanosci Nanotechnol 14:4911–4917

    Article  CAS  PubMed  Google Scholar 

  • Corradini E, Moura MR, Mattoso LHC (2010) A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles, express. Polym Lett 4:509–515

    Article  CAS  Google Scholar 

  • Cullum BM, Griffin GD, Miller GH, Vo-Dinh T (2000) Intracellular measurements in mammary carcinoma cells using fiber-optic nanosensors. Anal Biochem 277(1):25–32

    Article  CAS  PubMed  Google Scholar 

  • Curri ML, Agostiano A, Leo G, Mallardi A, Cosma P, Della Monica M (2002) Development of a novel enzyme/semiconductor nanoparticles system for biosensor application. Mater Sci Eng C 22(2):449–452

    Article  Google Scholar 

  • Delfani M, Firouzabadi MB, Farrokhi N, Makarian H (2014) Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun Soil Sci Plant Anal 45:530–540

    Article  CAS  Google Scholar 

  • Dikshit A, Shukla SK, Mishra RK (2013) Exploring nanomaterials with PGPR in current agricultural scenario. Lap Lambert Academic Publishing, Berlin

    Google Scholar 

  • Duhana JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Article  Google Scholar 

  • Emadian SE (2017) Physiological responses of Loblolly Pine (Finustaeda L.) to Silicon and Water Stress, Texas A&M Univ, College Station, TX, pp. 27–37 (Ph.D. Thesis, Diss. Abst.AAC8815865)

    Google Scholar 

  • Farrell D, Hoover M, Chen H, Friedersdorf L (2013) Overview of resources and support for nanotechnology for sensors and sensors for nanotechnology: improving and protecting health, safety, and the environment. US National Nanotechnology Initiative, Arlington. Available from: http://nano.gov/sites/default/files/pub_resource/nsi_nanosensors_resources_for_web.pdf. Accessed 19 Apr 2014

    Google Scholar 

  • Fogel R, Limson J, Seshia AA (2016) Acoustic biosensors. Essays Biochem 60(1):101–110

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Aljaro C, Bangar MA, Baldrich E, Muñoz FJ, Mulchandani A (2010) Conducting polymer nanowire-based chemiresistive biosensor for the detection of bacterial spores. Biosens Bioelectron 25(10):2309–2312

    Article  PubMed  CAS  Google Scholar 

  • Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47:10645–10652

    CAS  PubMed  Google Scholar 

  • Gnanamangai JR, Balasubramanian M, Ponnusamy SR, Ponmurugan P (2012) Biosynthesis of gold and silver nanoparticles for stability and extended shelf-life of antagonistic activities. United States Patent Application Publication Pub. No.: US 2012/0108425A1. Pub. Date: May 3, 2012

    Google Scholar 

  • Gogoi R, Dureja P, Singh PK (2009) Nanoformulations a safer and effective option for agrochemicals. Indian Farm 59:7–12

    Google Scholar 

  • Goron TL, Raizada MN (2014) Current and future transgenic whole-cell biosensors for plant macro- and micronutrients. Crit Rev Plant Sci 33(5):392–413. https://doi.org/10.1080/07352689.2014.885733

    Article  CAS  Google Scholar 

  • Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519:1252–1257

    Article  CAS  Google Scholar 

  • Hasaneen MNA, Abdel-Aziz HMM, El-Bialy DMA, Omer AM (2014) Preparation of chitosan nanoparticles for loading with NPK fertilizer. Afr J Biotechnol 13:3158–3164

    Article  CAS  Google Scholar 

  • Hongshun Y (2018) Rapid detection of pesticide residue with nanoparticles. National University of Singapore. https://www.nanowerk.com/nanotechnology-news/newsid=49463.php

  • Jinghua G (2004) Synchrotron radiation, soft Xray spectroscopy and nano-materials. J Nanotech 1(1-2): 193–225.

    Google Scholar 

  • Hutasoit S, Suada IK, Susrama IGK (2013) Antifungal activity test extract some type of marine life link to Aspergillus flavus and Penicillium sp. E-J Trop Agroecotechnol 2:27–38

    Google Scholar 

  • Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235

    Article  CAS  PubMed  Google Scholar 

  • Kitherian S (2016) Nano and bio-nanoparticles for insect control. Res J Nanosci Nanotechnol 7:1–9

    Article  Google Scholar 

  • Kumar SV, Fareedullah M, Sudhakar Y, Venkateswarlu B, Kumar EA (2010) Current review on organophosphorus poisoning. Arch Appl Sci Res 2:199–215

    CAS  Google Scholar 

  • Liu T, Tang J, Jiang L (2004) The enhancement effect of gold nanoparticles as a surface modifier on DNA sensor sensitivity. Biochem Biophys Res Commun 313(1):3–7

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Feng Z, Zhang S, Zhang J, Xiao Q, Wang Y (2006) Preparation and testing of cementing nano-subnanocomposites of slower controlled release of fertilizers. Sci Agric Sin J 39:1598–1604

    CAS  Google Scholar 

  • Mahajan P, Dhoke SK, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J Nanotechnol 7:1–7

    Article  CAS  Google Scholar 

  • Masteri-Farahani M, Mahdavi S, Khanmohammadi H (2018) Chemically functionalized ZnS quantum dots as new optical nanosensor of herbicides. Mater Res Express 5(3):035055. https://doi.org/10.1088/2053-1591/aab7b0

    Article  CAS  Google Scholar 

  • Mishra V, Mishra RK, Dikshit A, Pandey AC (2014) In: Ahmad P (ed) Emerging technologies and management of crop stress tolerance, vol 1. © Elsevier Inc. https://doi.org/10.1016/B978-0-12-800876-8.00008-4

    Chapter  Google Scholar 

  • Nikoleli G, Nikolelis D, Siontorou CG, Karapetis S (2018) Lipid membrane nanosensors for environmental monitoring: the art, the opportunities, and the challenges. Sensors 18(1):284. https://doi.org/10.3390/s18010284

    Article  CAS  PubMed Central  Google Scholar 

  • Omanović-Mikličanina E, Maksimović M (2016) Nanosensors applications in agriculture and food industry. Bull Chem Technol Bosnia Herzegovina 47:59–70

    Google Scholar 

  • Ombodi A, Saigusa M (2000) Broadcast application versus band application of polyolefin coated fertilizer on green peppers grown on andisol. J Plant Nutr 23:1485–1493

    Article  CAS  Google Scholar 

  • Otles S, Yalcin B (2010) Nano-biosensors as new tool for detection of food quality and safety. Log Forum 6:67–70

    Google Scholar 

  • Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles – the next generation technology for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, Functional applications, vol 2. Springer, New Delhi, pp 289–300

    Chapter  Google Scholar 

  • Park S, Croteau P, Boering KA, Etheridge DM, Ferretti D, Fraser PJ, Kim KR, Krumme PB, Langenfelds RL, Ommen TDV, Steele LP, Trudinger CM (2012) Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940. Nat Geosci 5:261–265

    Article  CAS  Google Scholar 

  • Patolsky F, Zheng G, Lieber CM (2006) Nanowire-based biosensors. Anal Chem 78:4261–4269

    Article  Google Scholar 

  • Pérez-de-Luque, Rubiales AD (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65:540–545

    Article  PubMed  CAS  Google Scholar 

  • Pérez-López B, Merkoçi A (2011) Nanomaterials based biosensors for food analysis applications. Trends Food Sci Technol 22:625–639

    Article  CAS  Google Scholar 

  • Peteu SF, Oancea F, Sicuia OA, Constantinescu F, Dinu S (2010) Responsive polymers for crop protection. Polymer 2:229–251

    Article  CAS  Google Scholar 

  • Pope CN (1999) Organophosphorus pesticides: do they all have the same mechanism of toxicity? J Toxicol Environ Health B Crit Rev 2:161–181

    Article  CAS  PubMed  Google Scholar 

  • Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK, Akbar S, Palit P, Goswami A (2013) Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular biochemical, and biophysical study. Environ Sci Technol 47:13122–13131

    Article  CAS  PubMed  Google Scholar 

  • Puoci F, Lemma F, Spizzirri UG, Cirillo G, Curcio M, Picci N (2008) Polymer in agriculture: a review. Am J Agric Biol Sci 3:299–314

    Article  Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94:287–293

    Article  CAS  PubMed  Google Scholar 

  • Rajpoot K (2017) Recent advances and applications of biosensors in novel technology. Biosens J 6:145. https://doi.org/10.4172/2090-4967.1000145

    Article  Google Scholar 

  • Rouhani M, Samih MA, Kalantari S (2012a) Insecticide effect of silver and zinc nanoparticles against Aphis nerii Boyer De Fonscolombe (Hemiptera: Aphididae). Chilean J Agric Res 72:590–594

    Article  Google Scholar 

  • Rouhani M, Samih MA, Kalantari S (2012b) Insecticide effect of silver and zinc nanoparticles against Aphis nerii Boyer De Fonscolombe (Hemiptera: Aphididae). Chilean J Agric Res 72:590–594

    Article  Google Scholar 

  • Sagadevan S, Periasamy M (2014) Recent trends in nanobiosensors and their applications – a review. Rev Adv Mater Sci 36:62–69

    CAS  Google Scholar 

  • Santoso D, Lefroy RDB, Blair GJ (1995) Sulfur and phosphorus dynamics in an acid soil/crop system. Aust J Soil Res 33:113–124

    Article  CAS  Google Scholar 

  • Sekhon BS (2014) Nanotechnology in Agri-food production: an overview. Nanotechnol Sci Appl 7:31–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharmila RC (2010) Nutrient release pattern of nano-fertilizer formulations. Ph.D. Thesis, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

    Google Scholar 

  • Shaviv A (2000) Advances in controlled release of fertilizers. Adv Agron 71:1–49

    Google Scholar 

  • Shukla S, Kumar R, Mishra R, Pandey A, Pathak A, Zaidi MGH, Srivastava SK, Dikshit A (2015) Prediction and validation of gold nanoparticles (GNPs) on plant growth promoting rhizobacteria (PGPR): a step toward development of nano-biofertilizers. Nanotechnol Rev 4(5):439–448. https://doi.org/10.1515/ntrev-2015-0036. Retrieved 18 Dec. 2018

    Article  CAS  Google Scholar 

  • da Silva ACN, Deda DK, da Róz AL, Prado RA, Carvalho CC, Viviani V, Leite FL (2013) Nanobiosensors based on chemically modified AFM probes: a useful tool for metsulfuron-methyl detection, Sensors (Basel) 13:1477–1489

    Article  CAS  Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471

    Article  CAS  PubMed  Google Scholar 

  • Su X, Chew FT, Li SFY (2000) Design and application of piezoelectric quartz crystal-based immunoassay. Anal Sci 16(2):107–114

    Article  CAS  Google Scholar 

  • Subramanian KS, Tarafdar JC (2011) Prospects of nanotechnology in Indian farming. Indian J Agric Sci 81:887–893

    CAS  Google Scholar 

  • Sultan Y, Walsh R, Monreal CM, DeRosa MC (2009) Preparation of functional aptamer films using layer-by-layer self-assembly. Biom J 10:1149–1154

    CAS  Google Scholar 

  • Sun X, Zhai C, Wang XY (2013) A novel and highly sensitive acetyl-cholinesterase biosensor modified with hollow gold nanospheres. Bioprocess Biosyst Eng 36:273–283. https://doi.org/10.1007/s00449-012-0782-5

    Article  CAS  PubMed  Google Scholar 

  • Tan A, Lim C, Zou S, Ma Q, Gao Z (2016) Electrochemical nucleic acid biosensors: from fabrication to application. Anal Methods 26:2016

    Google Scholar 

  • Tanya P, Bazylinki DA, Mallapragada SK, Prozorov R (2013) Novel magnetic nanomaterials inspired by magnetotactic bacteria: topical review. Mater Sci Eng R 74. https://doi.org/10.1016/j.mser.2013.04.002

    Article  Google Scholar 

  • Tîlmaciu C, Morris MC (2015) Carbon nanotube biosensors. Front Chem 3:59. https://doi.org/10.3389/fchem.2015.00059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trenkel ME (1997) Controlled-release and stabilized fertilizers in agriculture. IFA, Paris, pp 234–318

    Google Scholar 

  • Valdés M, Valdés González A, García Calzón J, Díaz-García M (2009) Analytical nanotechnology for food analysis. Microchim Acta 166:1–19

    Article  CAS  Google Scholar 

  • Vandergheynst JS, Scher H, Hong-Yun G (2006) Design of formulations for improved biological control agent viability and sequestration during storage. Ind Biotechnol 2:213–219

    Article  CAS  Google Scholar 

  • Vandergheynst JS, Scher HB, Gou HY, Schultz DL (2007) Water in oil emulsions that improve the storage and delivery of the biolarvacide Lagenidium giganteum. Biol Control 52:207–229

    CAS  Google Scholar 

  • Vimala V, Clarke SK, Urvinder Kaur S (2016) Pesticides detection using acetylcholinesterase Nanobiosensor. Biosens J 5:133. https://doi.org/10.4172/20904967.1000133

    Article  Google Scholar 

  • Wang LJ, Wang YH, Li M, Fan MS, Zhang FS, Wu XM, Yang WS, Li TJ (2002) Synthesis of ordered biosilica materials. Chin J Chem 20:107–110

    Article  CAS  Google Scholar 

  • Wilson MA, Tran NH, Milev AS, Kannangara GSK, Volk H, Lu GQM (2008) Nanomaterials in soils. Geoderma 146:291–302

    Article  CAS  Google Scholar 

  • Wu L, Liu M (2008) Preparation and properties of chitosan coated NPK compound fertilizer with controlled release and water-retention. Carbohydr Polym 72:240–247

    Article  CAS  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Xiong S, Deng Y, Zhou Y, Gong D, Xu Y, Yang L, Chen H, Chen L, Song T, Luo A, Deng X, Zhang C, Jiang Z (2018) Current progress in biosensors for organophosphorus pesticides based on enzyme functionalized nanostructures: a review. Anal Methods 46:5468–5479

    Article  Google Scholar 

  • Xu X, Liu S, Ju H (2003) A novel hydrogen peroxide sensor via the direct electrochemistry of horseradish peroxidase immobilized on colloidal gold modified screen-printed electrode. Sensors 3(9):350–360

    Article  CAS  Google Scholar 

  • Yan JX, Guan HN, Yu J, Chi DF (2013) Acetylcholinesterase biosensor based on assembly of multiwall carbon nanotubes onto liposome bioreactors for detection of organophosphates pesticides. Pestic Biochem Physiol 105:197–202

    Article  CAS  Google Scholar 

  • Yang FL, Li SG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: tenebrionidae). J Agric Food Chem 57:10156–10162

    Article  CAS  PubMed  Google Scholar 

  • Yasur J, Rani PU (2015) Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere 124:92–102

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yang H, Zhou Z, Huang K, Yang S, Han G (2017) Recent advances on magnetic relaxation switching assay-based nanosensors. Bioconjug Chem 28(4):869–879. https://doi.org/10.1021/acs.bioconjchem.7b00059

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhole, A., Pitambara, M. (2019). Nanobiosensors: A Novel Approach in Precision Agriculture. In: Panpatte, D., Jhala, Y. (eds) Nanotechnology for Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-32-9370-0_13

Download citation

Publish with us

Policies and ethics