Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural determinants of water permeation through aquaporin-1

Abstract

Human red cell AQP1 is the first functionally defined member of the aquaporin family of membrane water channels. Here we describe an atomic model of AQP1 at 3.8 Å resolution from electron crystallographic data. Multiple highly conserved amino-acid residues stabilize the novel fold of AQP1. The aqueous pathway is lined with conserved hydrophobic residues that permit rapid water transport, whereas the water selectivity is due to a constriction of the pore diameter to about 3 Å over a span of one residue. The atomic model provides a possible molecular explanation to a longstanding puzzle in physiology—how membranes can be freely permeable to water but impermeable to protons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative areas of the AQP1 potential map with the fitted atomic model.
Figure 2: Ribbon representations of the AQP1 fold depicting the six membrane-spanning helices, the two pore helices, and the connecting loops in different colours.
Figure 3: Schematic representation of AQP1 topology and hydropathy.
Figure 4: Ribbon and space-filled diagrams representing the structure of the aqueous pore in AQP1.
Figure 5: Schematic representations explaining the mechanism for blocking proton permeation of AQP1.

Similar content being viewed by others

References

  1. Macey, R. I. & Farmer, R. E. I. Inhibition of water and solute permeability in human red cells. Biochem. Biophys. Acta 211, 104–106 (1970).

    Article  CAS  Google Scholar 

  2. Denker, B. M., Smith, B. L., Kuhajda, F. P. & Agre, P. Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J. Biol. Chem. 263, 15634–15642 (1988).

    CAS  PubMed  Google Scholar 

  3. Preston, G. M. & Agre, P. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: Member of an ancient channel family. Proc. Natl Acad. Sci. USA 88, 11110 –11114 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Preston, G. M., Carroll, T. P., Guggino, W. B. & Agre, P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256, 385– 387 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Heymann, J. B. & Engel, A. Aquaporins: Phylogeny, structure and physiology of water channels. News Physiol. Sci. 14 , 187–193 (1999).

    CAS  PubMed  Google Scholar 

  6. Pomes, R. & Roux, B. Structure and dynamics of a proton wire: a theoretical study of H+ translocation along the single-file water chain in the gramicidin A channel. Biophys. J. 71, 19–39 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Wistow, G., Pisano, M. & Chepelinsky, A. Tandem sequence repeats in transmembrane channel proteins. Trends Biochem. Sci. 16, 170– 171 (1991).

    Article  CAS  Google Scholar 

  8. Reizer, J., Reizer, A. & Saier, M. J. The MIP family of integral membrane channel proteins: sequence comparisons, evolutionary relationships, reconstituted pathway of evolution, and proposed functional differentiation of the two repeated halves of the proteins. Crit. Rev. Biochem. Mol. Biol. 28, 235–257 (1993).

    Article  CAS  Google Scholar 

  9. Preston, G. M., Jung, J. S., Guggino, W. B. & Agre, P. Membrane topology of aquaporin CHIP. Analysis of functional epitope-scanning mutants by vectorial proteolysis. J. Biol. Chem. 269, 1668–1673 (1994).

    CAS  PubMed  Google Scholar 

  10. Jung, J., Preston, G. M., Smith, B., Guggino, W. & Agre, P. Molecular structure of the water channel through aquaporin CHIP. The hourglass model. J. Biol. Chem. 269, 14648–14654 (1994).

    CAS  Google Scholar 

  11. van Hoek, A. N. et al. Functional unit of 30 kDa for proximal tubule water channels as revealed by radiation inactivation. J. Biol. Chem. 266, 16633–16635 (1991).

    CAS  PubMed  Google Scholar 

  12. Smith, B. L. & Agre, P. Erythrocyte Mr 28,000 transmembrane protein exists as a multisubunit oligomer similar to channel proteins. J. Biol. Chem. 266, 6407– 6415 (1991).

    CAS  PubMed  Google Scholar 

  13. Cheng, A., van Hoek, A. N., Yeager, M., Verkman, A. S. & Mitra, A. K. Three-dimensional organization of a human water channel. Nature 387, 627 –630 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Li, H., Lee, S. & Jap, B. K. Molecular design of aquaporin-1 water channel as revealed by electron crystallography. Nature Struct. Biol. 4, 263– 265 (1997).

    Article  CAS  Google Scholar 

  15. Walz, T., Smith, B., Agre, P. & Engel, A. The three-dimensional structure of human erythrocyte aquaporin CHIP. EMBO J. 13, 2985–2993 (1994).

    Article  CAS  Google Scholar 

  16. Walz, T. et al. The three-dimensional structure of aquaporin-1. Nature 387, 624–627 ( 1997).

    Article  ADS  CAS  Google Scholar 

  17. Fujiyoshi, Y. et al. Development of a superfluid helium stage for high-resolution electron microscopy. Ultramicroscopy 38, 241–251 (1991).

    Article  Google Scholar 

  18. Fujiyoshi, Y. The structural study of membrane proteins by electron crystallography. Adv. Biophys. 35, 25–80 (1998).

    Article  CAS  Google Scholar 

  19. Mitsuoka, K. et al. The structure of aquaporin-1 at 4.5 Å resolution reveals short α-helices in the center of the monomer. J. Struct. Biol. 128, 34–43 (1999).

    Article  CAS  Google Scholar 

  20. Heymann, J. B. & Engel, A. Structural clues in the sequences of the aquaporins. J. Mol. Biol. 295 , 1039–1053 (2000).

    Article  CAS  Google Scholar 

  21. De Groot, B. L. et al. The fold of human aquaporin 1. J. Mol. Biol. (in the press).

  22. Russ, W. P. & Engelman, M. The GxxxG motif: a framework for transmembrane helix-helix association. J. Mol. Biol. 296, 911–919 (2000).

    Article  CAS  Google Scholar 

  23. Walz, T., Smith, B., Zeidel, M., Engel, A. & Agre, P. Biologically active two-dimensional crystals of aquaporin CHIP. J. Biol. Chem. 267, 1583–1586 (1994).

    Google Scholar 

  24. Zeidel, M. et al. Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry 31, 7436–7440 (1992).

    Article  CAS  Google Scholar 

  25. Zeidel, M. et al. Ultrastructure, pharmacologic inhibition, and transport selectivity of aquaporin channel-forming integral protein in proteoliposomes. Biochemistry 33, 1606–1615 (1994).

    Article  CAS  Google Scholar 

  26. Doyle, D. A. et al. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  ADS  CAS  Google Scholar 

  27. Gutierrez, A. M., Gonzales, E., Echevarria, M., Hernandez, C. S. & Whittembury, G. The proximal straight tubule (PST) basolateral cell membrane water channel: Selectivity characteristics. J. Membr. Biol. 143, 189– 197 (1995).

    Article  CAS  Google Scholar 

  28. Yang, B, van Hoek, A. N. & Verkman, A. S. Very high single channel water permeability of aquaporin-4 in baculovirus-infected insect cells and liposomes reconstituted with purified aquaporin-4. Biochemistry 36, 7625– 7632 (1997).

    Article  CAS  Google Scholar 

  29. Preston, G., Jung, J., Guggino, W. & Agre, P. The mercury-sensitive residue at cycteine 189 in the CHIP28 water channel. J. Biol. Chem. 268, 17–20 ( 1993).

    CAS  PubMed  Google Scholar 

  30. Zhang, R., van Hoek, A. N., Biwersi, J. & Verkman, A. S. A point mutation at cysteine 189 blocks the water permeability of rat kidney water channel CHIP28, Biochemistry 32, 2938–2941 (1993).

    Article  CAS  Google Scholar 

  31. Schulz, G. E. & Schermer, R. H. in Principles of Protein Structure (ed. Cantor, C. R.) 17–26 (Springer, New York, 1979).

    Google Scholar 

  32. Tukaguchi, H. et al. Molecular characterization of a broad selectivity neural solute channel. J. Biol. Chem. 273, 24737– 24743 (1998).

    Article  Google Scholar 

  33. Yasui, M. et al. Rapid gating and anion permeability of an intracellular aquaporin. Nature 402, 184–187 (1999).

    Article  ADS  CAS  Google Scholar 

  34. Hirai, T. et al. Trehalose embedding technique for high-resolution electron crystallography: application to structural study on bacteriorhodopsin. J. Elec. Microsc. 48, 653–658 ( 1999).

    Article  CAS  Google Scholar 

  35. Mitsuoka, K., Murata, K., Kimura, Y., Namba, K. & Fujiyoshi, Y. Examination of the Leafscan 45, a line-illuminating micro-densitometer, for its use in electron crystallography. Ultramicroscopy 68, 109–121 ( 1997).

    Article  CAS  Google Scholar 

  36. Krivanek, O. L. & Mooney, P. E. Applications of slow-scan CCD camera in transmission electron microscopy. Ultramicroscopy 49, 95–108 ( 1993).

    Article  CAS  Google Scholar 

  37. Crowther, R. A., Henderson, R. & Smith, J. M. MRC image processing programs. J. Struct. Biol. 116, 86–92 ( 1996).

    Article  Google Scholar 

  38. Mitsuoka, K. et al. The structure of bacteriorhodopsin at 3.0 Å resolution based on electron crystallography: Implication on the charge distribution. J. Mol. Biol. 286, 861– 882 (1999).

    Article  CAS  Google Scholar 

  39. Henderson, R., Baldwin, J. M., Downing, K. H., Lepault, J. & Zemlin, F. Structure of purple membrane from Halobacterium halobium: recording, measurement and evaluation of electron micrographs at 3.5 Å resolution. Ultramicroscopy 19, 147–178 (1986).

    Article  CAS  Google Scholar 

  40. Collaborative Computational Project No. 4. The CCP4 Suite: Programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

    Article  Google Scholar 

  41. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps. Acta Crystallogr. A 47, 110–119 ( 1991).

    Article  Google Scholar 

  42. Brünger, A. T. X-PLOR Version 3.1-A System for X-ray Crystallography (Yale Univ. Press, New Haven/London, 1988).

  43. Scheuring, S. et al. The aquaporin sidedness revisited. J. Mol. Biol. 295, 1271–1278 ( 2000).

    Article  Google Scholar 

  44. Scheuring, S. et al. High resolution AFM topographs of the Escherichia coli water channel aquaporin Z. EMBO J. 18, 4981–4987 (1999).

    Article  CAS  Google Scholar 

  45. Kraulis, P. J. MOLSCRIPT-a program to produce both detailed and schematic plots of proteins structures. J. Appl. Crystallogr. 24, 946 –950 (1991).

    Article  Google Scholar 

  46. Merritt, E. A. & Bacon, D. J. Raster 3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  47. Fu, D. X. et al. Structure of a glycerol conducting channel and the basis for its selectivity. Science (in the press).

Download references

Acknowledgements

The authors thank B. L. Smith for technical assistance. These studies were partially carried out in the International Institute for Advanced Research, Matsushita Electric Industrial Co., Ltd. The research was supported by grants from the Japan Society for the Promotion of Science (JSPS), US National Institutes of Health, the Maurice E. Müller Foundation, the Swiss National Foundation for Scientific Research, and the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Fujiyoshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murata, K., Mitsuoka, K., Hirai, T. et al. Structural determinants of water permeation through aquaporin-1. Nature 407, 599–605 (2000). https://doi.org/10.1038/35036519

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35036519

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing