Skip to main content

Source, Processes, and Depositional Environments of Estuarine Mudflat Core Sediments, Central Western Coast of India

  • Chapter
  • First Online:
Geochemical Treasures and Petrogenetic Processes

Abstract

Sediment components, major and trace elements, and radionuclide (210Pb) of estuarine mudflat sediment cores collected from the Mandovi, Kalinadi, and Aghanashini estuaries, along the central western coast of India, were investigated to understand the source, processes, and depositional environments. The distribution and abundance of parameters studied reveal that they were controlled largely by the catchment area geology, geomorphology, and estuarine processes together with a contribution from anthropogenic activities. The variations in sediment proxies of mudflat cores reveal changing environmental conditions with time. The sedimentation rate in the study area varied in two phases, the relatively low rate in the lower part and the high rate in the upper part of the cores in Mandovi and Aghanashini estuaries. The increased deposition of finer sediments and metals in the recent past regulated by natural and enhanced anthropogenic input was responsible for higher sedimentation rates. In the Kalinadi estuary, however, sedimentation was uniform with a single phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Achyuthan H, Baker V (2002) Coastal response to changes in sea level since the last 4500 BP on the east coast of Tamil Nadu, India. Radiocarbon 44(1):137–144

    Article  Google Scholar 

  • Ackermann F (1980) A procedure for correcting the grain-size effect in heavy metal analysis of estuarine and coastal sediments. Environ Technol Lett 1:518–527

    Article  Google Scholar 

  • Alin SR, Cohen AS (2003) Lake level history of Lake Tanganyika, East Africa, for the past 2500 years based on ostracod-inferred water depth reconstruction. Palaeogeog Palaeoclim Palaeoecol 199:31–49

    Article  Google Scholar 

  • Allen JRL (1987) Reworking of muddy intertidal sediments in the Severn estuary, Southwestern U.K.—a preliminary survey. Sediment Geol 50(1):1–23. https://doi.org/10.1016/0037-0738(87)90026-1

  • Allen JRL, Rae JE, Zanin PE (1990) Metal speciation (Cu, Zn, Pb) and organic matter in an oxic salt marsh, Severn Estuary, Southwest Britain. Mar Pollut Bull 21:574–580

    Article  Google Scholar 

  • Ayyamperumal T, Jonathan MP, Srinivasalu S et al (2006) Assessment of acid leachable trace metals in sediment cores from River Uppanar, Cuddalore, Southeast coast of India. Environ Pollut 143:34–45

    Article  Google Scholar 

  • Borole DV, Sarin MM, Somayajulu BLK (1982) Composition of Narmada and Tapti estuarine particles and adjacent Arabian Sea sediments. Ind J Mar Sci 11:51–62

    Google Scholar 

  • Borrego J, Lopez-Gonzalez N, Carro B (2004) Geochemical signature as markers in Holocene sediments of the Tinto River estuary (Southwestern Spain). Est Coast Shelf Sci 61:631–641

    Article  Google Scholar 

  • Brockamp O, Zuther M (2004) Changes in clay mineral content of tidal flat sediments resulting from dike construction along the Lower Saxony coast of the North Sea, Germany. Sedimentology 51(3):591–600. https://doi.org/10.1111/j.1365-3091.2004.00637.x

    Article  Google Scholar 

  • Bruland KW, Bertine K, Koide M et al (1974) History of metal pollution in southern California coastal zone. Env Sci Technol 8(5):425–432

    Google Scholar 

  • Church TM, LordIII CJ, Somayajulu BLK (1981) Uranium, thorium and lead nuclides in a Delaware salt marsh sediment. Estua Coast Shelf Sci 13(3):267–275

    Article  Google Scholar 

  • Craft CB, Seneca ED, Broome SW (1993) Vertical accretion in microtidal regularly and irregularly flooded estuarine marshes. Estua Coast Shelf Sci 37(4):371–386

    Article  Google Scholar 

  • Cruz TC, Nayak GN, Tiwari AK et al (2020) Assessment of metal pollution and bioaccumulation of metals by edible bivalve Polymesoda erosa in the Zuari Estuary, west coast of India. Mar Pollu Bull 158:111415–111426. https://doi.org/10.1016/j.marpolbul.2020.111415

    Article  Google Scholar 

  • Cundy AB (1994) Radionuclide and geochemical studies of recent sediments from the Solent estuarine system. Ph.D. thesis. University of Southampton, Southampton

    Google Scholar 

  • Cundy AB, Croudace IW (1995) Sedimentary and geochemical variations in a salt marsh/mudflat environment from the mesotidal Hamble estuary, southern England. Mar Chem 51:115–132

    Article  Google Scholar 

  • D’Souza J, Nayak GN (1994) Mining: social and environmental impacts, In: Biodiversity in the Western Ghats—an information kit, vol 9(9), pp 1–6

    Google Scholar 

  • Deloffre J, Lafite R, Lesueur P et al (2005) Sedimentary processes on an intertidal mudflat in the upper macrotidal Seine estuary, France. Estua Coast Shelf Sci 64(4):710–720. https://doi.org/10.1016/j.ecss.2005.04.004

    Article  Google Scholar 

  • Dias HQ, Nayak GN (2016) Geochemistry and bioavailability of mudflats and mangrove sediments and their effect on bioaccumulation in selected organisms within a tropical (Zuari) estuary, Goa, India. Mar Pollu Bull 105:227–236

    Article  Google Scholar 

  • Dilli K (1986) Geochronology and geochemistry of a sediment core from the Bombay coast. Mahasagar Bull Natl Instit Oceanog 19:87–95

    Google Scholar 

  • Dyer KR, Christie MC, Wright EW (2000) The classification of intertidal mudflats. Cont Shelf Res 20(10):1039–1060. https://doi.org/10.1016/S0278-4343(00)00011-X

    Article  Google Scholar 

  • Fernandes L, Nayak GN (2009) Distribution of sediment parameters and depositional environment of mudflats of Mandovi estuary, Goa, India. J Coast Res 25(2):273–284

    Article  Google Scholar 

  • Fernandes L, Nayak GN (2010) Sources and factors controlling the distribution of metals in mudflat sedimentary environment, Ulhas Estuary, Mumbai. J Ind Assoc Sediment 29:71–83

    Google Scholar 

  • Fernandes L, Nayak GN (2012) Geochemical assessment in a creek environment: Mumbai, west coast of India. Environ Forensics 13(1):45–54

    Article  Google Scholar 

  • Fernandes L, Nayak GN (2014) Characterizing metal levels and their speciation in intertidal sediments along Mumbai coast, India. Mar Pollu Bull 79:371–378

    Article  Google Scholar 

  • Fernandes MC, Nayak GN (2016) Role of sediment size in the distribution and abundance of metals in a tropical (Sharavati) estuary, west coast of India. Arab J Geosci 9:1–13

    Article  Google Scholar 

  • Fernandes MC, Nayak GN, Pande A et al (2014) Depositional environment of mudflats and mangroves and bioavailability of selected metals within mudflats in a tropical estuary. Environ Earth Sci 72:1861–1875

    Article  Google Scholar 

  • Finney BP, Huh C (1989) History of metal pollution in the Southern California Bight: an update. Environ Sci Technol Lett 23:294–303

    Article  Google Scholar 

  • Flemming BW (2000) A revised textural classification of gravel-free muddy sediments on the basis of ternary diagrams. Cont Shelf Res 20:1125–1137

    Article  Google Scholar 

  • Flemming BW (2011) Geology, morphology and sedimentology of estuaries and coasts. In: Flemming BW, Hansom JD (eds) Treatise on estuaries and coasts, vol 3. Estuarine and coastal geology and morphology. Elsevier, Amsterdam, pp 7–38

    Chapter  Google Scholar 

  • Flynn WW (1968) The determination of low levels of 210Po in environmental materials. Anal Chim Acta 43:221–227

    Article  Google Scholar 

  • Folk RL (1974) Petrology of sedimentary rocks. Hemphills, Austin 177p

    Google Scholar 

  • Froelich PN, Klinkhammer GP, Bender ML et al (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic, suboxic diagenesis. Geochim Cosmochim Acta 50:1075–1090

    Article  Google Scholar 

  • Gaudette HE, Flight WR, Toner L et al (1974) An inexpensive titration method for the determination of organic car bon in recent sediments. J Sed Petro 44:249–253

    Google Scholar 

  • Grant SH, Middleton R (1990) An assessment of metal contamination of sediments in the Humber Estuary, U.K. Estua Coast Shelf Sci 31:71–85

    Article  Google Scholar 

  • Hameed A, Achyuthan H, Sekhar B (2006) Radiocarbon dates and Holocene sea-level change along the Cuddalore and Odinur Coast, Tamil Nadu. Curr Sci 91(3):362–367

    Google Scholar 

  • Hardie LA (1977) Sedimentation on the modern carbonate tidal flats of Northwest Andros Island, Bahamas. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Hardie LA, Shinn EA (1986) Carbonate depositional environments, modern and ancient-3, tidal flats. Colo Sch Mines Q 81(1):74p

    Google Scholar 

  • IPCC-Inter Governmental Panel on Climate Change (2007) The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change

    Google Scholar 

  • Janaki-Raman D, Jonathan MP, Srinivasalu S et al (2007) Trace metal enrichments in core sediments in Muthupet mangroves, SE coast of India: application of acid leachable technique. Environ Pollu 145(1):245–257. https://doi.org/10.1016/j.envpol.2006.03.012

    Article  Google Scholar 

  • Jarvis IJ, Jarvis K (1985) Rare earth element geochemistry of standard sediments: a study using inductively coupled plasma spectrometry. Chem Geol 53:335–344

    Article  Google Scholar 

  • Klein GD (1985) Intertidal flats and intertidal sand bodies. In: Davis RA (ed) Coastal sedimentary environments, 2nd edn. Springer, New York, pp 187–224

    Chapter  Google Scholar 

  • Koide M, Soutar A, Goldberg ED (1972) Marine sedimentology with 210Pb. Earth Planet Sci Lett 14:442–446

    Article  Google Scholar 

  • Krishnaswami SM, Lal D (1978) Radionuclide limnochronology. In: Lerman A (ed) Lakes: chemistry, geology, physics. Springer, New York, pp 153–173

    Chapter  Google Scholar 

  • Manjunatha BR, Shankar R (1992) A note on the factors controlling the sedimentation rate along the western continental shelf of India. Mar Geol 104:219–224

    Article  Google Scholar 

  • McCaffrey RJ, Thomson J (1980) A record of the accumulation of sediments and trace metals in a Connecticut, USA, salt marsh. Adv Geophys 22:165–236

    Article  Google Scholar 

  • Meglen RR (1992) Examining large databases: A chemometric approach using principal component analysis. Mar Chem 39:217–237

    Article  Google Scholar 

  • Nasnodkar MR, Nayak GN (2015) Processes and factors regulating the distribution of metals in mudflat sedimentary environment within tropical estuaries, India. Arab J Geosci 8:9389–9405

    Article  Google Scholar 

  • Nasnodkar MR, Nayak GN (2018) Source of sediment components and processes with time in middle regions of tropical estuaries along west coast of India. Ind J Geo-Mar Sci 47(01):114–126

    Google Scholar 

  • Nasnodkar MR, Nayak GN (2019) Assessment of metal enrichment and bioavailability in mangrove and mudflat sediments of the tropical (Zuari) estuary, west coast of India. Environ Sci Poll Res 26(2):24998–25011. https://doi.org/10.1007/s11356-019-05733-7

    Article  Google Scholar 

  • Nasnodkar MR, Nayak GN, Bhangle P et al (2021) Spring neap tides influence on bioavailability of metals and bioaccumulation in edible biota of the Zuari (tropical) Estuary. Environ Monitor Assess 193:167–195. https://doi.org/10.1007/s10661-021-08970-x

    Article  Google Scholar 

  • Nayak GN (1986) Studies on morphology, texture and mineralogy of the beaches along north Karnataka coast, around Karwar, India. Unpublished Ph.D. thesis. Karnatak University, Dharwad, India

    Google Scholar 

  • Nayak GN (1993) Studies on sediment flux of rivers, estuaries and adjoining coastal waters of Goa, West Coast of India. Technical report submitted to Department of Environment, Government of India, New Delhi, 69p

    Google Scholar 

  • Nayak GN (1998) Impact of mining on environment in Goa: a review. Environ Geochem 1(2):97–100

    Google Scholar 

  • Nayak GN (2002) Impact of mining on environment in Goa. International Publishers, India, 112p

    Google Scholar 

  • Nayak GN (2020) Processes and factors regulating the growth of an intertidal mudflat within a middle estuarine region of Zuari tropical estuary, west coast of India. Arab J Geosci 13(2):48–63. https://doi.org/10.1007/s12517-019-5037-1

    Article  Google Scholar 

  • Nayak GN, Noronha-D’Mello CA (2018) Estuarine Mudflat and Mangrove sedimentary environments along Central West Coast of India. SF J Environ Ear Sci 1–1013:1–6.

    Google Scholar 

  • Nayak GN, Noronha-D’Mello CA, Pande A et al (2016) Understanding sedimentary depositional environments through geochemical signatures of a Tropical (Vaghotan) estuary, West Coast of India. Environ Earth Sci 75:111–126. https://doi.org/10.1007/s12665-015-4842-4

  • Nayak GN, Volvoikar S, Hoskatta T (2018) Changing depositional environment and factors controlling the growth of mudflat in a tropical estuary, west coast of India. Environ Earth Sci 77(21):741–762. https://doi.org/10.1007/s12665-018-7923-3

    Article  Google Scholar 

  • Nigam R, Khare N, Borole DV (1991) Morphogroups of benthic foraminifera: proxy for Palaeomonsoonal precipitation. In: International symposium on oceanography of Indian Ocean. National Institute of Oceanography, Goa, 57p

    Google Scholar 

  • Nigam R, Khare N, Nair RR (1995) Foraminifera evidence for 77 year cycles of droughts in India and its possible modulation by the Gleissberg solar cycle. J Coast Res 11(4):1099–1107

    Google Scholar 

  • Noronha-D’Mello CA, Nayak GN (2016) Assessment of metal enrichment and their bioavailability in sediment and bioaccumulation by mangrove plant pneumatophores in a tropical (Zuari) estuary, west coast of India. Mar Poll Bull 110:221–230

    Google Scholar 

  • Paterson DM, Crawford RM, Little C (1990) Subaerial exposure and changes in the stability of intertidal estuarine sediments. Est Coast Shelf Sci 30:541–556

    Article  Google Scholar 

  • Pejrup M (1988) The triangular diagram for classification of estuarine sediments: a new approach. In: de Boer PL et al (eds) Tide influenced sedimentary environments and facies, pp 289–300

    Google Scholar 

  • Pye K, Dickson JAD, Schiavon N et al (1990) Formation of siderite-Mg-calcite-iron sulfide concretions in intertidal marsh and sandflat sediments, north Norfolk, England. Sedimentology 37:325–343

    Article  Google Scholar 

  • Ram A, Rokade MA, Borole DV et al (2003) Mercury in sediments of Ulhas estuary. Mar Pollu Bull 46:846–857

    Article  Google Scholar 

  • Reineck HE (1972) Tidal flats. In: Rigby JK, Hamblin WK (eds) Recognition of ancient sedimentary environments, Tulsa, Okla. Special Publication of Soc Econ Paleontol Mineral 16:146–159

    Google Scholar 

  • Reineck HE, Siefert W (1980) Faktoren dcr Schlickbildung im Sahlenbuegcr Watt und Neuwerkcr Watt. Die Kustc 35:26–51

    Google Scholar 

  • Rollinson HR (1992) Another look at the constant sum problem in geochemistry. Mineral Mag 56(385):469–475

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL (ed) Treatise on geochemistry. Elsevier, Amsterdam, pp 1–64

    Google Scholar 

  • Selvaraj K, Ram Mohan V, Srinivasalu S et al (2003) Distribution of nondetrital trace metals in sediment cores from Ennore Creek, Southwest Coast of India. J Geol Soc Ind 62:191–204

    Google Scholar 

  • Shi Z, Chen JY (1996) Morphodynamics and sediment dynamics on intertidal mudflats in China (1961–1994). Cont Shelf Res 16(15):1909–1926

    Article  Google Scholar 

  • Singh KT, Nayak GN (2009) Sedimentary and geochemical signatures of depositional environment of sediments in mudflats from a microtidal Kalinadi estuary, central west coast of India. J Coast Res 25(3):641–650

    Article  Google Scholar 

  • Singh KT, Nayak GN, Fernandes LL (2013) Geochemical evidence of anthropogenic impacts in sediment cores from mudflats of a tropical estuary, Central west coast of India. Soil Sed Contamin 22:256–272

    Article  Google Scholar 

  • Singh KT, Nayak GN, Fernandes LL et al (2014) Changing environmental conditions in recent past—reading through the study of geochemical characteristics, magnetic parameters and sedimentation rate of mudflats, central west coast of India. Palaeogeog Palaeoclim Palaeoecol 397:61–74

    Article  Google Scholar 

  • Spencer KL, Cundy AB, Croudace IW (2003) Heavy metal distribution and early diagenesis in salt marsh sediments from the Medway Estuary, Kent, UK. Est Coast Shelf Sci 57:43–54

    Article  Google Scholar 

  • Sugai SF (1990) Transport and sediment accumulation of 210Pb and 137Cs in two Southeast Alaskan fjords. Estuar 13:380–392. https://doi.org/10.2307/1351783

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford

    Google Scholar 

  • Tessier A, Rapin F, Carignan R (1985) Trace metals in oxic lakes sediments: possible absorption onto iron oxyhydroxides. Geochim Cosmochim Acta 49:183–194

    Article  Google Scholar 

  • Thomson J, Dyer FM, Croudace IW (2002) Records of radionuclide deposition in two salt marshes in the United Kingdom with contrasting redox and accumulation conditions. Geochim Cosmochim Acta 66:1011–1023

    Article  Google Scholar 

  • Turekian KK, Weedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Bull Geol Soc Am 72:175–192

    Article  Google Scholar 

  • Valette-Silver NJ (1993) The use of sediment cores to reconstruct historical trends in contamination of estuarine and coastal sediment. Estuar 16:577–588

    Article  Google Scholar 

  • Volvoikar SP, Nayak GN (2013) Evaluation of impact of industrial effluents on intertidal sediments of a creek. Int J Environ Sci Technol 10:941–954. https://doi.org/10.1007/s13762-013-0231-2

    Article  Google Scholar 

  • Volvoikar SP, Nayak GN (2014) Factors controlling the distribution of metals in intertidal mudflat sediments of Vaitarna estuary, North Maharashtra coast, India. Arab J Geosci 7:5221–5237

    Article  Google Scholar 

  • Volvoikar S, Nayak GN (2017) Change in depositional environment of Maharashtra Coast, Central West Coast of India. J Ind Assoc Sedimentol 34(1–2):93–101

    Google Scholar 

  • Wedepohl H (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1239

    Article  Google Scholar 

  • Williams TP, Bubb JM, Lester JN (1994) Metal accumulation within salt marsh environments: a review. Mar Pollu Bull 28:277–290

    Article  Google Scholar 

  • Yallop KM, De Winter B, Paterson DM et al (1994) Comparative structure, primary production and biogenic stabilization on cohesive and non-cohesive marine sediments inhabited by micro-phytobenthos. Estua Coast Shelf Sci 39:565–582

    Article  Google Scholar 

  • Zhang J, Liu CL (2002) Riverine composition and estuarine geochemistry of Particulate metals in China—weathering features, anthropogenic impact and chemical fluxes. Estua Coast Shelf Sci 54:1051–1070

    Article  Google Scholar 

  • Zwolsman JJG, Berger GW, Van Eck GTM (1993) Sediment accumulation rates, historical input, post-depositional mobility and retention of major elements and trace elements in salt marsh sediments of the Scheldt estuary, SW Netherlands. Mar Chem 44:73–94

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (GNN) thanks CSIR New Delhi for awarding the CSIR Emeritus Scientist position.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Nayak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nayak, G.N., Singh, K.T. (2022). Source, Processes, and Depositional Environments of Estuarine Mudflat Core Sediments, Central Western Coast of India. In: Armstrong-Altrin, J.S., Pandarinath, K., Verma, S.K. (eds) Geochemical Treasures and Petrogenetic Processes. Springer, Singapore. https://doi.org/10.1007/978-981-19-4782-7_6

Download citation

Publish with us

Policies and ethics