Skip to main content

Advances in Transformation of Lignocellulosic Biomass to Carbohydrate-Derived Fuel Precursors

  • Chapter
  • First Online:
Biorefining of Biomass to Biofuels

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 4))

Abstract

Cellulosebased, second-generation biofuels have been considered as an alternative fuel source to compensate for depleting fossil fuel reserves. Considering compounds that may be obtained from lignocellulose during biorefining, furfural, 5-hydroxymethylfurfural, and levulinic acid are among the most promising building blocks for energy fuels preparation via chemical or biological synthesis reactions and are thus described as platform chemicals. In this chapter, we present a review on advances made over the traditional strategies for the preparation of these fuel precursors from biomass. The recalcitrant nature of biomass, caused primarily by cellulose crystallinity and nonreactive lignin, hampers the successful commercialization of these valuable by-product chemicals. To date, different processes and production schemes have been adapted to improve product yields and lower production costs and include examples such as supermolecular structure modification of cellulose for improved saccharification using solvents or selective removal or displacement of biomass constituents such as lignin to improve enzyme mobility. Additionally, schemes have included direct conversion of biomass including forestry and secondary agricultural residues to platform chemicals using novel catalysts and reaction systems such biphasic or extractive distillation. Unfortunately, the details of most biomass chemical and biochemical reactions are still unclear, due to their complex nature, hindering improvements to the process. Thus, continued research and development is needed to further understand the biomass component characteristics, the overall cell wall, interrelationships between fractional components, transformation of component during reaction, and competing degradation reactions. This research is critical to enable natural lignocellulosic materials utilization to value-added chemicals during the production of fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal B, Ahluwalia V, Pandey A, Sangwan RS, Elumalai S (2017) Sustainable production of chemicals and energy fuel precursors from lignocellulosic fractions. In: Agarwal AK, Agarwal RA, Gupta T, Gurjar BR (eds) Biofuels: technology, challenges and prospects. Springer Singapore, Singapore, pp 7–33. doi:10.1007/978-981-10-3791-7_2

  • Balan V, Bals B, Chundawat SP, Marshall D, Dale BE (2009) Lignocellulosic biomass pretreatment using AFEX. In: Mielenz JR (ed) Biofuels: methods and protocols, vol 581. Humana Press, USA, pp 61–77

    Chapter  Google Scholar 

  • Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86(11):2273–2282

    Article  Google Scholar 

  • Beerthuis R, Rothenberg G, Shiju NR (2015) Catalytic routes towards acrylic acid, adipic acid and ε-caprolactam starting from biorenewables. Green Chem 17(3):1341–1361

    Article  Google Scholar 

  • Betts W, Dart R, Ball A, Pedlar S (1991) Biosynthesis and structure of lignocellulose. In: BW B (ed) Biodegradation: natural and synthetic materials. Springer, London, pp 139–155 (Applied Biology)

    Google Scholar 

  • Binder JB, Raines RT (2009) Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc 131(5):1979–1985

    Article  Google Scholar 

  • Binder JB, Raines RT (2010) Fermentable sugars by chemical hydrolysis of biomass. Proc Natl Acad Sci 107(10):4516–4521

    Article  Google Scholar 

  • Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, Kurien N, Sukumaran RK, Pandey A (2010) Bioethanol production from rice straw: an overview. Biores Technol 101(13):4767–4774

    Article  Google Scholar 

  • Bond JQ, Upadhye AA, Olcay H, Tompsett GA, Jae J, Xing R, Alonso DM, Wang D, Zhang T, Kumar R (2014) Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic processing of biomass. Energy Environ Sci 7(4):1500–1523

    Article  Google Scholar 

  • Bonner T, Bourne E, Ruszkiewicz M (1960) The iodine-catalysed conversion of sucrose into 5-hydroxy-methylfurfuraldehyde. J Chem Soc (Resumed) 787–791

    Google Scholar 

  • Bordy T (1999) Nutrients that resist or escape digestion. In: Brody T (ed) Nutritional biochemistry, 2nd edn. Academic Press, USA, pp 133–154

    Chapter  Google Scholar 

  • Bozell JJ, Moens L, Elliott D, Wang Y, Neuenscwander G, Fitzpatrick S, Bilski R, Jarnefeld J (2000) Production of levulinic acid and use as a platform chemical for derived products. Resour Conserv Recycl 28(3):227–239

    Article  Google Scholar 

  • Brunow G, Lundquist K (2010) Functional groups and bonding patterns in lignin (including the lignin-carbohydrate complexes). In: Heitner C, Dimmel D, Schmidt J (eds) Lignin and lignans: advances in chemistry. CRC Press, USA, pp 267–299

    Chapter  Google Scholar 

  • Cai CM, Zhang T, Kumar R, Wyman CE (2014) Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass. J Chem Technol Biotechnol 89(1):2–10

    Article  Google Scholar 

  • Camacho F, Gonzalez-Tello P, Jurado E, Robles A (1996) Microcrystalline-cellulose hydrolysis with concentrated sulphuric acid. J Chem Technol Biotechnol 67(4):350–356

    Article  Google Scholar 

  • Cao N-J, Xu Q, Chen C-S, Gong C, Chen L (1994) Cellulose hydrolysis using zinc chloride as a solvent and catalyst. Appl Biochem Biotechnol 45(1):521–530

    Article  Google Scholar 

  • Cengiz M, Dincturk OD, Sahin HT (2010) Fractional extraction and structural characterization of opium poppy and cotton stalks hemicelluloses. Pharmacognosy Mag 6(24):315

    Article  Google Scholar 

  • Chen H (2014) Chemical composition and structure of natural lignocellulose. In: Chen H (ed) Biotechnology of lignocellulose: theory and practice. Springer, Netherlands, pp 25–71

    Chapter  Google Scholar 

  • Chheda JN, Román-Leshkov Y, Dumesic JA (2007) Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono-and poly-saccharides. Green Chem 9(4):342–350

    Article  Google Scholar 

  • Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107(6):2411–2502

    Article  Google Scholar 

  • Cottier L, Descotes G, Eymard L, Rapp K (1995) Syntheses of γ-oxo acids or γ-oxo esters by photooxygenation of furanic compounds and reduction under ultrasound: application to the synthesis of 5-aminolevulinic acid hydrochloride. Synthesis 03:303–306

    Article  Google Scholar 

  • da Costa Lopes AM, João KG, Morais ARC, Bogel-Łukasik E, Bogel-Łukasik R (2013) Ionic liquids as a tool for lignocellulosic biomass fractionation. Sustainable Chemical Processes 1(3):1–31

    Google Scholar 

  • Dias AS, Pillinger M, Valente AA (2005) Liquid phase dehydration of d-xylose in the presence of Keggin-type heteropolyacids. Appl Catal A 285(1):126–131

    Article  Google Scholar 

  • Du W, Yu H, Song L, Zhang J, Weng C, Ma F, Zhang X (2011) The promoting effect of byproducts from Irpex lacteus on subsequent enzymatic hydrolysis of bio-pretreated cornstalks. Biotechnol Biofuels 4:37–44

    Article  Google Scholar 

  • Dutta S, Wu KC-W (2014) Enzymatic breakdown of biomass: enzyme active sites, immobilization, and biofuel production. Green Chem 16(11):4615–4626

    Article  Google Scholar 

  • EIA (2011) International energy statistics. US Energy and Information Administration, Washington, DC

    Google Scholar 

  • Elumalai S, Pan X (2011) Chemistry and reactions of forest biomass in biorefining. In: Zhu J, Zhang X, Pan X (eds) Sustainable production of fuels, chemicals, and fibers from forest biomass. ACS symposium series, vol 1067. American Chemical Society, USA, pp 109–144

    Google Scholar 

  • Fierro JLG (2005) Metal oxides: chemistry and applications. CRC Press, USA

    Book  Google Scholar 

  • Fitzpatrick SW (1997) Production of levulinic acid from carbohydrate-containing materials. US Patent 5,608,105

    Google Scholar 

  • Galbe M, Wallberg O, Zacchi G (2013) Cellulosic bioethanol production. In: Ramaswamy, Huang HJ, Ramarao BV (eds) Separation and purification technologies in biorefineries. Wiley, USA, pp 487–501

    Chapter  Google Scholar 

  • Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. In: Olsson L (ed) Biofuels. Advances in biochemical engineering/biotechnology, vol 108. Springer, Berlin, pp 41–65

    Google Scholar 

  • Gallo JMR, Alonso DM, Mellmer MA, Dumesic JA (2013) Production and upgrading of 5-hydroxymethylfurfural using heterogeneous catalysts and biomass-derived solvents. Green Chem 15(1):85–90

    Article  Google Scholar 

  • Ghorpade V, Hanna M (1997) Industrial applications for levulinic acid. In: Campbell G, Webb C, McKee S (eds) Cereals. Springer, USA, pp 49–55

    Chapter  Google Scholar 

  • Girisuta B, Dussan K, Haverty D, Leahy J, Hayes M (2013) A kinetic study of acid catalysed hydrolysis of sugar cane bagasse to levulinic acid. Chem Eng J 217:61–70

    Article  Google Scholar 

  • Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315(5813):808–810

    Article  Google Scholar 

  • Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund M-F, Lidén G, Zacchi G (2006) Bio-ethanol–the fuel of tomorrow from the residues of today. Trends Biotechnol 24(12):549–556

    Article  Google Scholar 

  • Hansen TS, Mielby J, Riisager A (2011) Synergy of boric acid and added salts in the catalytic dehydration of hexoses to 5-hydroxymethylfurfural in water. Green Chem 13(1):109–114

    Article  Google Scholar 

  • Hattori H, Ono Y (2015) Solid acid catalysis: from fundamentals to applications. CRC Press, Singapore

    Book  Google Scholar 

  • Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH (2008) The biofine process—production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks. In: Birgit Kamm, Gruber PR, Kamm M (eds) Biorefineries-industrial processes and products. Wiley-VCH Verlag GmbH, Germany, pp 139–164

    Google Scholar 

  • Heeres H, Handana R, Chunai D, Rasrendra CB, Girisuta B, Heeres HJ (2009) Combined dehydration/(transfer)-hydrogenation of C6-sugars (d-glucose and d-fructose) to γ-valerolactone using ruthenium catalysts. Green Chem 11(8):1247–1255

    Article  Google Scholar 

  • Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807

    Article  Google Scholar 

  • Horvat J, Klaić B, Metelko B, Šunjić V (1985) Mechanism of levulinic acid formation. Tetrahedron Lett 26(17):2111–2114

    Article  Google Scholar 

  • Hoshino E, Shiroishi M, Amano Y, Nomura M, Kanda T (1997) Synergistic actions of exo-type cellulases in the hydrolysis of cellulose with different crystallinities. J Ferment Bioeng 84(4):300–306

    Article  Google Scholar 

  • Hu L, Zhao G, Hao W, Tang X, Sun Y, Lin L, Liu S (2012) Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes. RSC Adv 2(30):11184–11206

    Article  Google Scholar 

  • Huang Y-B, Fu Y (2013) Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chem 15(5):1095–1111

    Article  Google Scholar 

  • Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098

    Article  Google Scholar 

  • Izumi Y, Urabe K, Onaka M (1992) Zeolite, clay, and heteropoly acid in organic reactions. VCH, Germany

    Google Scholar 

  • Kim B, Jeong J, Lee D, Kim S, Yoon H-J, Lee Y-S, Cho JK (2011) Direct transformation of cellulose into 5-hydroxymethyl-2-furfural using a combination of metal chlorides in imidazolium ionic liquid. Green Chem 13(6):1503–1506

    Article  Google Scholar 

  • Krawielitzki S, Kläusli TM (2015) Modified hydrothermal carbonization process for producing biobased 5-HMF platform chemical. Indus Biotechnol 11(1):6–8

    Article  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    Article  Google Scholar 

  • Lange JP, van der Heide E, van Buijtenen J, Price R (2012) Furfural—a promising platform for lignocellulosic biofuels. Chemsuschem 5(1):150–166

    Article  Google Scholar 

  • Laureano-Perez L, Teymouri F, Alizadeh H, Dale BE (2005) Understanding factors that limit enzymatic hydrolysis of biomass. Appl Biochem Biotechnol 124(1–3):1081–1099

    Article  Google Scholar 

  • Lewkowski J (2001) Synthesis, chemistry and applications of 5-hydroxymethyl-furfural and its derivatives. Arch Org Chem 1:17–54

    Google Scholar 

  • Li B, Varanasi S, Relue P (2013) High yield aldose–ketose transformation for isolation and facile conversion of biomass sugar to furan. Green Chem 15(8):2149–2157

    Article  Google Scholar 

  • Li C, Zhao ZK (2007) Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid. Adv Synth Catal 349(11–12):1847–1850

    Article  Google Scholar 

  • Li H, Qu Y, Xu J (2015) Microwave-assisted conversion of lignin. In: Fang Z, Smith RL, Qi X (eds) Production of biofuels and chemicals with microwave. Biofuels and biorefineries, vol 3. Springer, Netherlands, pp 61–82

    Google Scholar 

  • Lin H, Strull J, Liu Y, Karmiol Z, Plank K, Miller G, Guo Z, Yang L (2012) High yield production of levulinic acid by catalytic partial oxidation of cellulose in aqueous media. Energy Environ Sci 5(12):9773–9777

    Article  Google Scholar 

  • Liu J, Tang Y, Wu K, Bi C, Cui Q (2012) Conversion of fructose into 5-hydroxymethylfurfural (HMF) and its derivatives promoted by inorganic salt in alcohol. Carbohyd Res 350:20–24

    Article  Google Scholar 

  • Lucas M, Gregory WL, Kirk RD (2012) Application of ionic liquids in the conversion of native lignocellulosic biomass to biofuels. In: Baskar C, Baskar S, Dhillon R (eds) Biomass conversion: the interface of biotechnology, chemistry and materials science. Springer, Berlin, pp 145–186

    Chapter  Google Scholar 

  • Luterbacher JS, Martin Alonso D, Dumesic JA (2014a) Targeted chemical upgrading of lignocellulosic biomass to platform molecules. Green Chem 16(12):4816–4838. doi:10.1039/C4GC01160K

    Article  Google Scholar 

  • Luterbacher JS, Rand JM, Alonso DM, Han J, Youngquist JT, Maravelias CT, Pfleger BF, Dumesic JA (2014b) Nonenzymatic sugar production from biomass using biomass-derived γ-valerolactone. Science 343(6168):277–280

    Article  Google Scholar 

  • Mandalika A, Runge T (2012) Enabling integrated biorefineries through high-yield conversion of fractionated pentosans into furfural. Green Chem 14(11):3175–3184

    Article  Google Scholar 

  • Marcotullio G (2011) The chemistry and technology of furfural production in modern lignocellulose-feedstock biorefineries. Arkhé, Netherlands

    Google Scholar 

  • Moreau C, Durand R, Peyron D, Duhamet J, Rivalier P (1998) Selective preparation of furfural from xylose over microporous solid acid catalysts. Ind Crops Prod 7(2):95–99

    Article  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee Y, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Biores Technol 96(6):673–686

    Article  Google Scholar 

  • Nakagame S, Chandra RP, Kadla JF, Saddler JN (2011) Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin. Biotechnol Bioeng 108(3):538–548

    Article  Google Scholar 

  • Obst JR, Laaducci LL (1986) The syringyl content of softwood lignin. J Wood Chem Technol 6(3):311–327

    Article  Google Scholar 

  • Onda A, Ochi T, Yanagisawa K (2008) Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem 10(10):1033–1037

    Article  Google Scholar 

  • Peng L, Lin L, Zhang J, Zhuang J, Zhang B, Gong Y (2010) Catalytic conversion of cellulose to levulinic acid by metal chlorides. Molecules 15(8):5258–5272

    Article  Google Scholar 

  • Pérez S, Mazeau K (2004) Conformations, structures, and morphologies of celluloses. In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility, vol 2. Marcel Dekker, USA, pp 41–68

    Google Scholar 

  • Potvin J, Sorlien E, Hegner J, DeBoef B, Lucht BL (2011) Effect of NaCl on the conversion of cellulose to glucose and levulinic acid via solid supported acid catalysis. Tetrahedron Lett 52(44):5891–5893

    Article  Google Scholar 

  • Rackemann DW, Doherty WO (2011) The conversion of lignocellulosics to levulinic acid. Biofuels, Bioprod Biorefin 5(2):198–214

    Article  Google Scholar 

  • Ragg P, Fields P, Tinker P (1987) The development of a process for the hydrolysis of lignocellulosic waste philosophical transactions of the royal society of london a: mathematical. Phys Eng Sci 321(1561):537–547

    Article  Google Scholar 

  • Rinaldi R, Palkovits R, Schüth F (2008) Depolymerization of cellulose using solid catalysts in ionic liquids. Angew Chem Int Ed 47(42):8047–8050

    Article  Google Scholar 

  • Rogers RN (2008) A chemist’s perspective on the shroud of turin. University of California, USA

    Google Scholar 

  • Rosatella AA, Simeonov SP, Frade RF, Afonso CA (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chem 13(4):754–793

    Article  Google Scholar 

  • Rouilly A, Vaca-Garcia C (2015) Bio-based materials. In: Clark J, Deswarte F (eds) Introduction to chemicals from biomass. Wiley, UK, pp 205–245

    Google Scholar 

  • Rout PK, Nannaware AD, Prakash O, Rajasekharan R (2014) Depolymerization of cellulose and synthesis of hexitols from cellulose using heterogeneous catalysts. ChemBioEng Rev 1(3):96–116

    Article  Google Scholar 

  • Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454(7206):841–845

    Article  Google Scholar 

  • Runge T, Zhang C (2012) Two-stage acid-catalyzed conversion of carbohydrates into levulinic acid. Ind Eng Chem Res 51(8):3265–3270

    Article  Google Scholar 

  • Ryu D, Lee S (1982) Enzymatic hydrolysis of cellulose: effects of structural properties of cellulose on hydrolysis kinetics. In: Chibata I, Fukui S, Wingard LB (eds) Enzyme Engineering. Springer, USA, pp 325–333

    Chapter  Google Scholar 

  • Saeman JF (1945) Kinetics of wood saccharification-hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Ind Eng Chem 37(1):43–52

    Article  Google Scholar 

  • Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: An overview. Renewable Energy 37(1):19–27

    Article  Google Scholar 

  • Sawin JL, Sverrisson F, Chawla K, Lins C, Adib R, Hullin M, Leitner S, Mazzaccaro S, Murdock H, Williamson LE (2014) Renewables 2014. Global Status Report 2014

    Google Scholar 

  • Sheldon RA (2014) Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem 16(3):950–963

    Article  Google Scholar 

  • Shimizu K-i, Furukawa H, Kobayashi N, Itaya Y, Satsuma A (2009) Effects of Brønsted and Lewis acidities on activity and selectivity of heteropolyacid-based catalysts for hydrolysis of cellobiose and cellulose. Green Chem 11(10):1627–1632

    Article  Google Scholar 

  • Ståhlberg J, Johansson G, Pettersson G (1991) A new model for enzymatic hydrolysis of cellulose based on the two-domain structure of cellobiohydrolase I. Nat Biotechnol 9(3):286–290

    Article  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Biores Technol 83(1):1–11

    Article  MathSciNet  Google Scholar 

  • Sun Z, Cheng M, Li H, Shi T, Yuan M, Wang X, Jiang Z (2012) One-pot depolymerization of cellulose into glucose and levulinic acid by heteropolyacid ionic liquid catalysis. RSC Adv 2(24):9058–9065

    Article  Google Scholar 

  • Szostak R (1991) Modified zeolites. Stud Surf Sci Catal 58:153–199

    Article  Google Scholar 

  • Takagaki A, Ohara M, Nishimura S, Ebitani K (2009) A one-pot reaction for biorefinery: combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides. Chem Commun 41:6276–6278

    Article  Google Scholar 

  • Takanori F, Fatai Olumide B, Horsfall L (2014) Microbial enzyme systems for lignin degradation and their transcriptional regulation. Front Biol 9(6):448–471. doi:10.1007/s11515-014-1336-9

    Article  Google Scholar 

  • Tong X, Ma Y, Li Y (2010) Biomass into chemicals: conversion of sugars to furan derivatives by catalytic processes. Appl Catal A 385(1):1–13

    Article  Google Scholar 

  • Van de Vyver S, Geboers J, Jacobs PA, Sels BF (2011) Recent advances in the catalytic conversion of cellulose. ChemCatChem 3(1):82–94

    Article  Google Scholar 

  • van Putten R-J, van der Waal JC, De Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113(3):1499–1597

    Article  Google Scholar 

  • vom Stein T, Grande PM, Leitner W, Domínguez de María P (2011) Iron‐catalyzed furfural production in biobased biphasic systems: from pure sugars to direct use of crude xylose effluents as feedstock. ChemSusChem 4 (11):1592–1594

    Google Scholar 

  • Wang J, Ren J, Liu X, Lu G, Wang Y (2013) High yield production and purification of 5-hydroxymethylfurfural. AIChE J 59(7):2558–2566

    Article  Google Scholar 

  • Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee Y (2005a) Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Biores Technol 96(18):2026–2032

    Article  Google Scholar 

  • Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee Y (2005b) Coordinated development of leading biomass pretreatment technologies. Biores Technol 96(18):1959–1966

    Article  Google Scholar 

  • Wyman CE, Decker SR, Himmel ME, Brady JW, Skopec CE, Viikari L (2004) Hydrolysis of cellulose and hemicellulose. In: S Dumitriu (ed) Polysaccharides: structural diversity and functional versatility, vol 1. Marcel Dekker, USA, pp 1023–1062

    Google Scholar 

  • Xing R, Subrahmanyam AV, Olcay H, Qi W, van Walsum GP, Pendse H, Huber GW (2010) Production of jet and diesel fuel range alkanes from waste hemicellulose-derived aqueous solutions. Green Chem 12(11):1933–1946

    Article  Google Scholar 

  • Yan H, Yang Y, Tong D, Xiang X, Hu C (2009) Catalytic conversion of glucose to 5-hydroxymethylfurfural over SO4 2−/ZrO2 and SO4 2−/ZrO2–Al2O3 solid acid catalysts. Catal Commun 10(11):1558–1563

    Article  Google Scholar 

  • Yang B, Dai Z, Ding S-Y, Wyman CE (2011) Enzymatic hydrolysis of cellulosic biomass. Biofuels 2(4):421–449

    Article  Google Scholar 

  • Yang Y, C-w Hu, Abu-Omar MM (2012) Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl3·6H2O catalyst in a biphasic solvent system. Green Chem 14(2):509–513

    Article  Google Scholar 

  • Yu Z, Gwak KS, Treasure T, Jameel H, Hm Chang, Park S (2014) Effect of lignin chemistry on the enzymatic hydrolysis of woody biomass. Chemsuschem 7(7):1942–1950

    Article  Google Scholar 

  • Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci 13(8):421–429

    Article  Google Scholar 

  • Zhang Z, Zhao ZK (2010) Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid. Biores Technol 101(3):1111–1114

    Article  Google Scholar 

  • Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316(5831):1597–1600

    Article  Google Scholar 

  • Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioprod Biorefin 6(4):465–482

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Department of Biotechnology (DBT), Government of India for their financial support. S. Elumalai thanks Department of Science and Technology (DST), New Delhi for providing financial assistance through fast track young scientist scheme (Grant No. YSS/2014/000031).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sasikumar Elumalai or Rajender S. Sangwan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elumalai, S., Agarwal, B., Runge, T.M., Sangwan, R.S. (2018). Advances in Transformation of Lignocellulosic Biomass to Carbohydrate-Derived Fuel Precursors. In: Kumar, S., Sani, R. (eds) Biorefining of Biomass to Biofuels. Biofuel and Biorefinery Technologies, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-67678-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67678-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67677-7

  • Online ISBN: 978-3-319-67678-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics