Skip to main content

Microbial-Assisted Systems for Lignin-Based Product Generation

  • Chapter
  • First Online:
Industrial Microbiology and Biotechnology

Abstract

Lignin is an abundant polyphenol found in the plant cell wall. In an enzyme-catalysed reaction, the monomeric monolignols p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol as phenylpropanoids form lignin. The composition of lignin differs across the plants with respect to the presence of monomers. It is difficult to degrade and act as a recalcitrant in the carbon cycle. Structural heterogeneity of lignin is a major hindrance in the bioconversion of specific by-products.

Basidiomycetes, white-rot fungi, brown-rot fungi, and certain aerobic bacteria can partially and totally degrade lignin with or without the use of mediators. Major enzymes involved in lignin degradation include manganese peroxidase, lignin peroxidase, versatile peroxidase, and laccase. The microbial-assisted systems with their enzymes can modify and biotransform lignin into a wide range of small molecular weight products. Lignin is an economical relatively non-toxic and renewable substrate for biotransformation processes. Lignin and its degradation products can be utilised for a variety of industrial applications including flavouring agents, polymers, biodegradable plastics, adhesives, fillers foam, insulators, etc. They have proven to have therapeutic benefits such as anticancer, anti-inflammatory, antioxidants, antibiotics, and antimicrobials agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

API:

Atmospheric pressure ionisation

DMSO:

Dimethyl sulphoxide

DyP:

Dye-decolourising peroxidase

FTIR:

Fourier transform infrared spectroscopy

FTMS:

Full scan mass spectrometry

HBT:

1-hydroxybenzotriazole

HRMS:

High-resolution mass spectrometry

Lac:

Laccase

LiP:

Lignin peroxidase

LLE:

Liquid-liquid extraction

MALDI:

Matrix-assisted laser desorption/ionisation

MnP:

Manganese peroxidase

NMR:

Nuclear magnetic resonance

PA:

Polyamide

PE:

Polyester

PLA:

Polylactic acid

PO:

Polyol

PU:

Polyurethane

SEC:

Size exclusion chromatography

VP:

Versatile peroxidase

References

  • Abdel-Hamid AM, Solbiati JO, Cann IK (2013) Insights into lignin degradation and its potential industrial applications. Adv Appl Microbiol 82:1–28

    Article  CAS  PubMed  Google Scholar 

  • Abd-elsalam HE, El-hanafy AA (2009) Lignin biodegradation with ligninolytic bacterial strain and comparison of Bacillus subtilis and Bacillus sp. isolated from Egyptian soil. Am Eur J Agric Environ Sci 5(1):39–44

    CAS  Google Scholar 

  • Agrawal K, Verma P (2020) Production optimization of yellow laccase from Stropharia sp. ITCC 8422 and enzyme-mediated depolymerization and hydrolysis of lignocellulosic biomass for biorefinery application. In: Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-00869-w

    Chapter  Google Scholar 

  • Agrawal K, Bhardwaj N, Kumar B, Chaturvedi V, Verma P (2019) Process optimization, purification and characterization of alkaline stable white laccase from Myrothecium verrucaria ITCC-8447 and its application in delignification of agroresidues. Int J Biol Macromol 125:1042–1055

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Taylor CR, Pink D, Burton K, Eastwood D, Bending GD, Bugg TD (2010) Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders. Mol Biosyst 6(5):815–821

    Article  CAS  PubMed  Google Scholar 

  • Albishi T, Mikhael A, Shahidi F, Fridgen TD, Delmas M, Banoub J (2019) Top-down lignomic matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry analysis of lignin oligomers extracted from date palm wood. Rapid Commun Mass Spectrom 33:539–560. https://doi.org/10.1002/rcm.8368

    Article  CAS  PubMed  Google Scholar 

  • Antai SP, Crawford DL (1981) Degradation of softwood, hardwood, and grass lignocelluloses by two Streptomyces strains. Appl Environ Microbiol 42:378–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arun A, Eyini M (2011) Comparative studies on lignin and polycyclic aromatic hydrocarbons degradation by basidiomycetes fungi. Bioresour Technol 102:8063–8070. https://doi.org/10.1016/j.biortech.2011.05.077

    Article  CAS  PubMed  Google Scholar 

  • Asina FNU, Brzonova I, Kozliak E, Kubatova A, Ji Y (2017) Microbial treatment of industrial lignin: Successes, problems and challenges. Renew Sustain Energy Rev 77:1179–1205

    Article  CAS  Google Scholar 

  • Avram A, Sengupta A, Pfromm PH, Zorn H, Lorenz P, Schwarz T et al (2018) Novel DyP from the basidiomycete Pleurotus sapidus: substrate screening and kinetics. Biocatalysis 4:1–13

    Article  Google Scholar 

  • Bajwa D, Pourhashem G, Ullah A, Bajwa S (2019) A concise review of current lignin production, applications, products and their environmental impact. Ind Crop Prod 139:111526

    Article  CAS  Google Scholar 

  • Baratto MC, Juarez-Moreno K, Pogni R, Basosi R, Vazquez-Duhalt R (2015) EPR and LCMS studies on the mechanism of industrial dye decolorization by versatile peroxidase from Bjerkandera adusta. Environ Sci Pollut Res 22:8683–8692

    Article  CAS  Google Scholar 

  • Barrow MP, Witt M, Headley JV, Peru KM (2010) Athabasca oil sands process water: characterization by atmospheric pressure photoionization and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 82:3727–3735. https://doi.org/10.1021/ac100103y

    Article  CAS  PubMed  Google Scholar 

  • Becker J, Kuhl M (2018) Metabolic engineering of Corynebacterium glutamicum for the production of cis, cis-muconic acid from lignin. Microb Cell Factories 17:115

    Article  Google Scholar 

  • Beckham G, Johnson C, Karp E, Salvachua D, Vardon D (2016) Opportunities and challenges in biological lignin valorization. Curr Opin Biotechnol 42:40–53

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj N, Verma P (2021) Xylanases: a helping module for the enzyme biorefinery platform. In: Bioenergy research: revisiting latest development, vol 7. Springer, Berlin, pp 161–179

    Chapter  Google Scholar 

  • Bhardwaj N, Kumar B, Agrawal K, Verma P (2020) Bioconversion of rice straw by synergistic effect of in-house produced ligno-hemicellulolytic enzymes for enhanced bioethanol production. Bioresour Technol Rep 10:100352. https://doi.org/10.1016/j.biteb.2019.100352

    Article  Google Scholar 

  • Bhardwaj N, Agrawal K, Kumar B, Verma P (2021) Role of enzymes in deconstruction of waste biomass for sustainable generation of value-added products. In: Thatoi H, Mohapatra S, Das SK (eds) Bioprospecting of enzymes in industry, healthcare and sustainable environment. Springer, Singapore, pp 219–250. https://doi.org/10.1007/978-981-33-4195-1_11

    Chapter  Google Scholar 

  • Blackburn JWT, Kew W, Graham MC, Uhrín D (2017) Laser desorption/ionization coupled to FTICR mass spectrometry for studies of natural organic matter. Anal Chem 89:4382–4386. https://doi.org/10.1021/acs.analchem.6b04817

    Article  CAS  PubMed  Google Scholar 

  • Bourbonnais R, Paice MG (1999) Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett 267:99–102

    Article  Google Scholar 

  • Bowman AS, Asare SO, Lynn BC (2019) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis for characterization of lignin oligomers using cationization techniques and 2,5-dihydroxyacetophenone (DHAP) matrix. Rapid Commun Mass Spectrom 33:811–819. https://doi.org/10.1002/rcm.8406

    Article  CAS  PubMed  Google Scholar 

  • Bozell JJ, O’Lenick CJ, Warwick S (2011) Biomass fractionation for the biorefinery: heteronuclear multiple quantum coherence-nuclear magnetic resonance investigation of lignin isolated from solvent fractionation of switch grass. J Agric Food Chem 59:9232–9242. https://doi.org/10.1021/jf201850b

    Article  CAS  PubMed  Google Scholar 

  • Brissos VN, Tavares D, Sousa AC, Robalo MP, Martins LO (2017) Engineering a bacterial DyP-type peroxidase for enhanced oxidation of lignin-related phenolics at alkaline pH. ACS Catal 7:3454–3465

    Article  CAS  Google Scholar 

  • Brown ME, Barros T, Chang MC (2012) Identification and characterization of a multifunctional dye peroxidase from a lignin-reactive bacterium. ACS Chem Biol 7:2074–2081

    Article  CAS  PubMed  Google Scholar 

  • Brunow G (2010) Lignin chemistry and its role in biomass conversion. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries—industrial processes and products. Wiley-VCH Verlag GmbH, KGaA, Weinheim, pp 151–163

    Google Scholar 

  • Bugg TD, Ahmad M, Hardiman EM, Singh R (2011) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22(3):394–400

    Article  CAS  PubMed  Google Scholar 

  • Bugg T, Williamson J, Rashid G (2020) Bacterial enzymes for lignin depolymerization: new biocatalysts for generation of renewable chemicals from biomass. Curr Opin Chem Biol 55:26–33

    Article  CAS  PubMed  Google Scholar 

  • Cai CM, Zhang T, Kumar R, Wyman CE (2013) THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass. Green Chem 15:3140–3145

    Article  CAS  Google Scholar 

  • Camarero S, Sarkar S, Ruiz-Dueñas FJ, Martinez MJ, Martinez AT (1999) Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J Biol Chem 274:10324–10330

    Article  CAS  PubMed  Google Scholar 

  • Camarero S, Garcıa O, Vidal T, Colom J, del Rıo JC, Gutiérrez A et al (2004) Efficient bleaching of non-wood high-quality paper pulp using laccase-mediator system. Enzyme Microb Technol 35:113–120

    Article  CAS  Google Scholar 

  • Cao Y, Chen SS, Zhang S, Sik Ok Y, Matsagar BM, Wu KCW, Tsang DCW (2019) Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefinery. Bioresour Technol 291:121878. https://doi.org/10.1016/j.biortech.2019.121878

    Article  CAS  PubMed  Google Scholar 

  • Capanema EA, Balakshin MY, Kadla JF (2005) Quantitative characterization of a hardwood milled wood lignin by nuclear magnetic resonance spectroscopy. J Agric Food Chem 53:9639–9649

    Article  CAS  PubMed  Google Scholar 

  • Chai L, Chen Y, Tang C, Yang Z, Zheng Y, Shi Y (2014) Depolymerization and decolorization of kraft lignin by bacterium Comamonas sp. B-9. Appl Microbiol Biotechnol 98:1907–1912. https://doi.org/10.1007/s00253-013-5166-5

    Article  CAS  PubMed  Google Scholar 

  • Chandra R, Bharagava RN (2013) Bacterial degradation of synthetic and kraft lignin by axenic and mixed culture and their metabolic products. J Environ Biol 34:991–999

    CAS  PubMed  Google Scholar 

  • Chandra R, Raj A, Purohit HJ, Kapley A (2007) Characterisation and optimisation of three potential aerobic bacterial strains for kraft lignin degradation from pulp paper waste. Chemosphere 67:839–846. https://doi.org/10.1016/j.chemosphere.2006.10.011

    Article  CAS  PubMed  Google Scholar 

  • Chang AJ, Fan J, Wen X (2012) Screening of fungi capable of highly selective degradation of lignin in rice straw. Int Biodeter Biodegr 72:26–30. https://doi.org/10.1016/j.ibiod.2012.04.013

    Article  CAS  Google Scholar 

  • Chang Y-C, Choi D, Takamizawa K, Kikuchi S (2014) Isolation of Bacillus sp. strains capable of decomposing alkali lignin and their application in combination with lactic acid bacteria for enhancing cellulase performance. Bioresour Technol 152:429–436. https://doi.org/10.1016/j.biortech.2013.11.032

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Wan CX (2017) Biological valorization strategies for converting lignin into fuels and chemicals. Renew Sustain Energy Rev 73:610–621

    Article  CAS  Google Scholar 

  • Chen Q, Marshall MN, Geib SM, Tien M, Richard TL (2012) Effects of laccase on lignin depolymerization and enzymatic hydrolysis of ensiled corn stover. Bioresour Technol 117:186–192

    Article  CAS  PubMed  Google Scholar 

  • Cho Y, Na J-G, Nho N-S, Kim S, Kim S (2012) Application of saturates, aromatics, resins, and asphaltenes crude oil fractionation for detailed chemical characterization of heavy crude oils by Fourier transform ion cyclotron resonance mass spectrometry equipped with atmospheric pressure photoionization. Energy Fuel 26:2558–2565. https://doi.org/10.1021/ef201312m

    Article  CAS  Google Scholar 

  • Choi W, Lee E (1997) Enhanced production of cis,cis-muconate in a cell-recycle bioreactor. J Ferment Bioeng 84(1):70–76. https://www.sciencedirect.com/science/journal/0922338X/84/1

    Article  CAS  Google Scholar 

  • Chubukov V, Mukhopadhyay A, Petzold CJ, Keasling JD, Martín HG (2016) Synthetic and systems biology for microbial production of commodity chemicals. NPJ Syst Biol Appl 2:16009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dabral S, Engel J, Mottweiler J, Spoehrle SSM, Lahive CW, Bolm C (2018) Mechanistic studies of base-catalysed lignin depolymerisation in dimethyl carbonate. Green Chem 20:170–182

    Article  CAS  Google Scholar 

  • Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena RS et al (2017) Enzymatic degradation of lignin in soil: a review. Sustainability 9:1163

    Article  Google Scholar 

  • Davis K, Rover M, Robert C, Brown R, Bai X, Wen Z, Jarboe L (2016) Recovery and utilization of lignin monomers as part of the biorefinery approach. Energies 9:808. https://doi.org/10.3390/en9100808

    Article  CAS  Google Scholar 

  • de Gonzalo G, Colpa DI, Habib MH, Fraaije MW (2016) Bacterial enzymes involved in lignin degradation. J Biotechnol 236:110–119

    Article  PubMed  Google Scholar 

  • Demirbas A (2007) Progress and recent trends in biofuels. Progr Energy Combust Sci 33:1–18. https://doi.org/10.1016/j.pecs.2006.06.001

    Article  CAS  Google Scholar 

  • Deschamps AM, Mahoudeau G, Lebeault JM (1980) Fast degradation of kraft lignin by bacteria. Eur J Appl Microbiol Biotechnol 9:45–51

    Article  CAS  Google Scholar 

  • Duan J, Huo X, Du WJ, Liang JD, Wang DQ, Yang SC (2016) Biodegradation of kraft lignin by a newly isolated anaerobic bacterial strain, Acetoanaerobium sp. WJDLY2. Lett Appl Microbiol 62:55–62. https://doi.org/10.1111/lam.12508

    Article  CAS  PubMed  Google Scholar 

  • Duval A, Lawoko M (2014) A review on lignin-based polymeric, micro- and nano-structured materials. React Funct Polym 85(SI):78–96

    Article  CAS  Google Scholar 

  • Dwivedi UN, Singh P, Pandey VP, Kumar A (2011) Structure–function relationship among bacterial, fungal and plant laccases. J Mol Catal B: Enzym 68:117–128

    Article  CAS  Google Scholar 

  • Evans L, Littlewolf A, Lopez M, Miller J (1999) Batch microreactor studies of base catalyzed lignin depolymerization in alcohol solvents. Sandia National Laboratories, Albuquerque, NM and Livermore, CA

    Google Scholar 

  • Fawal N, Li Q, Savelli B, Brette M, Passaia G, Fabre M et al (2012) PeroxiBase: a database for large-scale evolutionary analysis of peroxidases. Nucleic Acids Res 41:D441–D444

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Fernandez M, Sanroman MA, Moldes D (2013) Recent developments and applications of immobilized laccase. Biotechnol Adv 31:1808–1825

    Article  CAS  PubMed  Google Scholar 

  • Ferraz A, Córdova AM, Machuca A (2003) Wood biodegradation and enzyme production by Ceriporiopsis subvermispora during solid-state fermentation of Eucalyptus grandis. Enzyme Microb Technol 32:59–65. https://doi.org/10.1016/S0141-0229(02)00267-3

    Article  CAS  Google Scholar 

  • Figueiredo P, Lintinen K, Hirvonen JT, Kostiainen MA, Santos HA (2018) Properties and chemical modifications of lignin: towards lignin-based nanomaterials for biomedical applications. Prog Mater Sci 93:233–269. https://doi.org/10.1016/j.pmatsci.2017.12.001

    Article  CAS  Google Scholar 

  • Fox RH, Myers RJK, Vallis I (1990) The nitrogen mineralization rate of legume residues in soil as influenced by their polyphenol, lignin, and nitrogen contents. Plant and Soil 129:251–259. https://doi.org/10.1007/BF00032420

    Article  CAS  Google Scholar 

  • Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds-from one strategy to four. Nat Rev Microbiol 9:803–816

    Article  CAS  PubMed  Google Scholar 

  • Gellerstedt G, Henriksson G, Belgacem MN, Gandini A (eds) (2008) Monomers polymers and composites renewable resources. Elsevier, Amsterdam, pp 201–224

    Google Scholar 

  • Gianfreda L, Xu F, Bollag J-M (1999) Laccases: a useful group of oxidoreductive enzymes. Biorem J 3:1–26

    Article  CAS  Google Scholar 

  • Gil-Chávez J, Gurikov P, Hu X, Meyer R, Reynolds W, Smirnova I (2019) Application of novel and technical lignins in food and pharmaceutical industries: structure-function relationship and current challenges. In: Biomass conversion and biorefinery, pp 1–17

    Google Scholar 

  • Giroux H, Vidal P, Bouchard J, Lamy F (1988) Degradation of Kraft indulin lignin by Streptomyces viridosporus and Streptomyces badius. Appl Environ Microbiol 54(12):3064–3070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graf N, Altenbuchner J (2014) Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid. Appl Microbiol Biotechnol 98:137–149. https://doi.org/10.1007/s00253-013-5303-1

    Article  CAS  PubMed  Google Scholar 

  • Graglia M, Kanna N, Esposito D (2015) Lignin refinery: towards the preparation of renewable aromatic building blocks. Chem Bio Eng Rev 2:377–392

    Google Scholar 

  • Grass G, Rensing C (2001) CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochem Biophys Res Commun 286:902–908. https://doi.org/10.1006/bbrc.2001.5474

    Article  CAS  PubMed  Google Scholar 

  • Guillén F, Martínez MJ, Gutiérrez A, Del Rio J (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204

    PubMed  Google Scholar 

  • Gutierrez A, Rodriguez I, del Rio JC (2006) Chemical characterization of lignin and lipid fractions in industrial hemp bast fibers used for manufacturing high-quality paper pulps. J Agric Food Chem 54:2138–2144

    Article  CAS  PubMed  Google Scholar 

  • Hammel KE, Jensen KA Jr, Mozuch MD, Landucci LL, Tien M, Pease EA (1993) Ligninolysis by a purified lignin peroxidase. J Biol Chem 268:12274–12281

    Article  CAS  PubMed  Google Scholar 

  • Hanson SK, Baker RT, Gordon JC, Scott BL, Thorn DL (2010) Aerobic oxidation of lignin models using a base metal vanadium catalyst. Inorg Chem 49:5611–5618. https://doi.org/10.1021/ic100528n

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa I, Inoue Y, Muranaka Y, Yasukawa T, Mae K (2011) Selective production of organic acids and depolymerization of lignin by hydrothermal oxidation with diluted hydrogen peroxide. Energy Fuel 25:791–796. https://doi.org/10.1021/ef101477d

    Article  CAS  Google Scholar 

  • Haselwandter K, Bobleter O, Read DJ (1990) Degradation of 14C-labelled lignin and dehydropolymer of coniferyl alcohol by ericoid and ectomycorrhizal fungi. Arch Microbiol 153:352–354

    Article  CAS  Google Scholar 

  • He Y, Li X, Ben H, Xue X, Yang B (2017) lipid production from dilute alkali corn stover lignin by Rhodococcus strains. ACS Sustain Chem Eng 5(3):2302–2311

    Article  CAS  Google Scholar 

  • Headley JV, Peru KM, Barrow MP (2014) Mass spectrometric characterization of naphthenic acids in environmental samples: a review. Mass Spectrom Rev 28:121–134. https://doi.org/10.1002/mas.20185

    Article  CAS  Google Scholar 

  • Headley JV, Peru KM, Barrow MP (2015) Advances in mass spectrometric characterization of naphthenic acids fraction compounds in oil sands environmental samples and crude oil—a review. Mass Spectrom Rev 35:311–328. https://doi.org/10.1002/mas.21472

    Article  CAS  PubMed  Google Scholar 

  • Hertkorn N, Frommberger M, Witt M, Koch BP, Schmitt-Kopplin P, Perdue EM (2008) Natural organic matter and the event horizon of mass spectrometry. Anal Chem 80:8908–8919. https://doi.org/10.1021/ac800464g

    Article  CAS  PubMed  Google Scholar 

  • Hettiaratchi JP, Jayasinghe PA, Bartholameuz EM, Kumar S (2014) Waste degradation and gas production with enzymatic enhancement in anaerobic and aerobic landfill bioreactors. Bioresour Technol 159:433–436

    Article  CAS  PubMed  Google Scholar 

  • Hilgers RJ, Vincken J-P, Gruppen H, Kabel MA (2018) Laccase/mediator systems: their reactivity towards phenolic lignin structures. ACS Sustain Chem Eng 6:2037–2046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofrichter M (2002) Lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30:454–466

    Article  CAS  Google Scholar 

  • Hughey CA, Rodgers RP, Marshall AG (2000) Resolution of 11000 compositionally distinct components in a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of crude oil. Anal Chem 74:4145–4149. https://doi.org/10.1021/ac020146b

    Article  CAS  Google Scholar 

  • Hui W, Jiajia L, Yucai L, Peng G, Xiaofen W, Kazuhiro M, Cui Z (2013) Bioconversion of un-pretreated lignocellulosic materials by a microbial consortium XDC-2. Bioresour Technol 136:481–487. https://doi.org/10.1016/j.biortech.2013.03.015

    Article  CAS  PubMed  Google Scholar 

  • Jarrell TM, Marcum CL, Sheng H, Owen BC, O’Lenick CJ, Maraun H et al (2014) Characterization of organosolv switchgrass lignin by using high performance liquid chromatography/high resolution tandem mass spectrometry using hydroxide-doped negative-ion mode electrospray ionization. Green Chem 16:2713–2727. https://doi.org/10.1039/C3GC42355G

    Article  CAS  Google Scholar 

  • Jasiukaitytė E, Kunaver M, Crestini C (2010) Lignin behaviour during wood liquefaction—characterization by quantitative 31P, 13C NMR and size-exclusion chromatography. Catal Today 156:23–30

    Article  Google Scholar 

  • Jayasinghe PA, Hettiaratchi JP, Mehrotra AK, Kumar S (2011) Effect of enzyme additions on methane production and lignin degradation of landfilled sample of municipal solid waste. Bioresour Technol 102:4633–4637

    Article  CAS  PubMed  Google Scholar 

  • Jin R (2012) Identification and characterization of a fungal strain with lignin and cellulose hydrolysis activities. Afr J Microbiol Res 6:6545–6550. https://doi.org/10.5897/AJMR12.476

    Article  CAS  Google Scholar 

  • Jin Y, Ruan X, Cheng X, Lu Q (2011) Liquefaction of lignin by polyethyleneglycol and glycerol. Bioresour Technol 102:3581–3583

    Article  CAS  PubMed  Google Scholar 

  • Ke J, Singh D, Yang X, Chen S (2011) Thermal characterization of softwood lignin modification by termite Coptotermes formosanus (Shiraki). Biomass Bioenergy 35:3617–3626

    Article  CAS  Google Scholar 

  • Kew W, Mackay CL, Goodall I, Clarke DJ, Uhrín D (2018) Complementary ionization techniques for the analysis of scotch whisky by high resolution mass spectrometry. Anal Chem 90:11265–11272. https://doi.org/10.1021/acs.analchem.8b01446

    Article  CAS  PubMed  Google Scholar 

  • Kirk TK, Cullen D (1998) Enzymology and molecular genetics of wood degradation by white-rot fungi. In: Environmentally friendly technologies for the pulp and paper industry. Wiley, New York, pp 273–307

    Google Scholar 

  • Knežević A, Milovanović I, Stajić M, Lončar N, Brčeski I, Vukojević J et al (2013) Lignin degradation by selected fungal species. Bioresour Technol 138:117–123. https://doi.org/10.1016/j.biortech.2013.03.182

    Article  CAS  PubMed  Google Scholar 

  • Knill CJ, Kennedy JF (2003) Degradation of cellulose under alkaline conditions. Carbohydr Polym 51:281–300

    Article  CAS  Google Scholar 

  • Kong W, Fu X, Wang L, Alhujaily A, Zhang J, Ma F et al (2017) A novel and efficient fungal delignification strategy based on versatile peroxidase for lignocellulose bioconversion. Biotechnol Biofuels 10:218

    Article  PubMed  PubMed Central  Google Scholar 

  • Kosyakov DS, Ul’yanovskii NV, Sorokina EA, Gorbova NS (2014) Optimization of sample preparation conditions in the study of lignin by MALDI mass spectrometry. J Anal Chem 69:1344–1350. https://doi.org/10.1134/S1061934814140056

    Article  CAS  Google Scholar 

  • Kosyakov DS, Anikeenko EA, Ul’yanovskii NV, Khoroshev OY, Shavrina IS, Gorbova NS (2018) Ionic liquid matrices for MALDI mass spectrometry of lignin. Anal Bioanal Chem 410:7429–7439. https://doi.org/10.1007/s00216-018-1353-7

    Article  CAS  PubMed  Google Scholar 

  • Kuatsjah E, Chen HM, Withers SG, Eltis LD (2017) Characterization of an extradiol dioxygenase involved in the catabolism of lignin-derived biphenyl. FEBS Lett 591:1001–1009

    Article  CAS  PubMed  Google Scholar 

  • Kumar B, Verma P (2020a) Enzyme mediated multi-product process: a concept of bio-based refinery. Ind Crop Prod 154(2020):112607

    Article  CAS  Google Scholar 

  • Kumar B, Verma P (2020b) Application of hydrolytic enzymes in biorefinery and its future prospects. In: Microbial strategies for techno-economic biofuel production. Springer, Berlin, pp 59–83

    Chapter  Google Scholar 

  • Kumar B, Verma P (2021a) Biomass-based biorefineries: An important architype towards a circular economy. Fuel 288:119622

    Article  CAS  Google Scholar 

  • Kumar B, Verma P (2021b) Techno-economic assessment of biomass-based integrated biorefinery for energy and value-added product. In: Biorefineries: a step towards renewable and clean energy. Springer, Berlin, pp 581–616

    Google Scholar 

  • Kumar M, Singhal A, Verma PK, Thakur IS (2017) Production and characterization of polyhydroxyalkanoate from lignin derivatives by Pandoraea sp. ISTKB. ACS Omega 2(12):9156–9163. https://doi.org/10.1021/acsomega.7b01615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar B, Bhardwaj N, Agrawal K, Chaturvedi V, Verma P (2020a) Current perspective on pretreatment technologies using lignocellulosic biomass: an emerging biorefinery concept. Fuel Process Technol 199:106244. https://doi.org/10.1016/j.fuproc.2019.106244

    Article  CAS  Google Scholar 

  • Kumar B, Bhardwaj N, Agrawal K, Verma P (2020b) Bioethanol production: generation-based comparative status measurements. In: Biofuel production technologies: critical analysis for sustainability. Springer, Singapore, pp 155–201

    Chapter  Google Scholar 

  • Kumari M, Yadav RS, Yadav KD (2002) Secretion of lignin peroxidase by Penicillium citrinum, Fusarium oxysporum and Aspergillus terreus. Indian J Exp Biol 40(7):802–806

    CAS  PubMed  Google Scholar 

  • Lange H, Decina S, Crestini C (2013) Oxidative upgrade of lignin–recent routes reviewed. Eur Polym J 49:1151–1173. https://doi.org/10.1016/j.eurpolymj.2013.03.002

    Article  CAS  Google Scholar 

  • Lavoie JM, Bare W, Bilodeau M (2011) Depolymerization of steam-treated lignin for the production of green chemicals. Bioresour Technol 102:4917–4920

    Article  CAS  PubMed  Google Scholar 

  • Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtaś Wasilewska M, Cho N-S, Hofrichter M, Rogalski J (1999) Biodegradation of lignin by white rot fungi. Fungal Genet Biol 27:175–185

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zheng Y (2019) Biotransformation of lignin: mechanisms, applications and future work. Biotechnol Prog 36:e2922. https://doi.org/10.1002/btpr.2922

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Zhang J, Qin L, Ge Y (2018) Enhancing antioxidant performance of lignin by enzymatic treatment with laccase. ACS Sustain Chem Eng 6:2591–2595

    Article  CAS  Google Scholar 

  • Liers C, Aranda E, Strittmatter E, Piontek K, Plattner DA, Zorn H et al (2014) Phenol oxidation by DyP-type peroxidases in comparison to fungal and plant peroxidases. J Mol Catal B: Enzym 103:41–46

    Article  CAS  Google Scholar 

  • Lim J, Sana B, Krishnan R, Seayad J, Ghadessy FJ, Jana S et al (2018) Laccase-catalyzed synthesis of low-molecular-weight lignin-like oligomers and their application as UV-blocking materials. Chemistry 13:284–291

    CAS  Google Scholar 

  • Linger JG, Vardon DR, Guarnieri MT, Karp EM, Hunsinger GB, Franden MA et al (2014) Lignin valorization through integrated biological funneling and chemical catalysis. Proc Natl Acad Sci USA 111(33):12013–12018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu ZH, Qin L, Jin MJ, Pang F, Li BZ, Kang Y et al (2013) Evaluation of storage methods for the conversion of corn stover biomass to sugars based on steam explosion pretreatment. Bioresour Technol 132:5–15

    Article  CAS  PubMed  Google Scholar 

  • Lupoi JS, Singh S, Parthasarathi R, Simmons BA, Henry RJ (2015) Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renew Sustain Energy Rev 49:871–906

    Article  CAS  Google Scholar 

  • Madkour MH, Heinrich D, Alghamdi MA, Shabbaj II, Steinbuchel A (2013) PHA recovery from biomass. Biomacromology 14(9):2963–2972

    Article  CAS  Google Scholar 

  • Mahmood N, Yuan Z, Schmidt J, Xu CC (2015) Hydrolytic depolymerization of hydrolysis lignin: effects of catalysts and solvents. Bioresour Technol 190:416–419

    Article  CAS  PubMed  Google Scholar 

  • Majumdar S, Lukk T, Solbiati JO, Bauer S, Nair SK, Cronan JE, Gerlt JA (2014) Roles of small laccases from Streptomyces in lignin degradation. Biochemistry 53:4047–4058

    Article  CAS  PubMed  Google Scholar 

  • Manangeeswaran M, Ramalingam VV, Kumar K, Mohan N (2007) Degradation of indulin, a kraft pine lignin, by Serratia marcescens. J Environ Sci Health B 42:321–327. https://doi.org/10.1080/03601230701229320

    Article  CAS  PubMed  Google Scholar 

  • Marinovic M, Nousiainen P, Dilokpimol A, Kontro J, Moore R, Sipila J, de Vries RP, Makela MR, Hilden K (2018) Selective cleavage of lignin beta-O-4 aryl ether bond by beta-etherase of the white-rot fungus Dichomitus squalens. ACS Sustain Chem Eng 6(3):2878–2882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martrinez A et al (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int J Microbiol 8(3):195–204. PMID:16200498

    Google Scholar 

  • Mizuno S, Yoshikawa N, Seki M, Mikawa T, Imada Y (1988) Microbial production of cis, cis-muconic acid from benzoic acid. Appl Microbial Biotechnol 28:20–25

    Article  CAS  Google Scholar 

  • Moreira PR, Almeida-Vara E, Malcata FX, Duarte JC (2007) Lignin transformation by a versatile peroxidase from a novel Bjerkandera sp. strain. Int Biodeter Biodegr 59:234–238

    Article  CAS  Google Scholar 

  • Morii H, Nakamiya K, Kinoshita S (1995) Isolation of a lignin-decolorizing bacterium. J Ferment Bioeng 80:296–299. https://doi.org/10.1016/0922-338X(95)90835-N

    Article  CAS  Google Scholar 

  • Morreel K, Kim H, Lu F, Dima O, Akiyama T, Vanholme R et al (2010) Mass spectrometry-based fragmentation as an identification tool in lignomics. Anal Chem 82:8095–8105. https://doi.org/10.1021/ac100968g

    Article  CAS  PubMed  Google Scholar 

  • Nunes CA, Lima CF, Barbosa LC, Colodette JL, Gouveia AF, Silverio FO (2010) Determination of Eucalyptus spp lignin S/G ratio: a comparison between methods. Bioresour Technol 101(11):4056–4061

    Article  CAS  PubMed  Google Scholar 

  • Ogola HJO, Kamiike T, Hashimoto N, Ashida H, Ishikawa T, Shibata H et al (2009) Molecular characterization of a novel peroxidase from the cyanobacterium Anabaena sp. strain PCC 7120. Appl Environ Microbiol 75:7509–7518. https://doi.org/10.1128/AEM.01121-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owen BC, Haupert LJ, Jarrell TM, Marcum CL, Parsell TH, AbuOmar MM et al (2012) High-performance liquid chromatography/ high resolution multiple stage tandem mass spectrometry using negative ion-mode hydroxide-doped electrospray ionization for the characterization of lignin degradation products. Anal Chem 84:6000–6007. https://doi.org/10.1021/ac300762y

    Article  CAS  PubMed  Google Scholar 

  • Palazzolo M, Kurina-Sanz M (2016) Microbial utilisation of lignin: available biotechnologies for its degradation and valorization. World J Microbiol Biotechnol 32:173

    Article  PubMed  Google Scholar 

  • Pandey M, Klm C (2011) Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol 34(1):29–41

    Article  CAS  Google Scholar 

  • Paola F, Roberto R (2014) Catalytic Biorefining of plant biomass to non-pyrolytic lignin bio-oil and carbohydrates through hydrogen transfer reactions. Angew Chem Int Ed 53:8634–8639

    Article  Google Scholar 

  • Pecina R, Burtscher P, Bonn G, Bobleter O (1986) GC-MS and HPLC analyses of lignin degradation products in biomass hydrolyzates. Fresen J Anal Chem 325:461–465

    Article  CAS  Google Scholar 

  • Perestelo F, Carnicero A, Regalado V, Rodri A (1997) Lignin degradation and modification by the soil-inhabiting fungus Fusarium proliferatum. Appl Environ Microbiol 63:3716–3718

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez J, Munoz-Dorado J, de la Rubia T, Martinez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63

    Article  PubMed  Google Scholar 

  • Perez-Boada M, Ruiz-Duenas FJ, Pogni R, Basosi R, Choinowski T, Martinez MJ et al (2005) Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. J Mol Biol 354:385–402

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer P, Bonn GK, Bobleter O (1984) In: Holloway CJ (ed) Analytical and preparative isotachophoresis. W. de Gruyter, Berlin, New York, pp 89–94

    Google Scholar 

  • Picart P, Liu HF, Grande PM, Anders N, Zhu LL, Klankermayer J, Leitner W, deMaria PD, Schwaneberg U, Schallmey A (2017) Multi-step biocatalytic depolymerisation of lignin. Appl Microbiol Biotechnol 101:6277–6287

    Article  CAS  PubMed  Google Scholar 

  • Pometto AL III, Crawford DL (1986) Effects of pH on lignin and cellulose degradation by Streptomyces viridosporus. Appl Environ Microbiol 52(2):246–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponnusamy VK, Nguyen DD, Dharmaraja J, Shobana S, Banu R, Saratale RG, Chang SW, Kumar GA (2019) Review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Bioresour Technol 271:462–472

    Article  CAS  PubMed  Google Scholar 

  • Qi Y, O’Connor PB (2014) Data processing in Fourier transform ion cyclotron resonance mass spectrometry. Mass Spectrom Rev 33:333–352. https://doi.org/10.1002/mas.21414

    Article  CAS  PubMed  Google Scholar 

  • Qi Y, Hempelmann R, Volmer DA (2016a) Shedding light on the structures of lignin compounds: photo-oxidation under artificial UV light and characterization by high resolution mass spectrometry. Anal Bioanal Chem 408:8203–8210. https://doi.org/10.1007/s00216-016-9928-7

    Article  CAS  PubMed  Google Scholar 

  • Qi Y, Hempelmann R, Volmer DA (2016b) Two-dimensional mass defect matrix plots for mapping genealogical links in mixtures of lignin depolymerisation products. Anal Bioanal Chem 408:4835–4843. https://doi.org/10.1007/s00216-016-9598-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843. https://doi.org/10.1126/science.1246843

    Article  CAS  PubMed  Google Scholar 

  • Rahmanpour R, Rea D, Jamshidi S, Fülöp V, Bugg TD (2016) Structure of Thermobifida fusca DyP-type peroxidase and activity towards Kraft lignin and lignin model compounds. Arch Biochem Biophys 594:54–60. https://doi.org/10.1016/j.abb.2016.02.019

    Article  CAS  PubMed  Google Scholar 

  • Roberts VM, Stein V, Reiner T, Lemonidou A, Li X, Lercher JA (2011) Towards quantitative catalytic lignin depolymerization. Chemistry 17:5939–5948

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez A, Carnicero A, Perestelo F, de la Fuente G, Falcon MA (1994) Effect of Penicillium chrysogenum on lignin transformation. Appl Environ Microbiol 60:2971–2976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothschild N, Levkowitz A, Hadar Y, Dosoretz CG (1999) Manganese deficiency can replace high oxygen levels needed for lignin peroxidase formation by Phanerochaete chrysosporium. Appl Environ Microbiol 65:483–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Dueñas FJ, Morales M, García E, Miki Y, Martínez MJ, Martínez AT (2008) Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Biol 60:441–452

    Google Scholar 

  • Sáez-Jiménez V, Fernández-Fueyo E, Medrano FJ, Romero A, Martínez AT, Ruiz-Dueñas FJ (2015) Improving the pH-stability of versatile peroxidase by comparative structural analysis with a naturally-stable manganese peroxidase. PLoS One 10:e0140984

    Article  PubMed  PubMed Central  Google Scholar 

  • Sahoo S, Seydibeyoglu M, Mohanty A, Misra M (2011) Characterization of industrial lignins for their utilization in future value added applications. Biomass Bioenergy 35:4230–4237

    Article  CAS  Google Scholar 

  • Sainsbury PD, Hardiman EM, Ahmad M, Otani H, Seghezzi N, Eltis LD et al (2013) Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1. ACS Chem Biol 8:2151–2156. https://doi.org/10.1021/cb400505a

    Article  CAS  PubMed  Google Scholar 

  • Salvachua D, Karp EM, Nimlos CT, Vardon DR, Beckham GT (2015) Towards lignin consolidated bioprocessing: simultaneous lignin depolymerisation and product generation by bacteria. Green Chem 17:4951–4967

    Article  CAS  Google Scholar 

  • Schmidt E, Knackmuss H (1984) Production of cis,cis-muconate from benzoate and 2-fluoro-cis,cis-muconate from 3-fluorobenzoate by 3-chlorobenzoate degrading bacteria. Appl Microbiol Biotechnol 20:351–355

    Article  CAS  Google Scholar 

  • Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham G, Sels B (2018) Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev 47:852–908

    Article  CAS  PubMed  Google Scholar 

  • Sen S, Patil S, Argyropoulos D (2014) Methylation of softwood kraft lignin with dimethyl carbonate. Green Chem 17:1077

    Article  Google Scholar 

  • Seydibeyoglu MÖ (2012) A novel partially biobased PAN-lignin blend as a potential carbon fiber precursor. Biomed Res Int 2012:598324

    Google Scholar 

  • Shi Y, Chai L, Tang C, Yang Z, Zheng Y, Chen Y et al (2013) Biochemical investigation of kraft lignin degradation by Pandoraea sp. B-6 isolated from bamboo slips. Bioprocess Biosyst Eng 36:1957–1965. https://doi.org/10.1007/s00449013-0972-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Yan X, Li Q, Wang X, Xie S, Chai L et al (2017) Directed bioconversion of Kraft lignin to polyhydroxyalkanoate by Cupriavidus basilensis B-8 without any pretreatment. Process Biochem 52:238–242. https://doi.org/10.1016/j.procbio.2016.10.004

    Article  CAS  Google Scholar 

  • Si M, Yan X, Liu M, Shi M, Wang Z, Wang S et al (2018) In situ lignin bioconversion promotes complete carbohydrate conversion of rice straw by Cupriavidus basilensis B-8. ACS Sustain Chem Eng 6(6):7969–7978

    Article  CAS  Google Scholar 

  • Sigoillot J-C, Berrin J-G, Bey M, Lesage-Meessen L, Levasseur A, Lomascolo A et al (2012) Fungal strategies for lignin degradation. Adv Bot Res 61:263–308

    Article  CAS  Google Scholar 

  • Singh R, Grigg JC, Qin W, Kadla JF, Murphy MEP, Eltis LD (2013) Improved manganese-oxidizing activity of DypB, a peroxidase from a lignolytic bacterium. ACS Chem Biol 8:700–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song L, Ma F, Zeng Y, Zhang X, Yu H (2013) The promoting effects of manganese on biological pretreatment with Irpex lacteus and enzymatic hydrolysis of corn stover. Bioresour Technol 135:89–92. https://doi.org/10.1016/j.biortech.2012.09.004

    Article  CAS  PubMed  Google Scholar 

  • Sturgeon MR, Kim S, Lawrence K, Paton RS, Chmely SC, Nimlos M, Foust TD, Beckham GT (2014) A mechanistic investigation of acid-catalyzed cleavage of aryl-ether linkages: implications for lignin depolymerisation in acidic environments. ACS Sustain Chem Eng 2:472–485

    Article  CAS  Google Scholar 

  • Sugano Y, Muramatsu R, Ichiyanagi A, Sato T, Shoda M, Dy P (2007) A unique dye-decolorizing peroxidase, represents a novel heme peroxidase family: ASP171 replaces the distal histidine of classical peroxidases. J Biol Chem 282:36652–36658

    Article  CAS  PubMed  Google Scholar 

  • Suhara H, Kodama S, Kamei I, Maekawa N, Meguro S (2012) Screening of selective lignin-degrading basidiomycetes and biological pretreatment for enzymatic hydrolysis of bamboo culms. Int Biodeter Biodegr 75:176–180. https://doi.org/10.1016/j.ibiod.2012.05.042

    Article  CAS  Google Scholar 

  • Suman SK, Dhawaria M, Tripathi D, Raturi V, Adhikari DK, Kanaujia PK (2016) Investigation of lignin biodegradation by Trabulsiella sp. isolated from termite gut. Int Biodeter Biodegr 112:12–17

    Article  CAS  Google Scholar 

  • Sun S, Xie SX, Cheng YB, Yu HB, Zhao HL, Li MZ et al (2017) Enhancement of environmental hazard degradation in the presence of lignin: a proteomics study. Sci Rep 7:11356

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Fridrich B, de Santi A, Elangovan S, Barta K (2018) Bright side of lignin depolymerization: toward new platform chemicals. Chem Rev 118:614–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka H, Koike K, Itakura S, Enoki A (2009) Degradation of wood and enzyme production by Ceriporiopsis subvermispora. Enzyme Microb Technol 45:384–390. https://doi.org/10.1016/j.enzmictec.2009.06.003

    Article  CAS  Google Scholar 

  • Tian J-H, Pourcher A-M, Bouchez T, Gelhaye E, Peu P (2014) Occurrence of lignin degradation genotypes and phenotypes among prokaryotes. Appl Microbiol Biotechnol 98:9527–9544

    Article  CAS  PubMed  Google Scholar 

  • Tomizawa S, Chuah J-A, Matsumoto K, Doi Y, Numata K (2014) Understanding the limitations in the biosynthesis of polyhydroxyalkanoate (PHA) from lignin derivatives. ACS Sustain Chem Eng 2(5):1106–1113

    Article  CAS  Google Scholar 

  • Tu L, Hu H, Chen G, Peng Y, Xiao Y, Hu T et al (2014) Nitrogen addition significantly affects forest litter decomposition under high levels of ambient nitrogen deposition. PLoS One 9:e88752

    Article  PubMed  PubMed Central  Google Scholar 

  • Ulmer DC, Leisola MSA, Schmidt BH, Fiechter A (1983) Rapid degradation of isolated lignins by Phanerochaete chrysosporium. Appl Environ Microbiol 45:1795–1801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Bloois E, Pazmiño DET, Winter RT, Fraaije MW (2010) A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily. Appl Microbiol Biotechnol 86:1419–1430

    Article  PubMed  Google Scholar 

  • Van den Bosch S, Schutyser W, Vanholme R, Driessen T, Koelewijn SF, Renders T, De Meester B, Huijgen WJJ, Dehaen W, Courtin CM, Lagrain B, Boerjan W, Sels BF (2015) Reductive lignocellulose fractionation into soluble lignin derived phenolic monomers and dimers and processable carbohydrate pulps. Energ Environ Sci 8(6):1748–1763

    Article  Google Scholar 

  • Vandana T, Rao RG, Kumar SA, Swaraj S, Manpal S (2018) Enhancing production of lignin peroxidase from white rot fungi employing statistical optimization and evaluation of its potential in delignification of crop residues. Int J Curr Microbiol App Sci 7:2599–2621

    Article  Google Scholar 

  • Varnaitė R, Raudonienė V (2005) Enzymatic lignin degradation in rye straw by micromycetes. Int Biodeter Biodegr 56:192–195. https://doi.org/10.1016/j.ibiod.2005.08.002

    Article  CAS  Google Scholar 

  • Wan CX, Li YB (2012) Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv 30:1447–1457

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Rinaldi R (2013) A route for lignin and bio-oil conversion: dehydroxylation of phenols into arenes by catalytic tandem reactions. Angew Chem Int Ed 52:11499–11503

    Article  CAS  Google Scholar 

  • Wang X, Lin L, Dong J, Ling J, Wang W, Wang H et al (2018) Simultaneous improvements of Pseudomonas cell growth and Polyhydroxyalkanoate production from a lignin derivative for lignin-consolidated bioprocessing. Appl Environ Microbiol 84(18):e01469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wariishi H, Valli K, Gold MH (1991) In vitro depolymerization of lignin by manganese peroxidase of Phanerochaete chrysosporium. Biochem Biophys Res Commun 176:269–275

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Zeng G, Huang F, Kosa M, Huang D, Ragauskas AJ (2015) Bioconversion of oxygen-pretreated Kraft lignin to microbial lipid with oleaginous Rhodococcus opacus DSM 1069. Green Chem 17:2784–2789. https://doi.org/10.1039/C5GC00422E

    Article  CAS  Google Scholar 

  • Werhan H, Farshori A, von Rohr PR (2012) Separation of lignin oxidation products by organic solvent nanofiltration. J Membr Sci 423:404–412. https://doi.org/10.1016/j.memsci.2012.08.037

    Article  CAS  Google Scholar 

  • Wong DWS (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 57:174–209

    Article  Google Scholar 

  • Xie SX, Qin X, Cheng YB, Laskar D, Qiao WC, Sun S et al (2015) Simultaneous conversion of all cell wall components by an oleaginous fungus without chemi-physical pretreatment. Green Chem 17:1657–1667

    Article  CAS  Google Scholar 

  • Xu C, Arancon RAD, Labidi J, Luque R (2014) Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chem Soc Rev 43:7485–7500

    Article  CAS  PubMed  Google Scholar 

  • Yang YS, Zhou JT, Lu H, Yuan YL, Zhao LH (2011) Isolation and characterization of a fungus Aspergillus sp. strain F-3 capable of degrading alkali lignin. Int Biodeter Biodegr 22:1017–1027. https://doi.org/10.1007/s10532-011-94606

    Article  CAS  Google Scholar 

  • Yang YS, Zhou JT, Lu H, Yuan YL, Zhao LH (2012) Isolation and characterization of Streptomyces spp. strains F-6 and F-7 capable of decomposing alkali lignin. Environ Technol 33:2603–2609. https://doi.org/10.1080/09593330.2012.672473

    Article  CAS  PubMed  Google Scholar 

  • Yang CX, Wang T, Gao LN, Yin HJ, Lu X (2017) Isolation, identification and characterization of lignin-degrading bacteria from Qinling, China. J Appl Microbiol 123(2017):1447–1460

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama T (2015) Revisiting the mechanism of β-O-4 bond cleavage during acidolysis of lignin. Part 6: a review. J Wood Chem Technol 35:27–42

    Article  Google Scholar 

  • Zeng J, Mills MJ, Simmons BA, Kent MS, Sale KL (2017) Understanding factors controlling depolymerization and polymerization in catalytic degradation of β-ether linked model lignin compounds by versatile peroxidase. Green Chem 19:2145–2154

    Article  CAS  Google Scholar 

  • Zhang X, Yu H, Huang H, Liu Y (2007) Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms. Int Biodeter Biodegr 60:159–164. https://doi.org/10.1016/j.ibiod.2007.02.003

    Article  CAS  Google Scholar 

  • Zhang Z, Xia L, Wang F, Lv P, Zhu M, Li J et al (2015) Lignin degradation in corn stalk by combined method of H2O2 hydrolysis and Aspergillus oryzae CGMCC5992 liquid state fermentation. Biotechnol Biofuels 8:183

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wusiman A, Liu X, Wan C, Lee DJ, Tay J (2018) Polyhydroxyalkanoates (PHA) production from phenol in an acclimated consortium: batch study and impacts of operational conditions. J Biotechnol 267:36–44

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to UGC SAP project no. F.3-14/2016/DRS-I (SAP-II) and Chhattisgarh Council of Science and Technology (CCOST), Raipur, India (sanction order no: 2142/MRP/2015).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

All the authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jha, H., Arora, R. (2022). Microbial-Assisted Systems for Lignin-Based Product Generation. In: Verma, P. (eds) Industrial Microbiology and Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-16-5214-1_19

Download citation

Publish with us

Policies and ethics