Skip to main content

The Wheat Black Jack: Advances Towards Sequencing the 21 Chromosomes of Bread Wheat

  • Chapter
  • First Online:
Genomics of Plant Genetic Resources

Abstract

Despite its socio-economic importance and the overall recognition that a reference genome sequence has great value for crop improvement, sequencing the wheat genome has long been considered “impossible” because of the sequencing cost and bioinformatic challenges associated with the assembly of the mostly repetitive 17 Gb hexaploid genome. In the past 5 years, however, new platforms and technologies have emerged that enabled the launching of an international effort to tackle the bread wheat genome sequence using a chromosome-by-chromosome approach. In this chapter, we review the features of the wheat genome as well as the tools and technologies that can be used to sequence, assemble, and annotate a large, complex, polyploid genome. We describe the strategies and current status of the efforts towards achieving a reference sequence for the 21 chromosomes of bread wheat. Finally, we present the databases that were established to support the integration of the sequence information with other genetic and biological information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AGI (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Akhunov ED, Akhunova AR, Dvorak J (2007) Mechanisms and rates of birth and death of dispersed duplicated genes during the evolution of a multigene family in diploid and tetraploid wheats. Mol Biol Evol 24:539–550

    Article  CAS  PubMed  Google Scholar 

  • Amano N, Tanaka T, Numa H et al (2010) Efficient plant gene identification based on interspecies mapping of full-length cDNAs. DNA Res 17:271–279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Astier Y, Braha O, Bayley H (2006) Toward single molecule DNA sequencing: Direct identification of ribonucleoside and deoxyribonucleoside 5 ’-monophosphates by using an engineered protein nanopore equipped with a molecular adapter. J Am Chem Soc 128:1705–1710

    Article  CAS  PubMed  Google Scholar 

  • Bennett ST, Barnes C, Cox A et al (2005) Toward the $1000 human genome. Pharmacogenomics 6:373–382

    Article  CAS  PubMed  Google Scholar 

  • Berkman P, Skarshewski A, Manoli S et al (2011a) Sequencing wheat chromosome arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conservation. Theor Appl Genet:1–10

    Google Scholar 

  • Berkman PJ, Skarshewski A, Lorenc MT et al (2011b) Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotech J 9:768–775

    Article  CAS  Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M, Barker GL, D'Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo MC, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie WR, Hall A, Mayer KF, Edwards KJ, Bevan MW, Hall N (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710

    Google Scholar 

  • Birney E, Stamatoyannopoulos JA, Dutta A et al (2007) Identification and analysis of functional elements in 1 % of the human genome by the ENCODE pilot project. Nature 447:799–816

    Article  CAS  PubMed  Google Scholar 

  • Brisson N, Gate P, Gouache D et al (2010) Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crop Res 119:201–212

    Article  Google Scholar 

  • Cantarel BL, Korf I, Robb SMC et al (2008) MAKER: An easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res 18:188–196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chaisson M, Pevzner P, Tang H (2004) Fragment assembly with short reads. Bioinformatics 20:2067–2074

    Article  CAS  PubMed  Google Scholar 

  • Chantret N, Cenci A, Sabot F, Anderson O, Dubcovsky J (2004) Sequencing of the Triticum monococcum hardness locus reveals good microcolinearity with rice. Mol Genet Genomics 271:377–386

    Article  CAS  PubMed  Google Scholar 

  • Charles M, Belcram H, Just J et al (2008) Dynamics and differential proliferation of transposable elements during the evolution of the B and A genomes of wheat. Genetics 180:1071–1086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choulet F, Wicker T, Rustenholz C et al (2010) Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. Plant Cell 22:1686–1701

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Curwen V, Eyras E, Andrews TD et al (2004) The Ensembl automatic gene annotation system. Genome Res 14:942–950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Devos KM, Ma J, Pontaroli AC et al (2005) Analysis and mapping of randomly chosen bacterial artificial chromosome clones from hexaploid bread wheat. Proc Natl Acad Sci U S A 102:19243–19248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dolezel J, Kubalakova M, Bartos J, Macas J (2004) Flow cytogenetics and plant genome mapping. Chromosome Res 12:77–91

    Article  CAS  PubMed  Google Scholar 

  • Dolezel J, Kubalakova M, Paux E et al (2007) Chromosome-based genomics in the cereals. Chromosome Res 15:51–66

    Article  CAS  PubMed  Google Scholar 

  • Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862–1866

    Article  CAS  PubMed  Google Scholar 

  • Earl D, Bradnam K, JJ St (2011) Assemblathon 1: A competitive assessment of de novo short read assembly methods. Genome Res 21:2224–2241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eid J, Fehr A, Gray J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138

    Article  CAS  PubMed  Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    Article  CAS  Google Scholar 

  • Erayman M, Sandhu D, Sidhu D et al (2004) Demarcating the gene-rich regions of the wheat genome. Nucl Acids Res 32:3546–3565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Estill JC, Bennetzen JL (2009) The DAWGPAWS pipeline for the annotation of genes and transposable elements in plant genomes. Plant Methods 5:8

    Article  PubMed Central  PubMed  Google Scholar 

  • Feldman M, Levy AA (2009) Genome evolution in allopolyploid wheat–a revolutionary reprogramming followed by gradual changes. J Genet Genomics 36:511–518

    Article  CAS  PubMed  Google Scholar 

  • Feuillet C, Eversole K (2007) Physical mapping of the wheat genome: A coordinated effort to lay the foundation for genome sequencing and develop tools for breeders. Isr J Plant Sci 55:307–313

    Article  Google Scholar 

  • Feuillet C, Keller B (1999) High gene density is conserved at syntenic loci of small and large grass genomes. Proc Natl Acad Sci. USA 96:8265–8270

    Article  CAS  Google Scholar 

  • Feuillet C, Salse J (2009) Comparative Genomics in the Triticeae. In: Feuillet C, Muehlbauer GJ (eds) Plant Genetics and Genomics. Springer, New York, pp 451–477

    Google Scholar 

  • Feuillet C, Leach JE, Rogers J et al (2011) Crop genome sequencing: lessons and rationales. Trends Plant Sci 16:77–88

    Article  CAS  PubMed  Google Scholar 

  • Flavell RB, Rimpau J, Smith DB (1977) Repeated sequence DNA relationship in four cereals genomes. Chromosoma 63:205–222

    Article  CAS  Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA et al (2011) Solutions for a cultivated planet. Nature 478:337–342

    Article  CAS  PubMed  Google Scholar 

  • Gill KS, Gill BS, Endo TR, Boyko EV (1996a) Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics 143:1001–1012

    CAS  Google Scholar 

  • Gill KS, Gill BS, Endo TR, Taylor T (1996b) Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics 144:1883–1891

    CAS  Google Scholar 

  • Gill BS, Appels R, Botha-Oberholster A-M et al (2004) A Workshop Report on Wheat Genome Sequencing: International Genome Research on Wheat Consortium. Genetics 168:1087–1096

    Article  PubMed Central  PubMed  Google Scholar 

  • Gnerre S, MacCallum I, Przybylski D et al (2011) High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci. USA 108:1513–1518

    Article  CAS  Google Scholar 

  • Havlak P, Chen R, Durbin KJ et al (2004) The Atlas genome assembly system. Genome Res 14:721–732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hernandez P, Martis M, Dorado G et al (2011) Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. The Plant J: 69:377–386.

    Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • IRGSP IRGSP (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Jaffe DB, Butler J, Gnerre S et al (2003) Whole-genome sequence assembly for mammalian genomes: Arachne 2. Genome Res 13:91–96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Janda J, Bartoš J, Šafář J et al (2004) Construction of a subgenomic BAC library specific for chromosomes 1D, 4D and 6D of hexaploid wheat. Theor Appl Genet 109:1337–1345

    Article  CAS  PubMed  Google Scholar 

  • Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S, Wang B, Yu K, Liang Q, Yang W, Lou X, Chen J, Feng M, Jian J, Zhang X, Luo G, Jiang Y, Liu J, Wang Z, Sha Y, Zhang B, Wu H, Tang D, Shen Q, Xue P, Zou S, Wang X, Liu X, Wang F, Yang Y, An X, Dong Z, Zhang K, Zhang X, Luo MC, Dvorak J, Tong Y, Wang J, Yang H, Li Z, Wang D, Zhang A, Wang J (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90

    Google Scholar 

  • Kubaláková M, Vrána J, Číhalíková J et al (2002) Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.). Theor Appl Genet 104:1362–1372

    Article  PubMed  Google Scholar 

  • Kubaláková M, Kovářová P, Suchánková P et al (2005) Chromosome sorting in tetraploid wheat and its potential for genome analysis. Genetics 170:823–829

    Article  PubMed Central  PubMed  Google Scholar 

  • La Rota M, Sorrells ME (2004) Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat. Funct Integr Genomics 4:34–46

    Article  CAS  PubMed  Google Scholar 

  • Lamoureux D, Peterson DG, Li W et al (2005) The efficacy of Cot-based gene enrichment in wheat (Triticum aestivum L.). Genome 48:1120–1126

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  • Lenzerini M (2002) Data integration: a theoretical perspective. Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems. ACM. Wisconsin, Madison, pp 233–246

    Google Scholar 

  • Leroy P, Guilhot N, Sakai H et al (2012) TriAnnot: a versatile and high performance pipeline for the automated annotation of plant genomes. Frontiers in Plant Sciences 3:1–14

    Google Scholar 

  • Li W, Gill B (2004) Genomics for cereal improvement. In: Gupta PK, Varshney RK (eds) Cereal genomics. Kluwer Academic Publishers, Dordrecht, pp 585–634

    Google Scholar 

  • Li W, Zhang P, Fellers JP et al (2004) Sequence composition, organization, and evolution of the core Triticeae genome. Plant J 40:500–511

    Article  CAS  PubMed  Google Scholar 

  • Li R, Yu C, Li Y et al (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Mao L, Ware D, Stein L (2009) Evidence-based gene predictions in plant genomes. Genome Res 19:1912–1923

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X, Jing R, Zhang C, Ma Y, Gao L, Gao C, Spannagl M, Mayer KF, Li D, Pan S,Zheng F, Hu Q, Xia X, Li J, Liang Q, Chen J, Wicker T, Gou C, Kuang H, He G, Luo Y, Keller B, Xia Q, Lu P, Wang J, Zou H, Zhang R, Xu J, Gao J, Middleton C,Quan Z, Liu G, Wang J; International Wheat Genome Sequencing Consortium, Yang H, Liu X, He Z, Mao L, Wang J (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95

    Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate Trends and Global Crop Production Since 1980. Science DOI:10.1126/science.1204531

    Google Scholar 

  • Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    CAS  PubMed Central  PubMed  Google Scholar 

  • Massa AN, Wanjugi H, Deal KR et al (2011) Gene Space Dynamics During the Evolution of Aegilops tauschii, Brachypodium distachyon, Oryza sativa, and Sorghum bicolor Genomes. Mol Biol Evol 28:2537–2547

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mayer KF, Taudien S, Martis M et al (2009) Gene content and virtual gene order of barley chromosome 1H. Plant Physiol 151:496–505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mayer KF, Martis M, Hedley PE et al (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McFadden E, Sears E (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 37:81–89107

    PubMed  Google Scholar 

  • Metzker ML (2009) Sequencing technologies – the next generation. Nat Rev Genet 11:31–46

    Article  PubMed  Google Scholar 

  • Muniz LM, Cuadrado A, Jouve N, Gonzalez JM (2001) The detection, cloning, and characterisation of WIS 2–1A retrotransposon-like sequences in Triticum aestivum L. and xTriticosecale Wittmack and an examination of their evolution in related Triticeae. Genome 44:979–989

    Article  CAS  PubMed  Google Scholar 

  • Ouyang S, Buell CR (2004) The TIGR Plant Repeat Databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res 32:D360–363

    Google Scholar 

  • Parkhill J, Birney E, Kersey P (2010) Genomic information infrastructure after the deluge. Genome Biol 11:402

    Article  PubMed Central  PubMed  Google Scholar 

  • Paux E, Roger D, Badaeva E et al (2006) Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J 48:463–474

    Article  CAS  PubMed  Google Scholar 

  • Paux E, Sourdille P, Salse J et al (2008) A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322:101–104

    Article  CAS  PubMed  Google Scholar 

  • Paux E, Sourdille P, Mackay I, Feuillet C (2011) Sequence-based marker development in wheat: Advances and applications to breeding. Biotechnol Adv 30:1071–1088

    Article  PubMed  Google Scholar 

  • Pevzner PA, Tang H, Waterman MS (2001) An Eulerian path approach to DNA fragment assembly. Proc Natl Acad Sci U S A 98:9748–9753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qi LL, Echalier B, Chao S et al (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701–712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rabinowicz PD, Citek R, Budiman MA et al (2005) Differential methylation of genes and repeats in land plants. Genome Res 15:1431–1440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rounsley S, Marri P, Yu Y et al (2009) De Novo Next Generation Sequencing of Plant Genomes. Rice 2:35–43

    Article  Google Scholar 

  • Rustenholz C, Choulet F, Laugier C et al (2011) A 3000-loci transcription map of chromosome 3B unravels the structural and functional features of gene islands in hexaploid wheat. Plant Physiol 157:1596–1608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sabot F, Guyot R, Wicker T et al (2005) Updating of transposable element annotations from large wheat genomic sequences reveals diverse activities and gene associations. Mol Genet Genomics 274:119–130

    Article  CAS  PubMed  Google Scholar 

  • Šafář J, Bartoš J, Janda J et al (2004) Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant J 39:960–968

    Article  PubMed  Google Scholar 

  • Šafář J, Šimková H, Kubaláková M et al (2010) Development of chromosome-specific BAC resources for genomics of bread wheat. Cytogenet Genome Res 129:211–223

    Article  PubMed  Google Scholar 

  • Sakata K, Nagamura Y, Numa H et al (2002) RiceGAAS: an automated annotation system and database for rice genome sequence. Nucleic Acids Res 30:98–102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sandhu D, Gill KS (2002) Gene-Containing Regions of Wheat and the Other Grass Genomes. Plant Physiol 128:803–811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci of the United States of America 74:5463–5467

    Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Sears ER (1954) The aneuploid of common wheat. Mo Agr Exp Sta Res Bull 572:1–58

    Google Scholar 

  • Sears ER, Sears L (1978) The telocentric chromosomes of common wheat In: Ramanujams S (ed) Proc 5th Int Wheat Genetics Symp. Indian Agricultural Research Institute, New Delhi, India. , pp 389–407

    Google Scholar 

  • Simkova H, Svensson JT, Condamine P et al (2008) Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics 9:294

    Article  PubMed Central  PubMed  Google Scholar 

  • Simpson JT, Durbin R (2010) Efficient construction of an assembly string graph using the FM-index. Bioinformatics 26:i367–i373

    Google Scholar 

  • Simpson JT, Wong K, Jackman SD et al (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19:1117–1123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith DB, Flavell RB (1975) Characterization of Wheat Genome by Renaturation Kinetics. Chromosoma 50:223–242

    Article  CAS  Google Scholar 

  • Sorrells ME, La Rota M, Bermudez-Kandianis CE et al (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    CAS  PubMed Central  PubMed  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–814

    Article  Google Scholar 

  • Valouev A, Ichikawa J, Tonthat T et al (2008) A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res 18:1051–1063

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Venter JC, Adams MD, Myers EW et al (2001) The Sequence of the Human Genome. Science 291:1304–1351

    Article  CAS  PubMed  Google Scholar 

  • Vitulo N, Albiero A, Forcato C et al (2011) First survey of the wheat chromosome 5A composition through a Next Generation Sequencing approach. PLoS ONE 6:e26421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vrána J, Kubaláková M, Šimková H et al (2000) Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics 156:2033–2041

    PubMed Central  PubMed  Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  CAS  PubMed  Google Scholar 

  • Wei F, Zhang J, Zhou S et al (2009) The physical and genetic framework of the maize B73 genome. PLoS Genet 5:e1000715

    Article  PubMed Central  PubMed  Google Scholar 

  • Wicker T, Stein N, Albar L et al (2001) Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J 26:307–316

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Matthews DE, Keller B (2002) TREP: a database for Triticeae repetitive elements. Trends Plant Sci 7:561–562

    Article  CAS  Google Scholar 

  • Wicker T, Mayer KFX, Gundlach H et al (2011) Frequent gene movement and pseudogene evolution is common to the large and complex genomes of wheat, barley, and their relatives. Plant Cell 23:1706–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G et al (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou S, Bechner M, Place M et al (2007) Validation of rice genome sequence by optical mapping. BMC Genomics 8:278

    Article  PubMed Central  PubMed  Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the old world, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgments

The authors want to thank Hadi Quesneville, Daphné Verdelet, Kirsley Chennen for their feedback on wheat databases. H.Š., J.Š. and J.D. are supported by the Ministry of Education, Youth and Sports of the Czech Republic, the European Regional Development Fund (Operational Programme Research and Development for Innovations No. ED0007/01/01) and by the Czech Science Foundation (award no. P501/10/1740). F. C., P. L. and C. F. are supported by the European Community’s Seventh Framework Programme TriticeaeGenome (grant agreement n°FP7–212019), the Agence Nationale de la Recherche grant ANR(09-GENM-025), FranceAgriMer (201006-015-104) and the competitiveness cluster “Céréales Vallée” (http://www.cereales-vallee.org/default_gb.cfm).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Choulet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Choulet, F. et al. (2014). The Wheat Black Jack: Advances Towards Sequencing the 21 Chromosomes of Bread Wheat. In: Tuberosa, R., Graner, A., Frison, E. (eds) Genomics of Plant Genetic Resources. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7572-5_17

Download citation

Publish with us

Policies and ethics