Skip to main content

Gamete Interactions and the Initiation of Egg Activation in Sea Urchins

  • Conference paper
Mechanism of Fertilization: Plants to Humans

Part of the book series: NATO ASI Series ((ASIH,volume 45))

Abstract

The earliest perceivable response of echinoid eggs to the fertilizing sperm is a transient depolarization, the activation or fertilization potential (Steinhardt et al., 1971; Jaffe, 1976; Chambers and de Armendi, 1979). This change in electrical activity involves the appearance of sperm associated ion channels, which depolarize the plasma membrane, as well as the opening of voltage-dependent calcium channels (Chambers and de Armendi, 1979). These changes constitute Phase 1 (Lynn et al., 1988; Chambers, 1989). In voltage clamped eggs, sperm which induce Phase 1 either enter or fail to enter the egg. If sperm penetration occurs, the inward current of Phase 1, initiating Phase 2, continues to increase; if sperm penetration fails to occur the inward current is abruptly severed. During Phase 2 a large, rapid and transient increase in intracellular free calcium (Steinhardt and Epel, 1974; Steinhardt et al., 1977; Whitaker and Steinhardt, 1982; Jaffe, 1983) propagates in the form of a wave from the point of gamete interaction to the opposite pole of the egg (Eisen et al., 1984; Swan and Whitaker, 1986; Yoshimoto et al., 1987). This wave of increased intracellular calcium is initiated following a latent period (Phase 1) of approximately 12 sec and stimulates the egg from its quiescent state to proliferation and embryogenesis (Chambers, 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berridge MJ, Irvine RF (1984) Inositol triphosphate, a novel second messenger in signal transduction, Nature 312:315–318

    Article  PubMed  CAS  Google Scholar 

  • Brandriff B, Hinegardner RT, Steinhardt R (1975) Development and life cycle of the parthenogenetically activated sea urchin embryo. J Exp Zool 192:13–24

    Article  PubMed  CAS  Google Scholar 

  • Chambers EL (1989) Fertilization in voltage-clamped sea urchin eggs. In: Mechanisms of Egg Activation. Nuccitelli, Cherr, GN, Clark WH, Jr., (eds). Plenum Press, New York, pp 1–18

    Google Scholar 

  • Chambers EL, DeArmendi J (1979) Membrane potential, action potential and activation potential of eggs of the sea urchin, Lytechinus variegatus. Exp. Cell Res., 122:203–218

    Article  PubMed  CAS  Google Scholar 

  • Chandler DE, Heuser J (1979) Membrane fusion during secretion. Cortical granule exocytosis in sea urchin eggs as studied by quick-freezing and freeze-fracture. J. Cell Biol., 69:521–538

    Google Scholar 

  • Ciapa B, Whitaker MJ (1986) Two phases of inositol polyphosphate and diacylglycerol production of fertilization. FEBS Lett., 195:137–140

    Article  Google Scholar 

  • Clark AW (1976) Changes in the structure of neuromuscular junctions caused by variations in osmotic pressure. J. Cell Biol., 69:521–538

    Article  PubMed  CAS  Google Scholar 

  • Dale B, DeFelice LJ, Ehrenstein G (1985) Injection of a soluble sperm fraction into sea urchin eggs triggers the cortical reaction. Experientia, 41:1068–1070

    Article  PubMed  CAS  Google Scholar 

  • Eddy EM, Shapiro BM (1976) Changes in the topography of the sea urchin egg after fertilization. J. Cell Biol., 71:35–48

    Article  PubMed  CAS  Google Scholar 

  • Eisen A, Kiehart DP, Wieland SJ, Reynolds GT (1984) Temporal sequence and spatial distribution of early events of fertilization in single sea urchin eggs. J. Cell Biol., 99:1647–1654

    Article  PubMed  CAS  Google Scholar 

  • Epel D (1989) Arousal of activity in sea urchin eggs at fertilization. In: The Cell Biology of Fertilization. H. Schatten and G. Schatten, ed. Academic Press, New York. pp. 361–385

    Google Scholar 

  • Gould M, Stephans JL, Holland LZ (1986) Isolation of protein from Urechis sperm acrosomal granules that binds sperm to eggs and initiates development. Dev. Biol. 117:306–318

    Article  CAS  Google Scholar 

  • Hasty DL, Hay ED (1978) Freeze-fracture of the developing cell surface. J. Cell Biol., 78:756–768

    Article  PubMed  CAS  Google Scholar 

  • Heuser J (1976) Morphology of synaptic vesicle discharge and reformation at the frog neuromuscular junction. In: Motor Innervation of Muscle. S. Thesleff, ed. Academic Press, New York, pp. 51–115

    Google Scholar 

  • Hinkley RE, Wright BD, Lynn JW (1986) Rapid visual detection of sperm-egg fusion using the DNA-specific fluorochrome Hoechst 33342. Dev. Biol., 118:148–154

    Article  PubMed  CAS  Google Scholar 

  • Hubbard JI, Laskowski MB (1972) Spontaneous transmitter release and Ach sensitivity during glutaraldehyde fixation of rat diaphragm. Life Sci., 11:781–785

    Article  CAS  Google Scholar 

  • Iwao Y, Jaffe LA (1989) Evidence that the voltage-dependent component in the fertilization process is contributed by the sperm. Dev. Biol., 134:446–451

    Article  PubMed  CAS  Google Scholar 

  • Jaffe LA (1976) Fast block to polyspermy in sea urchin eggs is electrically mediated. Nature, 261:68–71

    Article  PubMed  CAS  Google Scholar 

  • Jaffe LA (1983) Sources of calcium in egg activation: A review and hypothesis. Dev. Biol., 99:256–276

    Article  Google Scholar 

  • Jaffe LA (1989) Receptors, G-proteins and egg activation. In: Mechanisms of Egg Activation. R. Nuccitelli, G.N. Cherr, W.H. Clark, Jr., eds. Plenum Press, New York. pp. 151–155

    Google Scholar 

  • Jaffe LA, Gould-Somero M, Holland LZ (1982) Studies of the mechanism of the electrical polyspermy block using voltage clamp during cross-species fertilization. J. Cell Biol., 92:616–621

    Article  PubMed  CAS  Google Scholar 

  • Kline DE, Simoncini L, Mandel G, Maue RA, Kado RT, Jaffe LA (1988) Fertilization events induced by neurotransmitters after injection of mRNA in Xenopus eggs. Science, 241:464–467

    Article  PubMed  CAS  Google Scholar 

  • Knoll G, Burger KNJ, Bron R, van Meer, G, Verkley A (1988) Fusion of liposomes with the plasma membrane of epithelial cells: Fate of incorporated lipids as followed by freeze fracture and autoradiography of plastic sections. J. Cell Biol., 107:2511–2521

    Article  PubMed  CAS  Google Scholar 

  • Longo FJ, Lynn JW, McCulloh DH, Chambers EL (1986) Correlative ultrastructural and electrophysiological studies of sperm-egg interactions of the sea urchin, Lytechinus variegatus. Dev. Biol., 118:155–166

    Article  PubMed  CAS  Google Scholar 

  • Lynn JW (1989) Correlations between time-dependent and cytochalasin B affected sperm entry in voltage-clamped sea urchin eggs. In: Mechanisms of Egg Activation. R. Nuccitelli, G.N. Cherr and W.H. Clark, Jr., eds. Plenum Press, New York. pp. 43–60

    Google Scholar 

  • Lynn JW, Chambers EL (1984) Voltage clamp studies of fertilization in sea urchin eggs. I. Effect of clamped membrane potential on sperm entry, activation and development. Dev. Biol., 102:98–109

    Article  PubMed  CAS  Google Scholar 

  • Lynn JW, McCulloh DH, Chambers EL (1988) Voltage clamp studies of fertilization in sea urchin eggs. II. Current patterns in relation to sperm entry, nonentry and activation. Dev. Biol., 128:305–323

    Article  PubMed  CAS  Google Scholar 

  • McCulloh DH (1989) Sperm entry in sea urchin eggs: Recent inferences concerning its mechanisms. In: Mechanisms of Egg Activaiton. R Nuccitelli, GN Cherr and WH Clark, Jr., eds. Plenum Press, New York, pp. 19–42

    Google Scholar 

  • McCulloh DH, Chambers EL (1985) Localization and propagation of membrane conductance changes during fertilization in eggs of the sea urchin, Lytechinus variegatus. J. Cell Biol., 101:230a

    Google Scholar 

  • McCulloh DH, Chambers EL (1986a) When does the sperm fuse with the egg? J. Gen. Physiol., 88:38–39a

    Google Scholar 

  • McCulloh DH, Chambers EL (1986b) Fusion and “unfusion” of sperm and egg are voltage dependent. J. Cell Biol., 103:236a

    Google Scholar 

  • Palade GE, RR Bruns (1968) Structural modulations of plasmalemmal vesicles. J. Cell Biol., 37:633–649

    Article  PubMed  CAS  Google Scholar 

  • Petersen JA, Rubin H (1970) The exchange of phospholipids between cultured chick fibroblasts as observed by autoradiography. Exp. Cell Res., 60:383–392

    Article  Google Scholar 

  • Poste G, Porter CW, Paphadjopoulos D (1978) Identification of a potential artifact in the use of electron microscopic autoradiography to localize saturated phospholipids in cells. Biochim. Biophys. Acta, 510:256–263

    Article  PubMed  CAS  Google Scholar 

  • Ruthmann, A (1970) Methods in Cell Research. Cornell Univ. Press, Ithaca, N.Y.

    Google Scholar 

  • Schackman RW, Christen R, Shapiro BM (1984) Measurement of plasma membrane and mitochondrial potentials in sea urchin sperm. J. Biol. Chem., 259:13914–13922

    Google Scholar 

  • Schatten G, Hulser D (1983) Timing the early events during sea urchin fertilization. Dev. Biol., 100:244–248

    Article  PubMed  CAS  Google Scholar 

  • Schmidt T, Patton C, Epel D (1982) Is there a role for the Ca2+ influx during fertilization of the sea urchin egg? Dev. Biol. 90:284–290

    Article  PubMed  CAS  Google Scholar 

  • Scott RE (1976) Plasma membrane vesiculation: A new technique for isolation of plasma membranes. Science, 194:743–745

    Article  PubMed  CAS  Google Scholar 

  • Shen SS (1983) Membrane properties and intracellular ion activities of marine invertebrate eggs and their changes during activation. In: Mechanism and Control of Animal Fertilization. J.F. Hartmann, ed. Academic Press, New York. pp. 213–267

    Google Scholar 

  • Smith JE, Reese TS (1980) Use of aldehyde fixatives to determine the rate of synaptic transmitter release. J. Exp. Biol., 89:19–29

    PubMed  CAS  Google Scholar 

  • Steinhardt RA, Epel D (1974) Activation of sea urchin eggs by calcium ionophore. Proc. Natl. Acad. Sci. USA, 71:1915–1919

    Article  PubMed  CAS  Google Scholar 

  • Steinhardt RA, Lundin L, Mazia D (1971) Bioelectric responses of the echinoderm egg to fertilization. Proc. Natl. Acad. Sci. USA, 68:2426–2430

    Article  PubMed  CAS  Google Scholar 

  • Steinhardt RA, Zucker RS, Schatten G (1977) Intracellular calcium release at fertilization in the sea urchin egg. Dev. Biol., 58:185–196

    Article  PubMed  CAS  Google Scholar 

  • Swann K, Whitaker MJ (1986) The part played by inositol triphosphate and calcium in the propogation of the fertilization wave in sea urchin eggs. J. Cell Biol., 103:2333–2342

    Article  PubMed  CAS  Google Scholar 

  • Turner PR, Jaffe LA (1989) G-proteins and the regulation of oocyte maturation and fertilization. In: The Cell Biology of Fertilization. H Schatten and G Schatten, eds. Academic Press, New York. pp. 279–318

    Google Scholar 

  • Turner PR Jaffe LA, Fein A (1986) Regulation of cortical granule exocytosis by inositol 1,4,5-triphosphate and GTP binding protein. J. Cell Biol., 102:70–76

    Article  PubMed  CAS  Google Scholar 

  • Vacquier VD (1983) Purification of sea urchin sperm bindin by DEAE-cellulose chromatography. Anal. Biochem., 129:497–501

    Article  PubMed  CAS  Google Scholar 

  • Vacquire VD, GW Moy (1977) Isolation of bindin: The protein responsible for adhesion of sperm to sea urchin eggs. Proc. Natl. Acad. Sci. USA, 74:2456–2460

    Article  Google Scholar 

  • Verkleij AJ, Humbel B, Studer D, Müller M (1985) ‘Lipidic particle’ systems as visualized by thin-section electron microscopy. Biochim. Biophys. Acta, 812:591–594

    Article  CAS  Google Scholar 

  • Weibull C, Villiger W, Carlemalm E (1984) Extraction of lipids during freeze-substitution of Acholeplasma laidlawii-cells for electron microscopy. J. Microsc. 135:213–216

    Article  Google Scholar 

  • Whitaker MJ, Steinhardt RA (1982) Ionic regulation of egg activation. Q. Rev. Biophys., 15:593–666

    Article  PubMed  CAS  Google Scholar 

  • Whitaker M, Irvine RF (1984) Inositol 1,4,5-triphosphate microinjection activates sea urchin eggs. Nature, 312:636–639

    Article  CAS  Google Scholar 

  • Whitaker MJ, Aitchison J (1985) Calcium-dependent phosphoinositide hydrolysis is associated with exocytosis in vitro. FEBS Lett., 182:119–124

    Article  PubMed  CAS  Google Scholar 

  • Whitaker M, Swann K, Crossley I (1989) What happens during the latent period at fertilization. In: Mechanisms of Egg Activation. R. Nuccitelli, G.N. Cherr, and W.H. Clark, Jr., eds. Plenum Press, New York. pp. 157–171

    Google Scholar 

  • Wilsahut J (1989) Intracellular memebrane fusion. Cur. Opin. Cell Biol., 1:639–647

    Article  Google Scholar 

  • Yoshimoto Y, Iwamatsu T, Hirano K, Hiramoto Y (1987) The wave pattern of free calcium released upon fertilization in medaka and sand dollar eggs. Dev. Growth Differ., 28:583–596

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Longo, F.J., Cook, S., McCulloh, D.H., Ivonnet, P.I., Chambers, E.L. (1990). Gamete Interactions and the Initiation of Egg Activation in Sea Urchins. In: Dale, B. (eds) Mechanism of Fertilization: Plants to Humans. NATO ASI Series, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83965-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83965-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83967-2

  • Online ISBN: 978-3-642-83965-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics