Skip to main content

Green Nanotechnology–Based Drug Delivery Systems

  • Living reference work entry
  • First Online:
Encyclopedia of Green Materials

Synonym

Drug delivery by green nanotechnology

Definition

Green nanotechnology is a drug delivery system based on the designing of products and processes at the molecular scale to scale up the performance of products and reduce the effect on health and the environment.

Introduction

Nanotechnology refers to producing materials at the nanometer scale. It includes controlling or manipulating on an atomic scale (1–100 nm) having unique characteristics (Anselmo and Mitragotri 2014). Nanotechnology has gained much attention in recent years due to targeted drug delivery, efficient drug loading, good functionalization, tumor homing/locating capability, diagnostic and therapeutic potential, etc. These materials have entered into biomedical implants as well as can easily cross the blood-brain barrier. However, it may create some respiratory problems or may stimulate the immune response. Nanoparticles with a greater ratio of transition metals may damage human cells (Dhas et al. 1998). Some...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  • Anselmo AC, Mitragotri S (2014) An overview of clinical and commercial impact of drug delivery systems. J Control Release 190:15–28

    Article  CAS  Google Scholar 

  • Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107:2228–2269

    Article  CAS  Google Scholar 

  • Dhas NA, Raj CP, Gedanken A (1998) Synthesis, characterization, and properties of metallic copper nanoparticles. Chem Mater 10:1446–1452

    Article  CAS  Google Scholar 

  • Du X, Yin S, Wang Y, Gu X, Wang G, Li J (2018) Hyaluronic acid-functionalized half-generation of sectorial dendrimers for anticancer drug delivery and enhanced biocompatibility. Carbohydr Polym 202:513–522

    Article  CAS  Google Scholar 

  • Fratoddi I, Venditti I, Cametti C, Russo MV (2014) Gold nanoparticles and gold nanoparticle-conjugates for delivery of therapeutic molecules. Progress and challenges. J Mater Chem B 2:4204–4220

    Article  CAS  Google Scholar 

  • Ghasemi Y, Peymani P, Afifi S (2009) Quantum dot: magic nanoparticle for imaging, detection and targeting. Acta Biomed 80:156–165

    Google Scholar 

  • Gilbertson LM, Zimmerman JB, Plata DL, Hutchison JE, Anastas PT (2015) Designing nanomaterials to maximize performance and minimize undesirable implications guided by the principles of green chemistry. Chem Soc Rev 44:5758–5777

    Article  CAS  Google Scholar 

  • Huang D, Wu D (2018) Biodegradable dendrimers for drug delivery. Mater Sci Eng C 90:713–727

    Article  CAS  Google Scholar 

  • Jahangirian H, Lemraski EG, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y (2017) A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomedicine 12:2957–2978

    Article  CAS  Google Scholar 

  • Kanwar R, Bhar R, Mehta SK (2018) Designed meso-macroporous silica framework impregnated with copper oxide nanoparticles for enhanced catalytic performance. Chem Cat Chem 10:2087–2095

    CAS  Google Scholar 

  • Kanwar R, Rathee J, Salunke DB, Mehta SK (2019) Green nanotechnology-driven drug delivery assemblies. ACS Omega 4:8804–8815

    Article  CAS  Google Scholar 

  • Kwon S, Singh RK, Perez RA, Abou Neel EA, Kim HW, Chrzanowski W (2013) Silica-based mesoporous nanoparticles for controlled drug delivery. J Tissue Eng 4:1–35

    Article  Google Scholar 

  • Lam PL, Wong WY, Bian Z, Chui CH, Gambari R (2017) Recent advances in green nanoparticulate systems for drug delivery: efficient delivery and safety concern. Nanomedicine 12:357–385

    Article  CAS  Google Scholar 

  • Lee HU, Park SY, Park ES, Son B, Lee SC, Lee JW, Lee YC, Kang KS, Kim MI, Park HG, Choi S, Huh YS, Lee SY, Lee KB, Oh YK, Lee J (2014) Photoluminescent carbon nanotags from harmful cyanobacteria for drug delivery and imaging in cancer cells. Sci Rep 4:4665

    Article  Google Scholar 

  • Li Q, Wen Y, Wen J, Zhang YP, Xu XD, Victorious A, Zavitzc R, Xu X (2016) A new biosafe reactive oxygen species (ROS)-responsive nanoplatform for drug delivery. RSC Adv 6:38984–38989

    Article  CAS  Google Scholar 

  • Lowe PJ, Temple CS (1994) Calcitonin and insulin in isobutylcyanoacrylate nanocapsules: protection against proteases and effect on intestinal absorption in rats. J Pharm Pharmacol 1251:547–552

    Google Scholar 

  • Mehrad B, Ravanfar R, Licker J, Regenstein JM, Abbaspourrad A (2018) Enhancing the physicochemical stability of β-carotene solid lipid nanoparticle (SLNP) using whey protein isolate. Food Res Int 105:962–969

    Article  CAS  Google Scholar 

  • Müller RH, Mäder K, Gohla S (2000) Solid lipid nanoparticles ̈(SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm 50:161–177

    Article  Google Scholar 

  • Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30(1):545–610

    Article  CAS  Google Scholar 

  • Nabipour H, Yuan H (2020) Sustainable drug delivery systems through green nanotechnology. In: Nanoengineered biomaterials for advanced drug delivery. https://doi.org/10.1016/B978-0-08-102985-5.00004-8

    Chapter  Google Scholar 

  • Nagavarma BVN, Yadav H, Ayaz A, Vasudha LS, Shivakumar HG (2012) Different techniques for preparation of polymeric nanoparticles. A review. Asian J Pharm Clin Res 5:16–23

    CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2011) Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interf Sci 169:59–79

    Article  CAS  Google Scholar 

  • Neuberger T, Du J (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293:483–496

    Article  CAS  Google Scholar 

  • Ravichandran S (2010) Green chemistry – a potential tool for chemical synthesis. Int J Chem Tech Res 2(4):2188–2191

    Google Scholar 

  • Reverberi AP, Kuznetsov NT, Meshalkin VP, Salerno M, Fabiano B (2016) Systematical analysis of chemical methods in metal nanoparticles synthesis. Theor Found Chem Eng 50:59–66

    Article  CAS  Google Scholar 

  • Sahiner N, Sagbas S, Aktas N (2016) Preparation of macro-, micro-, and nanosized poly(tannic acid) particles with controllable degradability and multiple biomedical uses. Polym Degrad Stab 129:96–105

    Article  CAS  Google Scholar 

  • Saini RK, Bagri LP, Bajpai AK, Mishra A (2018) Responsive polymer nanoparticles for drug delivery applications. In: Stimuli responsive polymeric nanocarriers for drug delivery applications, vol 1. Woodhead Publishing, pp 289–320

    Chapter  Google Scholar 

  • Sherje AP, Jadhav M, Dravyakar BR, Kadam D (2018) Dendrimers: a versatile nanocarrier for drug delivery and targeting. Int J Pharm 548:707–720

    Article  CAS  Google Scholar 

  • Sumer Bolu B, Manavoglu Gecici E, Sanyal R (2016) Combretastatin A-4 conjugated antiangiogenic micellar drug delivery systems using dendron–polymer conjugates. Mol Pharm 13(5):1482–1490

    Article  CAS  Google Scholar 

  • Sun L, Wang Y, Jiang T, Zheng X, Zhang J, Sun J, Sun C, Wang S (2013) Novel chitosan-functionalized spherical nanosilica matrix as an oral sustained drug delivery system for poorly water soluble drug carvedilol. ACS Appl Mater Interfaces 5:103–113

    Article  CAS  Google Scholar 

  • Sun Z, Worden M, Thliveris JA, Hombach-Klonisch S, Klonisch T, van Lierop J, Hegmann T, Miller DW (2016) Biodistribution of negatively charged iron oxide nanoparticles (IONPs) in mice and enhanced brain delivery using lysophosphatidic acid (LPA). Nanomedicine 12(7):1775–1784

    Article  CAS  Google Scholar 

  • Vauthier C, Bouchemal K (2009) Expert review methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 26:1025–1058

    Article  CAS  Google Scholar 

  • Wang L, Wang M, Tophamc PD, Huang Y (2012) Fabrication of magnetic drug-loaded polymeric composite nanofibres and their drug release characteristics. RSC Adv 2(2012):2433–2438

    Article  CAS  Google Scholar 

  • White MA, Johnson JA, Koberstein JT, Turro NJ (2006) Toward the syntheses of universal ligands for metal oxide surfaces: controlling surface functionality through click chemistry. J Am Chem Soc 128(35):11356–11357

    Article  CAS  Google Scholar 

  • Zhang Y, Zhou J, Yang C, Wang W, Chu L, Huang F, Liu Q, Deng L, Kong D, Liu J, Liu J (2016) Folic acid-targeted disulfide-based cross-linking micelle for enhanced drug encapsulation stability and site-specific drug delivery against tumors. Int J Nanomedicine 11:1119–1130

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dhingra, A.K., Chopra, B., Kriplani, P., Dass, R., Guarve, K. (2023). Green Nanotechnology–Based Drug Delivery Systems. In: Baskar, C., Ramakrishna, S., Daniela La Rosa, A. (eds) Encyclopedia of Green Materials. Springer, Singapore. https://doi.org/10.1007/978-981-16-4921-9_148-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4921-9_148-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4921-9

  • Online ISBN: 978-981-16-4921-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics