Skip to main content

Structure of Urea Transporters

  • Chapter
  • First Online:
Urea Transporters

Part of the book series: Subcellular Biochemistry ((SCBI,volume 73))

Abstract

Members of the urea transporter (UT) family mediate rapid, selective transport of urea down its concentration gradient. To date, crystal structures of two evolutionarily distant UTs have been solved. These structures reveal a common UT fold involving two structurally homologous domains that encircle a continuous membrane-spanning pore and indicate that UTs transport urea via a channel-like mechanism. Examination of the conserved architecture of the pore, combined with crystal structures of ligand-bound proteins, molecular dynamics simulations, and functional data on permeation and inhibition by a broad range of urea analogs and other small molecules, provides insight into the structural basis of urea permeation and selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Minocha R, Studley K, Saier MH Jr (2003) The urea transporter (UT) family: bioinformatic analyses leading to structural, functional, and evolutionary predictions. Receptors Channels 9:345–352

    CAS  PubMed  Google Scholar 

  2. Rousselet G, Ripoche P, Bailly P (1996) Tandem sequence repeats in urea transporters: identification of an urea transporter signature sequence. Am J Physiol 270:F554–F555

    CAS  PubMed  Google Scholar 

  3. Maciver B, Smith CP, Hill WG, Zeidel ML (2008) Functional characterization of mouse urea transporters UT-A2 and UT-A3 expressed in purified Xenopus laevis oocyte plasma membranes. Am J Physiol Renal Physiol 294:F956–F964

    Article  CAS  PubMed  Google Scholar 

  4. Mannuzzu LM, Moronne MM, Macey RI (1993) Estimate of the number of urea transport sites in erythrocyte ghosts using a hydrophobic mercurial. J Membr Biol 133:85–97

    Article  CAS  PubMed  Google Scholar 

  5. Mayrand RR, Levitt DG (1983) Urea and ethylene glycol-facilitated transport systems in the human red cell membrane. Saturation, competition, and asymmetry. J Gen Physiol 81:221–237

    Article  CAS  PubMed  Google Scholar 

  6. Zhao D, Sonawane ND, Levin MH, Yang B (2007) Comparative transport efficiencies of urea analogues through urea transporter UT-B. Biochim Biophys Acta 1768:1815–1821

    Article  CAS  PubMed  Google Scholar 

  7. Marcus EA, Moshfegh AP, Sachs G, Scott DR (2005) The periplasmic alpha-carbonic anhydrase activity of Helicobacter pylori is essential for acid acclimation. J Bacteriol 187:729–738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Young GM, Amid D, Miller VL (1996) A bifunctional urease enhances survival of pathogenic Yersinia enterocolitica and Morganella morganii at low pH. J Bacteriol 178:6487–6495

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Sebbane F, Bury-Mone S, Cailliau K, Browaeys-Poly E, De Reuse H, Simonet M (2002) The Yersinia pseudotuberculosis Yut protein, a new type of urea transporter homologous to eukaryotic channels and functionally interchangeable in vitro with the Helicobacter pylori UreI protein. Mol Microbiol 45:1165–1174

    Article  CAS  PubMed  Google Scholar 

  10. Godara G, Smith C, Bosse J, Zeidel M, Mathai J (2009) Functional characterization of Actinobacillus pleuropneumoniae urea transport protein, ApUT. Am J Physiol Regul Integr Comp Physiol 296:R1268–R1273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Raunser S, Mathai JC, Abeyrathne PD, Rice AJ, Zeidel ML, Walz T (2009) Oligomeric structure and functional characterization of the urea transporter from Actinobacillus pleuropneumoniae. J Mol Biol 387:619–627

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Hediger MA, Smith CP, You G, Lee WS, Kanai Y, Shayakul C (1996) Structure, regulation and physiological roles of urea transporters. Kidney Int 49:1615–1623

    Article  CAS  PubMed  Google Scholar 

  13. Levin EJ, Quick M, Zhou M (2009) Crystal structure of a bacterial homologue of the kidney urea transporter. Nature 462:757–761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Levin EJ, Cao Y, Enkavi G, Quick M, Pan Y, Tajkhorshid E, Zhou M (2012) Structure and permeation mechanism of a mammalian urea transporter. Proc Natl Acad Sci USA 109:11194–11199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. von Heijne G, Gavel Y (1988) Topogenic signals in integral membrane proteins. Eur J Biochem 174:671–678

    Article  Google Scholar 

  16. Tsukaguchi H, Shayakul C, Berger UV, Tokui T, Brown D, Hediger MA (1997) Cloning and characterization of the urea transporter UT3: localization in rat kidney and testis. J Clin Invest 99:1506–1515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. You G, Smith CP, Kanai Y, Lee WS, Stelzner M, Hediger MA (1993) Cloning and characterization of the vasopressin-regulated urea transporter. Nature 365:844–847

    Article  CAS  PubMed  Google Scholar 

  18. Bansal AD, Hoffert JD, Pisitkun T, Hwang S, Chou CL, Boja ES, Wang G, Knepper MA (2010) Phosphoproteomic profiling reveals vasopressin-regulated phosphorylation sites in collecting duct. J Am Soc Nephrol 21:303–315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615

    Article  CAS  PubMed  Google Scholar 

  20. Hu NJ, Iwata S, Cameron AD, Drew D (2011) Crystal structure of a bacterial homologue of the bile acid sodium symporter ASBT. Nature 478:408–411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Huang Y, Lemieux MJ, Song J, Auer M, Wang DN (2003) Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301:616–620

    Article  CAS  PubMed  Google Scholar 

  22. Khademi S, O’Connell J 3rd, Remis J, Robles-Colmenares Y, Miercke LJ, Stroud RM (2004) Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 A. Science 305:1587–1594

    Article  CAS  PubMed  Google Scholar 

  23. Liao J, Li H, Zeng W, Sauer DB, Belmares R, Jiang Y (2012) Structural insight into the ion-exchange mechanism of the sodium/calcium exchanger. Science 335:686–690

    Article  CAS  PubMed  Google Scholar 

  24. Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/Cl− dependent neurotransmitter transporters. Nature 437:215–223

    Article  CAS  PubMed  Google Scholar 

  25. Yernool D, Boudker O, Jin Y, Gouaux E (2004) Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431:811–818

    Article  CAS  PubMed  Google Scholar 

  26. Klein JD, Blount MA, Sands JM (2011) Urea transport in the kidney. Compr Physiol 1:699–729

    PubMed  Google Scholar 

  27. Nielsen S, Terris J, Smith CP, Hediger MA, Ecelbarger CA, Knepper MA (1996) Cellular and subcellular localization of the vasopressin- regulated urea transporter in rat kidney. Proc Natl Acad Sci USA 93:5495–5500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Stewart GS, Fenton RA, Wang W, Kwon TH, White SJ, Collins VM, Cooper G, Nielsen S, Smith CP (2004) The basolateral expression of mUT-A3 in the mouse kidney. Am J Physiol Renal Physiol 286:F979–F987

    Article  CAS  PubMed  Google Scholar 

  29. Strugatsky D, McNulty R, Munson K, Chen CK, Soltis SM, Sachs G, Luecke H (2013) Structure of the proton-gated urea channel from the gastric pathogen Helicobacter pylori. Nature 493:255–258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Weeks DL, Eskandari S, Scott DR, Sachs G (2000) A H+ -gated urea channel: the link between Helicobacter pylori urease and gastric colonization. Science 287:482–485

    Article  CAS  PubMed  Google Scholar 

  31. Newby ZE, O’Connell J 3rd, Robles-Colmenares Y, Khademi S, Miercke LJ, Stroud RM (2008) Crystal structure of the aquaglyceroporin PfAQP from the malarial parasite Plasmodium falciparum. Nat Struct Mol Biol 15:619–625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. McNulty R, Ulmschneider JP, Luecke H, Ulmschneider MB (2013) Mechanisms of molecular transport through the urea channel of Helicobacter pylori. Nat Commun 4:2900

    Article  PubMed Central  PubMed  Google Scholar 

  33. Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605

    Article  CAS  PubMed  Google Scholar 

  34. Wang Y, Schulten K, Tajkhorshid E (2005) What makes an aquaporin a glycerol channel? A comparative study of AqpZ and GlpF. Structure 13:1107–1118

    Article  CAS  PubMed  Google Scholar 

  35. Wree D, Wu B, Zeuthen T, Beitz E (2011) Requirement for asparagine in the aquaporin NPA sequence signature motifs for cation exclusion. FEBS J 278:740–748

    Article  CAS  PubMed  Google Scholar 

  36. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  CAS  PubMed  Google Scholar 

  37. Roux B, MacKinnon R (1999) The cavity and pore helices in the KcsA K+ channel: electrostatic stabilization of monovalent cations. Science 285:100–102

    Article  CAS  PubMed  Google Scholar 

  38. Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R (2002) X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415:287–294

    Article  CAS  PubMed  Google Scholar 

  39. Gruswitz F, Chaudhary S, Ho JD, Schlessinger A, Pezeshki B, Ho CM, Sali A, Westhoff CM, Stroud RM (2010) Function of human Rh based on structure of RhCG at 2.1 A. Proc Natl Acad Sci USA 107:9638–9643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Lupo D, Li XD, Durand A, Tomizaki T, Cherif-Zahar B, Matassi G, Merrick M, Winkler FK (2007) The 1.3-A resolution structure of Nitrosomonas europaea Rh50 and mechanistic implications for NH3 transport by Rhesus family proteins. Proc Natl Acad Sci USA 104:19303–19308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Chasan B, Solomon AK (1985) Urea reflection coefficient for the human red cell membrane. Biochim Biophys Acta 821:56–62

    Article  CAS  PubMed  Google Scholar 

  42. Levitt DG, Mlekoday HJ (1983) Reflection coefficient and permeability of urea and ethylene glycol in the human red cell membrane. J Gen Physiol 81:239–253

    Article  CAS  PubMed  Google Scholar 

  43. Yang B, Verkman AS (1998) Urea transporter UT3 functions as an efficient water channel. Direct evidence for a common water/urea pathway. J Biol Chem 273:9369–9372

    Article  CAS  PubMed  Google Scholar 

  44. Martial S, Olives B, Abrami L, Couriaud C, Bailly P, You G, Hediger MA, Cartron JP, Ripoche P, Rousselet G (1996) Functional differentiation of the human red blood cell and kidney urea transporters. Am J Physiol 271:F1264–F1268

    CAS  PubMed  Google Scholar 

  45. Sidoux-Walter F, Lucien N, Olives B, Gobin R, Rousselet G, Kamsteeg EJ, Ripoche P, Deen PM, Cartron JP, Bailly P (1999) At physiological expression levels the Kidd blood group/urea transporter protein is not a water channel. J Biol Chem 274:30228–30235

    Article  CAS  PubMed  Google Scholar 

  46. Meng Y, Zhou X, Li Y, Zhao D, Liang S, Zhao X, Yang B (2005) A novel mutation at the JK locus causing Jk null phenotype in a Chinese family. Sci China C Life Sci 48:636–640

    Article  CAS  PubMed  Google Scholar 

  47. Yang B, Verkman AS (2002) Analysis of double knockout mice lacking aquaporin-1 and urea transporter UT-B. Evidence for UT-B-facilitated water transport in erythrocytes. J Biol Chem 277:36782–36786

    Article  CAS  PubMed  Google Scholar 

  48. Azouzi S, Gueroult M, Ripoche P, Genetet S, Aronovicz YC, Le Van Kim C, Etchebest C, Mouro-Chanteloup I (2013) Energetic and molecular water permeation mechanisms of the human red blood cell urea transporter B. PLoS One 8:e82338

    Google Scholar 

  49. Beitz E, Wu B, Holm LM, Schultz JE, Zeuthen T (2006) Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons. Proc Natl Acad Sci USA 103:269–274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Wu B, Steinbronn C, Alsterfjord M, Zeuthen T, Beitz E (2009) Concerted action of two cation filters in the aquaporin water channel. EMBO J 28:2188–2194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. de Groot BL, Grubmuller H (2001) Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294:2353–2357

    Article  PubMed  Google Scholar 

  52. Tajkhorshid E, Nollert P, Jensen MO, Miercke LJ, O’Connell J, Stroud RM, Schulten K (2002) Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296:525–530

    Article  CAS  PubMed  Google Scholar 

  53. Kosinska Eriksson U, Fischer G, Friemann R, Enkavi G, Tajkhorshid E, Neutze R (2013) Subangstrom resolution X-ray structure details aquaporin-water interactions. Science 340:1346–1349

    Article  CAS  PubMed  Google Scholar 

  54. Geyer RR, Musa-Aziz R, Enkavi G, Mahinthichaichan P, Tajkhorshid E, Boron WF (2013) Movement of NH(3) through the human urea transporter B: a new gas channel. Am J Physiol Renal Physiol 304:F1447–F1457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Chou CL, Knepper MA (1989) Inhibition of urea transport in inner medullary collecting duct by phloretin and urea analogues. Am J Physiol 257:F359–F365

    CAS  PubMed  Google Scholar 

  56. Fan HT, Morishima S, Kida H, Okada Y (2001) Phloretin differentially inhibits volume-sensitive and cyclic AMP-activated, but not Ca-activated, Cl(−) channels. Br J Pharmacol 133:1096–1106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Tsukaguchi H, Shayakul C, Berger UV, Mackenzie B, Devidas S, Guggino WB, van Hoek AN, Hediger MA (1998) Molecular characterization of a broad selectivity neutral solute channel. J Biol Chem 273:24737–24743

    Article  CAS  PubMed  Google Scholar 

  58. Wang Y, Mackenzie B, Tsukaguchi H, Weremowicz S, Morton CC, Hediger MA (2000) Human vitamin C (L-ascorbic acid) transporter SVCT1. Biochem Biophys Res Commun 267:488–494

    Article  CAS  PubMed  Google Scholar 

  59. Wheeler TJ, Hinkle PC (1981) Kinetic properties of the reconstituted glucose transporter from human erythrocytes. J Biol Chem 256:8907–8914

    CAS  PubMed  Google Scholar 

  60. Xiang M, Feng M, Muend S, Rao R (2007) A human Na+/H+ antiporter sharing evolutionary origins with bacterial NhaA may be a candidate gene for essential hypertension. Proc Natl Acad Sci USA 104:18677–18681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Andersen OS, Finkelstein A, Katz I, Cass A (1976) Effect of phloretin on the permeability of thin lipid membranes. J Gen Physiol 67:749–771

    Article  CAS  PubMed  Google Scholar 

  62. Cseh R, Benz R (1999) Interaction of phloretin with lipid monolayers: relationship between structural changes and dipole potential change. Biophys J 77:1477–1488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Anderson MO, Zhang J, Liu Y, Yao C, Phuan PW, Verkman AS (2012) Nanomolar potency and metabolically stable inhibitors of kidney urea transporter UT-B. J Med Chem 55:5942–5950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Esteva-Font C, Phuan PW, Anderson MO, Verkman AS (2013) A small molecule screen identifies selective inhibitors of urea transporter UT-A. Chem Biol 20:1235–1244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Levin MH, de la Fuente R, Verkman AS (2007) Urearetics: a small molecule screen yields nanomolar potency inhibitors of urea transporter UT-B. FASEB J 21:551–563

    Article  CAS  PubMed  Google Scholar 

  66. Li F, Lei T, Zhu J, Wang W, Sun Y, Chen J, Dong Z, Zhou H, Yang B (2013) A novel small-molecule thienoquinolin urea transporter inhibitor acts as a potential diuretic. Kidney Int 83:1076–1086

    Article  CAS  PubMed  Google Scholar 

  67. Liu Y, Esteva-Font C, Yao C, Phuan PW, Verkman AS, Anderson MO (2013) 1,1-Difluoroethyl-substituted triazolothienopyrimidines as inhibitors of a human urea transport protein (UT-B): new analogs and binding model. Bioorg Med Chem Lett 23:3338–3341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Yao C, Anderson MO, Zhang J, Yang B, Phuan PW, Verkman AS (2012) Triazolothienopyrimidine inhibitors of urea transporter UT-B reduce urine concentration. J Am Soc Nephrol 23:1210–1220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (R01DK088057, R01GM098878 and R01HL086392), the American Heart Association (12EIA8850017), and the Cancer Prevention and Research Institute of Texas (R12MZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Levin, E.J., Zhou, M. (2014). Structure of Urea Transporters. In: Yang, B., Sands, J. (eds) Urea Transporters. Subcellular Biochemistry, vol 73. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9343-8_5

Download citation

Publish with us

Policies and ethics