Skip to main content

Recent Advancements and Prospects of Using Cavitation-Assisted Pretreatment of Lignocellulosic Biomass for Production of Biofuels

  • Living reference work entry
  • First Online:
Handbook of Biorefinery Research and Technology

Abstract

The cavitation phenomenon has been evaluated for several different industrial applications. More recently, cavitation has been used for biomass pretreatment, a fundamental step in biorefineries, required to modify the lignocellulosic biomass structure and composition, favoring subsequent enzymatic hydrolysis of the carbohydrates. The use of cavitation for this application has been resulting in advantages such as high efficiency and low process time. However, to be used in biorefineries, an adequate addressing of cavitation-assisted pretreatment strategies is fundamental, aiming to profitable yield and productivity of the processes at industrial scale. In the developing biorefineries, different alternatives of cavitation pretreatments and operation modes have been considered and systematically evaluated, mainly taking into account variables such as time of pretreatment, temperature, and solid:liquid ratio. Ultrasonic and hydrodynamic cavitation systems have been used for the pretreatment of lignocellulosic biomass under different conditions. Ultrasound has been more studied, and a number of different lignocellulosic materials have been pretreated under diverse ultrasound frequencies combined with other pretreatment technologies. Hydrodynamic cavitation studies for this application are more recent, presenting advantages such as easier scale-up, with orifice plate-based reactors as the most commonly used. Considering cavitation-assisted pretreatment is a promising alternative for biorefineries, this chapter discusses the main advances in this research area. The main cavitation reactors and the different approaches are also discussed, including the authors’ investigations presenting specific advances for hydrodynamic cavitation pretreatment. An overview of different approaches for cavitation pretreatments was presented, focusing on current techniques, advancements, and future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Haq IU, Qaisar K, Nawaz A, Akram F, Mukhtar H, Xu Y, Choong TSY (2021) Advances in valorization of lignocellulosic biomass towards energy generation. Catalysts 11(3):309. https://doi.org/10.3390/catal11030309

    Article  CAS  Google Scholar 

  2. Elumalai S, Agarwal B, Runge TM, Sangwan RS (2018) Advances in transformation of lignocellulosic biomass to carbohydrate-derived fuel precursors. In: Biorefining of biomass to biofuels: opportunities and perception, pp 87–116. https://doi.org/10.1007/978-3-319-67678-4_4

  3. Dias MO, Ensinas AV, Nebra SA, Maciel Filho R, Rossell CE, Maciel MRW (2009) Production of bioethanol and other bio-based materials from sugarcane bagasse: integration to conventional bioethanol production process. Chem Eng Res Des 87(9):1206–1216. https://doi.org/10.1016/j.cherd.2009.06.020

    Article  CAS  Google Scholar 

  4. Goncalves FA, dos Santos ES, de Macedo GR (2015) Use of cultivars of low cost, agroindustrial and urban waste in the production of cellulosic ethanol in Brazil: a proposal to utilization of microdistillery. Renew Sust Energ Rev 50:1287–1303. https://doi.org/10.1016/j.rser.2015.05.047

    Article  CAS  Google Scholar 

  5. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18. https://doi.org/10.1016/j.biortech.2008.05.027

    Article  CAS  PubMed  Google Scholar 

  6. Eskander SM, Fankhauser S (2020) Reduction in greenhouse gas emissions from national climate legislation. Nat Clim Chang 10(8):750–756

    Article  CAS  Google Scholar 

  7. Clark J, Deswarte F (2015) The biorefinery concept: an integrated approach. In: Introduction to chemicals from biomass, pp 1–29. https://doi.org/10.1002/9781118714478.ch1

  8. Yamakawa CK, Qin F, Mussatto SI (2018) Advances and opportunities in biomass conversion technologies and biorefineries for the development of a bio-based economy. Biomass Bioenergy 119:54–60

    Article  CAS  Google Scholar 

  9. Baer P, Harte J, Haya B, Herzog AV, Holdren J, Hultman NE, Raymond L (2000) Equity and greenhouse gas responsibility. Science 289(5488):2287

    Article  CAS  Google Scholar 

  10. Dias MO, Cunha MP, Jesus CD, Rocha GJ, Pradella JGC, Rossell CE, Bonomi A (2011) Second generation ethanol in Brazil: can it compete with electricity production? Bioresour Technol 102(19):8964–8971. https://doi.org/10.1016/j.biortech.2011.06.098

    Article  CAS  PubMed  Google Scholar 

  11. Haldar D, Sen D, Gayen K (2016) A review on the production of fermentable sugars from lignocellulosic biomass through conventional and enzymatic route – a comparison. Int J Green Energy 13(12):1232–1253. https://doi.org/10.1080/15435075.2016.1181075

    Article  CAS  Google Scholar 

  12. Preethi, Gunasekaran M, Kumar G, Karthikeyan OP, Varjani S, Banu JR (2021) Lignocellulosic biomass as an optimistic feedstock for the production of biofuels as valuable energy source: techno-economic analysis, environmental impact analysis, breakthrough and perspectives. Environ Technol Innov 24:102080. https://doi.org/10.1016/j.eti.2021.102080

    Article  CAS  Google Scholar 

  13. Zhang Y, Huang M, Su J, Hu H, Yang M, Huang Z, ... Feng Z (2019) Overcoming biomass recalcitrance by synergistic pretreatment of mechanical activation and metal salt for enhancing enzymatic conversion of lignocellulose. Biotechnol Biofuels 12(1):1–15. https://doi.org/10.1186/s13068-019-1354-6

  14. Hanchar RJ, Teymouri F, Nielson CD, McCalla D, Stowers MD (2007) Separation of glucose and pentose sugars by selective enzyme hydrolysis of AFEX-treated corn fiber. In: Applied biochemistry and biotechnology: the twenty-eighth symposium proceedings of the twenty-eight symposium on biotechnology for fuels and chemicals held April 30–may 3, 2006, in Nashville, Tennessee. Humana Press, pp 313–325. https://doi.org/10.1007/978-1-60327-181-3_28

    Chapter  Google Scholar 

  15. Mankar AR, Pandey A, Modak A, Pant KK (2021) Pretreatment of lignocellulosic biomass: a review on recent advances. Bioresour Technol 334:125235. https://doi.org/10.1016/j.biortech.2021.125235

    Article  CAS  PubMed  Google Scholar 

  16. Shirkavand E, Baroutian S, Gapes DJ, Young BR (2016) Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment – a review. Renew Sust Energ Rev 54:217–234

    Article  CAS  Google Scholar 

  17. Prado CA, Antunes FAF, Rocha TM, Sánchez-Muñoz S, Barbosa FG, Terán-Hilares R, Santos JC (2022) A review on recent developments in hydrodynamic cavitation and advanced oxidative processes for pretreatment of lignocellulosic materials. Bioresour Technol 345:126458. https://doi.org/10.1016/j.biortech.2021.126458

    Article  CAS  PubMed  Google Scholar 

  18. Prasad BR, Padhi RK, Ghosh G (2023) A review on key pretreatment approaches for lignocellulosic biomass to produce biofuel and value-added products. Int J Environ Sci Technol 20(6):6929–6944. https://doi.org/10.1007/s13762-022-04252-2

    Article  CAS  Google Scholar 

  19. Hou Q, Ju M, Li W, Liu L, Chen Y, Yang Q (2017) Pretreatment of lignocellulosic biomass with ionic liquids and ionic liquid-based solvent systems. Molecules 22(3):490. https://doi.org/10.3390/molecules22030490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li C, Tanjore D, He W, Wong J, Gardner JL, Sale KL, Singh S (2013) Scale-up and evaluation of high solid ionic liquid pretreatment and enzymatic hydrolysis of switchgrass. Biotechnol Biofuels 6:1–13. https://doi.org/10.1186/1754-6834-6-154

    Article  CAS  Google Scholar 

  21. Hernández-Beltrán JU, Hernández-De Lira IO, Cruz-Santos MM, Saucedo-Luevanos A, Hernández-Terán F, Balagurusamy N (2019) Insight into pretreatment methods of lignocellulosic biomass to increase biogas yield: current state, challenges, and opportunities. Appl Sci 9(18):3721. https://doi.org/10.3390/app9183721

    Article  CAS  Google Scholar 

  22. Vu HP, Nguyen LN, Vu MT, Johir MAH, McLaughlan R, Nghiem LD (2020) A comprehensive review on the framework to valorise lignocellulosic biomass as biorefinery feedstocks. Sci Total Environ 743:140630. https://doi.org/10.1016/j.scitotenv.2020.140630

    Article  CAS  PubMed  Google Scholar 

  23. Perrone OM, Colombari FM, Rossi JS, Moretti MMS, Bordignon SE, Nunes CDCC, Da-Silva R (2016) Ozonolysis combined with ultrasound as a pretreatment of sugarcane bagasse: effect on the enzymatic saccharification and the physical and chemical characteristics of the substrate. Bioresour Technol 218:69–78. https://doi.org/10.1016/j.biortech.2016.06.072

    Article  CAS  PubMed  Google Scholar 

  24. Gogate PR, Tayal RK, Pandit AB (2006) Cavitation: a technology on the horizon. Curr Sci:35–46

    Google Scholar 

  25. Mason TJ, Lorimer JP (2002) Applied sonochemistry: the uses of power ultrasound in chemistry and processing, vol 10. Wiley-Vch, Weinheim

    Book  Google Scholar 

  26. Bai L, Yan J, Zeng Z, Ma Y (2020) Cavitation in thin liquid layer: a review. Ultrason Sonochem 66:105092. https://doi.org/10.1016/j.ultsonch.2020.105092

    Article  CAS  PubMed  Google Scholar 

  27. Armakolas I, Carlton J (2018) Marine propeller and rudder cavitation erosion from full scale observations and the results of a research programme. Athens J Τechnol Eng 5:337–354

    Article  Google Scholar 

  28. Biryukov D, Gerasimov D, Yurin E (2022) Cavitation and associated phenomena. CRC Press

    Book  Google Scholar 

  29. Noltingk BE, Neppiras EA (1950) Cavitation produced by ultrasonics. Proc Phys Soc Sect B 63(9):674

    Article  Google Scholar 

  30. Kooiman K, Roovers S, Langeveld SA, Kleven RT, Dewitte H, O’Reilly MA, Holland CK (2020) Ultrasound-responsive cavitation nuclei for therapy and drug delivery. Ultrasound Med Biol 46(6):1296–1325. https://doi.org/10.1016/j.ultrasmedbio.2020.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang B, Wang T, Su H (2022) Hydrodynamic cavitation (HC) degradation of tetracycline hydrochloride (TC). Sep Purif Technol 282:120095. https://doi.org/10.1016/j.seppur.2021.120095

    Article  CAS  Google Scholar 

  32. Askarniya Z, Sun X, Wang Z, Boczkaj G (2022) Cavitation-based technologies for pretreatment and processing of food wastes: major applications and mechanisms – a review. Chem Eng J:140388. https://doi.org/10.1016/j.cej.2022.140388

  33. Dos Santos SL (2009) Uso da cavitação hidrodinâmica como uma alternativa para a produção de biodiesel. https://repositorio.fei.edu.br/handle/FEI/616

  34. Terán-Hilares RT, Dionízio RM, Prado CA, Ahmed MA, Da Silva SS, Santos JC (2019) Pretreatment of sugarcane bagasse using hydrodynamic cavitation technology: semi-continuous and continuous process. Bioresour Technol 290:121777. https://doi.org/10.1016/j.biortech.2019.121777

    Article  CAS  PubMed  Google Scholar 

  35. Song WD, Hong MH, Lukyanchuk B, Chong TC (2004) Laser-induced cavitation bubbles for cleaning of solid surfaces. J Appl Phys 95(6):2952–2956. https://doi.org/10.1063/1.1650531

    Article  CAS  Google Scholar 

  36. Gu J, Luo C, Zhou W, Tong Z, Zhang H, Zhang P, Ren X (2020) Degradation of Rhodamine B in aqueous solution by laser cavitation. Ultrason Sonochem 68:105181. https://doi.org/10.1016/j.ultsonch.2020.105181

    Article  CAS  PubMed  Google Scholar 

  37. Capári D, Dörgő G, Dallos A (2016) Comparison of the effects of thermal pretreatment, steam explosion and ultrasonic disintegration on digestibility of corn Stover. J Sustain Dev Energy, Water Environ Syst 4(2):107–126. https://doi.org/10.13044/j.sdewes.2016.04.0010

    Article  Google Scholar 

  38. Liu S, Wang Y, Yang X, Lei B, Liu L, Li SX, Wang T (2019) Deep learning in medical ultrasound analysis: a review. Engineering 5(2):261–275. https://doi.org/10.1016/j.eng.2018.11.020

    Article  Google Scholar 

  39. Madison MJ, Coward-Kelly G, Liang C, Karim MN, Falls M, Holtzapple MT (2017) Mechanical pretreatment of biomass–part I: acoustic and hydrodynamic cavitation. Biomass Bioenergy 98:135–141. https://doi.org/10.1016/j.biombioe.2017.01.007

    Article  CAS  Google Scholar 

  40. Iskalieva A, Yimmou BM, Gogate PR, Horvath M, Horvath PG, Csoka L (2012) Cavitation assisted delignification of wheat straw: a review. Ultrason Sonochem 19(5):984–993

    Article  CAS  PubMed  Google Scholar 

  41. Kim I, Lee I, Jeon SH, Hwang T, Han JI (2015) Hydrodynamic cavitation as a novel pretreatment approach for bioethanol production from reed. Bioresour Technol 192:335–339. https://doi.org/10.1016/j.biortech.2015.05.038

    Article  CAS  PubMed  Google Scholar 

  42. Nakashima K, Ebi Y, Shibasaki-Kitakawa N, Soyama H, Yonemoto T (2016) Hydrodynamic cavitation reactor for efficient pretreatment of lignocellulosic biomass. Ind Eng Chem Res 55(7):1866–1871. https://doi.org/10.1021/acs.iecr.5b04375

    Article  CAS  Google Scholar 

  43. Sawant SS, Anil AC, Krishnamurthy V, Gaonkar C, Kolwalkar J, Khandeparker L, Pandit AB (2008) Effect of hydrodynamic cavitation on zooplankton: a tool for disinfection. Biochem Eng J 42(3):320–328. https://doi.org/10.1016/j.bej.2008.08.001

    Article  CAS  Google Scholar 

  44. Cioncolini A, Scenini F, Duff J, Szolcek M, Curioni M (2016) Choked cavitation in micro-orifices: an experimental study. Exp Thermal Fluid Sci 74:49–57. https://doi.org/10.1016/j.expthermflusci.2015.12.004

    Article  Google Scholar 

  45. Terán-Hilares R, de Almeida GF, Ahmed MA, Antunes FA, da Silva SS, Han JI, Dos Santos JC (2017) Hydrodynamic cavitation as an efficient pretreatment method for lignocellulosic biomass: a parametric study. Bioresour Technol 235:301–308. https://doi.org/10.1016/j.biortech.2017.03.125

  46. Maddikeri GL, Gogate PR, Pandit AB (2014) Intensified synthesis of biodiesel using hydrodynamic cavitation reactors based on the interesterification of waste cooking oil. Fuel 137:285–292. https://doi.org/10.1016/j.fuel.2014.08.013

    Article  CAS  Google Scholar 

  47. Ghayal D, Pandit AB, Rathod VK (2013) Optimization of biodiesel production in a hydrodynamic cavitation reactor using used frying oil. Ultrason Sonochem 20:322–328. https://doi.org/10.1016/j.ultsonch.2012.07.009

    Article  CAS  PubMed  Google Scholar 

  48. Terán-Hilares R, Dos Santos JG, Shiguematsu NB, Ahmed MA, da Silva SS, Santos JC (2019) Low-pressure homogenization of tomato juice using hydrodynamic cavitation technology: effects on physical properties and stability of bioactive compounds. Ultrason Sonochem 54:192–197. https://doi.org/10.1016/j.ultsonch.2019.01.039

  49. Save SS, Pandit AB, Joshi JB (1997) Use of hydrodynamic cavitation for large scale microbial cell disruption. Food Bioprod Process 75(1):41–49. https://doi.org/10.1205/096030897531351

    Article  Google Scholar 

  50. Hallow DM, Mahajan AD, McCutchen TE, Prausnitz MR (2006) Measurement and correlation of acoustic cavitation with cellular bioeffects. Ultrasound Med Biol 32(7):1111–1122. https://doi.org/10.1016/j.ultrasmedbio.2006.03.008

    Article  PubMed  Google Scholar 

  51. Shchukin DG, Skorb E, Belova V, Möhwald H (2011) Ultrasonic cavitation at solid surfaces. Adv Mater 23(17):1922–1934. https://doi.org/10.1002/adma.201004494

    Article  CAS  PubMed  Google Scholar 

  52. Devadasu S, Joshi SM, Gogate PR, Sonawane SH, Suranani S (2020) Intensification of delignification of Tectona grandis saw dust as sustainable biomass using acoustic cavitational devices. Ultrason Sonochem 63:104914. https://doi.org/10.1016/j.ultsonch.2019.104914

    Article  CAS  PubMed  Google Scholar 

  53. Tian SQ, Wang ZY, Fan ZL, Zuo LL (2011) Optimization of CO2 laser-based pretreatment of corn Stover using response surface methodology. Bioresour Technol 102(22):10493–10497. https://doi.org/10.1016/j.biortech.2011.08.066

    Article  CAS  PubMed  Google Scholar 

  54. Li S, Yang X, Zhang Y, Ma H, Qu W, Ye X, ... Oladejo AO (2016) Enzymolysis kinetics and structural characteristics of rice protein with energy-gathered ultrasound and ultrasound assisted alkali pretreatments. Ultrasonics Sonochem 31:85–92. https://doi.org/10.1016/j.ultsonch.2015.12.005

  55. Terán-Hilares R, Ramos L, da Silva SS, Dragone G, Mussatto SI, Santos JCD (2018) Hydrodynamic cavitation as a strategy to enhance the efficiency of lignocellulosic biomass pretreatment. Crit Rev Biotechnol 38(4):483–493

    Google Scholar 

  56. Xiong ZY, Qin YH, Ma JY, Yang L, Wu ZK, Wang TL, ... Wang CW (2017) Pretreatment of rice straw by ultrasound-assisted Fenton process. Bioresource Technol 227:408–411. https://doi.org/10.1016/j.biortech.2016.12.105

  57. Bagheri S, Muhd Julkapli N, Bee Abd Hamid S (2015) Functionalized activated carbon derived from biomass for Photocatalysis applications perspective. Int J Photoenergy. https://doi.org/10.1029/j.bich.2019.122725

  58. Dong C, Chen J, Guan R, Li X, Xin Y (2018) Dual-frequency ultrasound combined with alkali pretreatment of corn stalk for enhanced biogas production. Renew Energy 127:444–451. https://doi.org/10.1016/j.renene.2018.03.088

    Article  CAS  Google Scholar 

  59. He Z, Qian J, Wang Z, Yi S, Mu J (2018) Effects of ultrasound pretreatment on eucalyptus thermal decomposition characteristics as determined by thermogravimetric, differential scanning calorimetry, and Fourier transform infrared analysis. ACS Omega 3(6):6611–6616. https://doi.org/10.1021/acsomega.8b00382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yu X, Bao X, Zhou C, Zhang L, Yagoub AEGA, Yang H, Ma H (2018) Ultrasound-ionic liquid enhanced enzymatic and acid hydrolysis of biomass cellulose. Ultrason Sonochem 41:410–418. https://doi.org/10.1016/j.ultsonch.2017.09.003

    Article  CAS  PubMed  Google Scholar 

  61. AlMomani F, Shawaqfah M, Alsarayreh M, Khraisheh M, Hameed BH, Naqvi SR, ... Varjani S (2022) Developing pretreatment methods to promote the production of biopolymer and bioethanol from residual algal biomass (RAB). Algal Res 68:102895. https://doi.org/10.1016/j.algal.2022.102895

  62. Li M, Jiang H, Zhang L, Yu X, Liu H, Yagoub AEA, Zhou C (2020) Synthesis of 5-HMF from an ultrasound-ionic liquid pretreated sugarcane bagasse by using a microwave-solid acid/ionic liquid system. Ind Crop Prod 149:112361. https://doi.org/10.1016/j.indcrop.2020.112361

    Article  CAS  Google Scholar 

  63. Wu Z, Ferreira DF, Crudo D, Bosco V, Stevanato L, Costale A, Cravotto G (2019) Plant and biomass extraction and valorisation under hydrodynamic cavitation. PRO 7(12):965

    CAS  Google Scholar 

  64. Terán-Hilares R, Dionízio RM, Muñoz SS, Prado CA, de Sousa Júnior R, da Silva SS, Santos JC (2020) Hydrodynamic cavitation-assisted continuous pre-treatment of sugarcane bagasse for ethanol production: effects of geometric parameters of the cavitation device. Ultrason Sonochem 63:104931. https://doi.org/10.1016/j.ultsonch.2019.104931

  65. Nalawade K, Saikia P, Behera S, Konde K, Patil S (2020) Assessment of multiple pretreatment strategies for 2G L-lactic acid production from sugarcane bagasse. Biomass Convers Biorefinery:1–14

    Google Scholar 

  66. Terán-Hilares R, Dos Santos JC, Ahmed MA, Jeon SH, da Silva SS, Han JI (2016) Hydrodynamic cavitation-assisted alkaline pretreatment as a new approach for sugarcane bagasse biorefineries. Bioresour Technol 214:609–614. https://doi.org/10.1016/j.biortech.2016.05.004

  67. Patil PN, Gogate PR, Csoka L, Dregelyi-Kiss A, Horvath M (2016) Intensification of biogas production using pretreatment based on hydrodynamic cavitation. Ultrason Sonochem 30:79–86. https://doi.org/10.1016/j.ultsonch.2015.11.009

    Article  CAS  PubMed  Google Scholar 

  68. Thangavelu K, Desikan R, Taran OP, Uthandi S (2018) Delignification of corncob via combined hydrodynamic cavitation and enzymatic pretreatment: process optimization by response surface methodology. Biotechnol Biofuels 11(1):1–13

    Article  Google Scholar 

  69. Bimestre TA, Júnior JAM, Botura CA, Canettieri E, Tuna CE (2020) Theoretical modeling and experimental validation of hydrodynamic cavitation reactor with a Venturi tube for sugarcane bagasse pretreatment. Bioresour Technol 311:123540. https://doi.org/10.1016/j.biortech.2020.123540

    Article  CAS  PubMed  Google Scholar 

  70. Prado CA, Cunha MS, Terán-Hilares R, Arruda GL, Antunes FAF, Pereira B, ... Santos JC (2023) Hydrodynamic cavitation–assisted oxidative pretreatment and sequential production of ethanol and xylitol as innovative approaches for sugarcane Bagasse biorefineries. BioEnergy Res 1–13. https://doi.org/10.1007/s12155-022-10555-6

  71. Ranade VV, Bhandari VM, Nagarajan S, Sarvothaman VP, Simpson AT (2022) Hydrodynamic cavitation: devices, design and applications. Wiley

    Book  Google Scholar 

  72. Sun X, Liu S, Zhang X, Tao Y, Boczkaj G, Yoon JY, Xuan X (2021) Recent advances in hydrodynamic cavitation-based pretreatments of lignocellulosic biomass for valorization. Bioresour Technol 126251. https://doi.org/10.1016/j.biortech.2021.126251

  73. Zhong X, Eshraghi J, Vlachos P, Dabiri S, Ardekani AM (2020) A model for a laser-induced cavitation bubble. Int J Multiphase Flow 132:103433. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103433

    Article  CAS  Google Scholar 

  74. Brujan EA, Nahen K, Schmidt P, Vogel A (2001) Dynamics of laser-induced cavitation bubbles near an elastic boundary. J Fluid Mech 433:251–281. https://doi.org/10.1017/S0022112000003347

    Article  CAS  Google Scholar 

  75. Tong Y, Lu J, Wang C, Jiang B, Ding L, Ren X (2023) Enhanced mechanism and experimental research of laser cavitation degradation of methylene blue by AuNPs. Opt Laser Technol 160:109049. https://doi.org/10.1016/j.optlastec.2022.109049

    Article  CAS  Google Scholar 

  76. Philipp A, Lauterborn W (1998) Cavitation erosion by single laser-produced bubbles. J Fluid Mech 361:75–116

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil (CAPES) Finance code 001. The authors also gratefully acknowledge the Fundação de Amparo à Pesquisa do Estado de São Paulo (São Paulo Research Foundation – FAPESP, grant #2016/10636-8, grant #2020/12059-3, grant#2020/16638-8), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil, grant 305416/2021-9)

Declaration

Declaration of AI and AI-assisted technologies in the writing process: During the preparation of this work, the authors used the free version of CHATGPT (provided by OpenAI, San Francisco, California, U.S.; available at https://openai.com/blog/chatgpt) in order to partially aid with the language edition. After, the authors reviewed and edited the content as needed and take full responsibility for the content of the publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Santos .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Prado, C.A. et al. (2024). Recent Advancements and Prospects of Using Cavitation-Assisted Pretreatment of Lignocellulosic Biomass for Production of Biofuels. In: Bisaria, V. (eds) Handbook of Biorefinery Research and Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6724-9_63-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6724-9_63-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6724-9

  • Online ISBN: 978-94-007-6724-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics