Skip to main content

Picosecond Fluorescence Lifetime Imaging Spectroscopy as a New Tool for 3D Structure Determination of Macromolecules in Living Cells

  • Chapter
New Trends in Fluorescence Spectroscopy

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 1))

Abstract

Picosecond fluorescence lifetime imaging microscopy (Picosecond FLIM), based on time-and space-correlated single photon counting (TSCSPC), is the method of choice to study living cells at minimal-invasive conditions that are required for preserving the living state Time-resolved fluorescence imaging, at ultra-low excitation intensity and ultra-low level of labelling, i e., Minimal-Invasive Fluorescence Microscopy (MIFM), became possible after the introduction of ultra-sensitive single photon counting imaging detectors, such as micro-channel plate (MCP) photomultipliers (PMT) with delay-line (DL) and quadrant anode (QA) The novel detectors have a time resolution of < 10 ps, 100 urn space resolution (250 × 250 channel), a dynamic range of >107 and are capable of Vehicle Micro-Spectroscopy (VMS) Singlechannel time-correlated single photon counting (TCSPC) microscopy was established 15 years ago and has since been applied by a growing community of cell biologists, due to superior performance and increasingly simple operation of pulsed picosecond laser systems The new TSCSPC imaging detectors will further increase the attractiveness of the well-established method in ultra-sensitive studies of living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kemnitz K, Pfeifer L, Paul R, Fink F, Bergmann A (1995) Time-and space-correlated single photon counting spectroscopy SPIE Proc 2628:2

    Google Scholar 

  2. Pfeifer L, Höhne W, Kemnitz K, Paul R, Fink F (1996) A novel simultaneous wavelength-and time-resolving fluorescence measurement system: application for the separation of biomolecular spectra In: Corcoran VJ, Goldman TA (eds) Proceedings Lasers ′95 Charleston, STS Press

    Google Scholar 

  3. Pfeifer L, Schmalzigaug K, Paul R, Lichey J, Kemnitz K, Fink F (1995) Time-resolved autofluorescence measurements for the differientiation of lung-tissue states SPIE Proc 2627

    Google Scholar 

  4. Paul R, Pfeifer L, Kemnitz K, Fink F (1995) Ultrasensitive detection of cholecystokinin (CCK) by laserinduced time-resolved fluorescence diagnostics SPIE Proc 2629

    Google Scholar 

  5. Kemnitz K, Pfeifer L, Ainbund MR (1997) Detector for multichannel spectroscopy and fluorescence lifetime imaging on the picosecond timescale Nucl Instr Meth Sec A 387:86

    Article  CAS  Google Scholar 

  6. Kemnitz K, Pfeifer L, Paul R, Coppey-Moisan M (1997) Novel detectors for fluorescence lifetime imaging on the picosecond timescale J Fluorescence 7:93

    Article  CAS  Google Scholar 

  7. Kemnitz K, Paul R, Coppey J, Coppey-Moisan M (1996) Fluorescence lifetime imaging of cells on the picosecond timescale SPIE Proc 2926:177

    Article  Google Scholar 

  8. Ainbund MR, Arzhantsev SY, Chikishev AY, Koroteev NI, Shkurinov AP, Toleutaev BN, Turbin EV, Lehmann A, Pfeifer L, Fink F, Kemnitz K (1998) Picosecond fluorescence lifetime imaging microscopy at 1 μrn space-and 10 ps time-resolution: 50 × 50 ch MCP-PMT with quadrant-anode In: Slavik J (ed) Fluorescent microscopy and fluorescent probes, vol 2 Plenum Press, New York

    Google Scholar 

  9. EC Biotechnology Demonstration Project (BIO4-CT97-2177): Picosecond fluorescence lifetime imaging microscopy as a new tool for 3D structure determination of macromolecules in cells, coordinator: Kemnitz K (EuroPhoton GmbH): 1.4 MECU, 9 partners, 3.5 years, start 1.11.97

    Google Scholar 

  10. Tramier M, Kemnitz K, Durieux C, Coppey J, Denjean P, Pansu RB, Coppey-Moisan M (2000) Restrained torsional dynamics of nuclear DNA in living proliferative mammalian cells Biophys J 78:2614

    Article  CAS  Google Scholar 

  11. O’Connor DV, Phillips D (1984) Time-correlated single photon counting Academic Press

    Google Scholar 

  12. (a) 19.4 ps: Tamai N, Yamazaki T, Yamazaki I (1988) Chem Phys Lett 147:25; (b) 16 ps (Ti-Saph laser): Kemnitz K, unpublished data

    Article  CAS  Google Scholar 

  13. 36 ps (Ti-Saph laser): Kemnitz K, unpublished data, obtained with disk anode MCP-PMT

    Google Scholar 

  14. Lampton M, Siegmund O, Raffanti R (1987) Delay line anodes for microchannel-plate sp.ectrometers Rev Sci Intr 58:2298

    Article  CAS  Google Scholar 

  15. (a) Ainbund MR, Buevich OE, Kamalov VF, Menshikov GA, Toleutaev BN (1992) Simultaneous spectral and temporal resolution in single photon counting technique Rev Sci Instr 63:3274 (b) US Pat 5,148,031

    Article  CAS  Google Scholar 

  16. Lampton M, Malina RF (1976) Quadrant anode image sensor Rev Sci Instr 47:1360

    Article  Google Scholar 

  17. The present QA-MCP-PMT was developed within INTAS-94-4461 project, with Euro-Photon GmbH as coordinator; see also [8]

    Google Scholar 

  18. Zygo K3 Nipkov system (Syncotech GmbH)

    Google Scholar 

  19. Ultra View confocal system (EG & G,Wallac LSR)

    Google Scholar 

  20. Sträub M, Hell SW (1998) Appl Phys Lett 73:1769

    Article  Google Scholar 

  21. Delic J, Coppey J, Magdelenat H, Coppey-Moisan M (1991) Impossibility of Acridine Orange intercalation in nuclear DNA of the living cell Exp Cell Res 194:147

    Article  CAS  Google Scholar 

  22. Tsien RY, Waggoner A (1990) Fluorophores for confocal microscopy: photophysics and photochemistry In: Pawley JB (ed) Handbook of biological confocal microscopy Plenum Press, New York, p 169

    Chapter  Google Scholar 

  23. Kemnitz K, Tamai N, Yamazaki I, Nakashima N, Yoshihara K (1986) Fluorescence decays and spectral properties of Rhodamine B in submono-, mono-, and multilayer systems. J Phys Chem 90:5094

    Article  CAS  Google Scholar 

  24. Bereiter-Hahn J, Airas J, Blum S (1997) Supramolecular associations with the cytomatrix and their relevance in metabolic control: protein synthesis and glycolysis Zoology 100:1

    CAS  Google Scholar 

  25. Bereiter-Hahn J (1976) Dimethylamino-styrylmethylpyridinium-iodine (DASPMI) as a fluorescent probe for mitochondria in situ Biochim Biophys Acta

    Google Scholar 

  26. Bereiter-Hahn J (1990) Behavior of mitochondria in the living cell Int Rev Cytol 122:1

    Article  CAS  Google Scholar 

  27. Mewes HW, Rafael J (1981) The 2-(dimethylaminostyryl)-l-methylpyridinium cation as indicator for the mitochondrial membrane potential FEBS Lett 131:7

    Article  CAS  Google Scholar 

  28. Bereiter-Hahn J, Vöth M (1998) Do mitochondria contain zones with different membrane potential? Experimental Biology Online 3/12

    Google Scholar 

  29. Bereiter-Hahn J, Seipel KH, Vöth M, Ploem JS (1983) Fluorimetry of mitochondria in cells vitally stained with DASPMI or rhodamine 6G Cell Biochem Function 1:147

    Article  CAS  Google Scholar 

  30. Fromherz P, Ephardt H (1989) J Phys Chem 93:7717

    Article  Google Scholar 

  31. Arden-Jacob J (1993) Neue langwellige Xanthen-Farbstoffe für Fluoreszenzsonden und Farbstofflaser, Dissertation, Universität Siegen (Drexhage KH)

    Google Scholar 

  32. (a) Eckert H-J, Bergmann A, Turbin EV, Strepetov AN, Kemnitz K, Picosecond(1999) Fluorescence lifetime imaging microscopy of individual chloroplasts in living cells; (b) Petrasek Z, Kemnitz K, Ostler R, Phillips D (1999) Second European Workshop on Picosecond Fluorescence Lifetime Imaging Microscopy as a new Tool for 3D Structure Determination of Macromolecules in Cells, July 1999, Rome

    Google Scholar 

  33. Bergmann A, Eichler H-J, Eckert H-J, Renger G (1998) Picosecond laser-fluorometer with simultaneous time and wavelength resolution for monitoring decay spectra of photoinhibited Photosystem II particles at 277 K and 10 K Photosyn Res 58:303

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kemnitz, K. (2001). Picosecond Fluorescence Lifetime Imaging Spectroscopy as a New Tool for 3D Structure Determination of Macromolecules in Living Cells. In: Valeur, B., Brochon, JC. (eds) New Trends in Fluorescence Spectroscopy. Springer Series on Fluorescence, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56853-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56853-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63214-3

  • Online ISBN: 978-3-642-56853-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics