Skip to main content

Surface, Interface and Valence Band of Ultra-Thin Silicon Oxides

  • Chapter
Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices

Part of the book series: NATO Science Series ((ASHT,volume 47))

Abstract

In 1987, silicon-based metal-oxide-semiconductor field-effect transistors (MOSFETs) with gate oxide film thickness of 3.3 nm were shown to operate at liquid nitrogen temperature.[1] As a result of continuing progress in microfabrication technology since that time, MOSFETs with gate oxide film thickness of 1.5 nm were shown to operate at room temperature[2] and the fabrication of 1 Gbit dynamic random access memory (DRAM) was reported.[3,4] The mass production of 1 Gbit DRAM using MOSFETs with gate oxide film thickness of about 5 nm must be realized at the beginning of the next century. In this case the thickness of one-molecular-layer of SiO2 corresponds to 6% of gate oxide film thickness. Therefore, it is necessary to control the formation of SiO2 and SiO2/Si interface on an atomic scale by improving the cleanliness and flatness of Si surfaces before the oxidation The control of oxide formation on an atomic scale is important for the formation of high quality SiO2/Si interfaces for future metal-oxidesemiconductor (MOS) technology.[5]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sai-Halasz, G. A., Wordeman, M. R., Kern, D. P., Ganin, E., Rishton, S., Zichennan, D. S., Schmid, H., Polcari, M. R., Ng, H. Y., Restle, P. J., Chang, T. H. and Dennard, R. H. (1987) Design and Experimental Technology for 0.1- P m Gate-Length Low-Temperature Operation FETs, IEEE Electron. Device Lett. 8, 463–466.

    Article  Google Scholar 

  2. Sasaki Momose, H., Ono, M., Yoshitomi, T., Ohguro, T., Nakamura, S., Saito, M. and Iwai, H. (1994) Tunneling gate oxide approach to ultra-high current drive in small-geometry MOSFETs, IEDM 94, pp. 593–596.

    Google Scholar 

  3. Horiguchi, M., Sakata, T., Sekiguchi, T., Ueda, S., Tanaka, H., Yamasaki, E., Nakagome, Y., Aoki, M., Kaga, T., Ohkura, M., Nagai, R., Murai, F., Tanaka, T., Iijima, S., Yokoyama, N., Gotoh, Y., Shoji, K., Kisu, T., Yamashita, H., Nishida, T. and Takeda, E. (1995) An experimental 220 MHz 1Gb DRAM, Int.. Solid-State Circuits Conf Digest of Technical Papers pp. 252–253.

    Google Scholar 

  4. Sugibayashi, T., Naritake, I., Utsugi, S., Shibahara, K., Oikawa, R., Mori, H., Iwao, S., Murotani, T., Koyama, K., Fukazawa, S., Irani, T., Kasama, K., Okuda, T., Ohya, S. and Ogawa, M. (1995) A 1Gb DRAM for file applications, IEEE Int. Solid-State Circuits Conf Digest of Technical Papers pp. 254–255.

    Google Scholar 

  5. Hattori, T. (1995) Chemical structures of the SiO2/Si interface, Critical Rev. Solid State Mat. Sci . 20, 339–382.

    Article  CAS  Google Scholar 

  6. Takahagi, T., Nagai, I., Ishitani, A. and Kuroda H. (1988) The formation of hydrogen passivated silicon single-crystal surfaces using ultraviolet cleaning and HF etching, J. Appl. Phys . 64, 3516–3521.

    Article  CAS  Google Scholar 

  7. Sakuraba, M., Murota, J. and Ono, S. (1994) Stability of the dimer structure formed on Si(100) by ultraclean low-pressure chemical-vapor deposition, J. Appl. Phys. 75 3701–3703.

    Article  CAS  Google Scholar 

  8. Higashi, G. S., Becker, R. S., Chabal, Y. J. and Becker, A. J. (1991) Comparison of Si(111) surfaces prepared using aqueous solutions of NH4F versus HF, Appl. Phys. Lett . 58 1656–1658.

    Article  CAS  Google Scholar 

  9. Watanabe, S., Nakayama, N. and Ito, T. (1991) Homogeneous hydrogen-terminated Si(111) surface formed using aqueous HF solution and water, Appl. Phys. Lett . 59, 1458–1460.

    Article  CAS  Google Scholar 

  10. Aoyama, T., Goto, K., Yamazaki, T. and Ito, T. (1996) Silicon (001) surface after annealing in hydrogen ambient, J. Vac. Sci. Technol . A14 2909–2915.

    Google Scholar 

  11. Bender, H., Verhaverbeke, S., Caymax, M., Vatel, O. and Hynes, M. M. (1994) Surface reconstruction of hydrogen annealed (100) silicon, J. Appl. Phys . 75 1207–1209.

    Article  CAS  Google Scholar 

  12. Ohmi, T., Morita, M., Teramoto, A., Makihara, K. and Tseng, K. S. (1992) Very thin oxide film on a silicon surface by ultraclean oxidation, Appl. Phys. Lett . 60, 2126–2128.

    Article  CAS  Google Scholar 

  13. Gelius, U., Wannberg, B., Baltzer, P., Fellner-Feldegg, H., Carlsson, G., Johansson, C. -G., Larsson, J., Munger, P. and Vergerfos, G. (1990) A new ESCA instrument with improved surface sensitivity, fast imaging properties and excellent energy resolution, J. Electron Spectrosc. Relat. Phenom . 52 747–785.

    Article  Google Scholar 

  14. Guthner, P. (1996) Simultaneous imaging of Si(I11)7 X 7 with atomic resolution in scanning tunneling microscopy, atomic force microscopy, and atomic force microscopy noncontact mode, J. Vac. Sci. & Technol. B14 2428–2431.

    Article  Google Scholar 

  15. Nohira, H., Tamura, Y., Ogawa, H. and Hattori, T. (1992) Initial stage of SiO2/Si interface formation on Si(111) surface, IEICETrans. Electron . E75-C, 757–763.

    Google Scholar 

  16. Ohishi, K. and Hattori, T. (1994) Periodic changes in SiO2/Si(111) interface structures with progress of thennal oxidation, Jpn. J. Appl. Phys . 33 L675–L678.

    Article  CAS  Google Scholar 

  17. Hollinger, G. and Himpsel, F. J. (1984) Probing the transition layer at the SiO2-Si interface using core level photoemission, Appl. Phys. Lett . 44 93–95.

    Article  CAS  Google Scholar 

  18. Aiba, T., Yamauchi, K., Shimizu, Y., Tate, N., Katayama, M. and Hattori, T. (1995) Initial stage of oxidation of hydrogen-terminated Si(100)-2 X 1 surface, Jpn. J. Appl. Phys . 34 707–711.

    Article  CAS  Google Scholar 

  19. Ohishi, K. and Hattori, T. (unpublished).

    Google Scholar 

  20. Omura, A., Sekikawa, H. and Hattori, T. (1997) Lateral size of atomically flat oxidized region on Si(111) surface, Appl. Surf Sci. 117/118 127–130.

    Article  Google Scholar 

  21. Lyo, I. -W., Avouris, Ph., Schubert, B. and Hoffmann, R. (1990) Elucidation of the initial stage of the oxidation of Si(111) using scanning tunneling microscopy and spectroscopy, J. Phys. Chem. 94 4400–4403.

    Article  CAS  Google Scholar 

  22. Ohashi, M. and Hattori, T. (1997) Correlation between surface microroughness of silicon oxide film and Si02/Si interface structure, Jpn. J. Appl. Phys. 36, L397–L399.

    Article  CAS  Google Scholar 

  23. Hattori, T., Fujimura, M., Yagi, T. and Ohashi, M. (1997) Periodic changes in surface microroughness with progress of thermal oxidation of silicon, reported at 6th Int. Cont. on Formation of Semiconductor Interfaces, Cardiff.

    Google Scholar 

  24. Yasaka, Y., Uenaga, S., Yasutake, H., Takakura, M., Miyazaki, S. and Hirose, M. (1992) Cleaning and oxidation of heavily doped Si surfaces, Mater. Res. Soc. Symp. Proc. 259, 385–390.

    Article  CAS  Google Scholar 

  25. Niwa, M., Kouzaki, T., Okada, K., Udagawa, M. and Sinclair, R. (1993) Atomic-order planarization of ultrathin Si02/Si(001) interfaces, Jpn. J. Appl. Phys. 33 388–394.

    Article  Google Scholar 

  26. Pantelides, S. T. and Long, M. (1978) Continuous-random-network models for the Si-Si02 interface, The Physics of Si0 2 and its Interface, S. T. Pantelides, Ed., Pergamon, New York, pp. 339–343.

    Google Scholar 

  27. Herman, F., Batra, I.P. and Kasowski, R.V. (1978) Electronic structure of a model Si-Si02 interface, The Physics of Si0 2 and its Interface, S. T. Pantelides, Ed., Pergamon, New York, pp. 333–338.

    Google Scholar 

  28. Banaszak Holl, M. M., Lee, S. and McFeely, F. R. (1994) Core-level photoemission and the structure of the Si/Si02 interface: A reappraisal, App!. Phys. Lett. 65 1097–1099.

    Article  CAS  Google Scholar 

  29. Pasquarello, A., Hybensen, M. S. and Car, R. (1995) Si 2p core-level shifts at the Si(001)-Si02 interface: a first-principles study, Phys. Rev. Leu. 74 1024–1027.

    Article  CAS  Google Scholar 

  30. Williams, R. (1965) Photoemission of electrons from silicon into silicon dioxide, Phys. Rev. A140, 569–575.

    Article  Google Scholar 

  31. Ohmi, T., Morita, M. and Hattori, T. (1988) Defects and impurities in SiO2 interface for oxides prepared using superclean methods, The Physics a nd Chemistry of SiO 2 and the Si-Si0 2 Interface, Plenum Press, New York, pp. 413–419.

    Google Scholar 

  32. Yoshida, T., Imafuku, D., Alay, J. L., Miyazaki, S. and Hirose, M. (1995) Quantitative analysis of tunneling current through ultrathin gate oxides, Jpn. J. Appl. Phys. 34 L903–L906.

    Article  CAS  Google Scholar 

  33. Heimlich, C., Kubota, M., Murata, Y., Hattori, T., Morita, M. and Ohmi, T. (1990) ARUPS study of an impurity-induced stabilization of Si02 on Si(100), Vacuum 41 793–795.

    Article  CAS  Google Scholar 

  34. Nohira, H. and Hattori, T. (1997) Si02 valence band near the Si02/Si(111) interface, App!. Surf. Sci. 117/ 118 119–122.

    Article  Google Scholar 

  35. Ishikawa, K., Ogawa, H., Oshida, S., Suzuki, K. and Fujimura, S. (1995) Thickness-deconvolved structural properties of thermally grown silicon dioxide film, Ext. Abstr. of Int. Conf. on Solid State Devices and Materials, Osaka, pp. 500–502.

    Google Scholar 

  36. Sugita, Y., Awaji, N. and Watanabe, S. (1996) Transient oxide layer at a thermally grown SiO2/Si interface, interpreted based on local vibration and X-ray reflectivity, Ext. Abstr. of Intern. Conf. on Solid State Devices and Materials, Yokohama, pp. 380–382.

    Google Scholar 

  37. May, J. L., Fukuda, M., Bjorkman, C. H., Nakagawa, K., Sasaki, S., Yokoyama, S. and Hirose, M. (1995) Determination of valence band alignment at ultrathin Si02/Si interface by high-resolution X-ray photoelectron spectroscopy, Jpn. J. App!. Phys. 34 L653–L656.

    Article  Google Scholar 

  38. Alay, J. L., Fukuda, M., Nakagawa, K., Yokoyama, S. and Hirose, M. (1995) The valence band alignment at ultra-thin SiO2/Si(100) interfaces determined by high-resolution X-ray photoelectron spectroscopy, Ext. Abstr. of Intern. Conf. on Solid State Devices and Materials, Osaka, pp. 28–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hattori, T. (1998). Surface, Interface and Valence Band of Ultra-Thin Silicon Oxides. In: Garfunkel, E., Gusev, E., Vul’, A. (eds) Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices. NATO Science Series, vol 47. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5008-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5008-8_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5008-8

  • Online ISBN: 978-94-011-5008-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics