Skip to main content

Abstract

Our reasoning is shaped by the great successes of the last century Just like a microbe causes infection, cancer is supposed to be the consequence of genetic injuries inside a human cell. But cancer cells do not summarize cancer.

There may be a persistent tumor mass following successful chemotherapy. These cancer cells have changed destiny and stop dividing. Similarly, cancer cells injected into a healthy animal or an embryo often differentiate into normal cells. Cancer cannot be ascertained by cytological examination alone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lindbergh C, Carrel A (1938) The Culture of Organs. In: Hoeber P (ed) New-York, USA

    Google Scholar 

  2. Hammond J (1949) Culture of mouse embryos using an egg-saline medium. Nature 163:28–32

    Article  PubMed  Google Scholar 

  3. Price JE (1996) Metastasis from human breast cancer cell lines. Breast Cancer Res Treat 39:93–102

    Article  PubMed  CAS  Google Scholar 

  4. Murphy P, Alexander P, Senior PV, Fleming J, Kirkham N, Taylor I (1988) Mechanisms of organ selective tumour growth by blood borne cancer cells. Br J Cancer 57:19–31

    Article  PubMed  CAS  Google Scholar 

  5. Tominaga T, Yoshida Y, Kitamura M, Kosaki G (1987) Liver metastasis of colon: 26 cells implanted into the superior mesenteric vein in mice. Jpn J Cancer Res 78:846–850

    PubMed  CAS  Google Scholar 

  6. Kikkawa H, Imafuku H, Tsukada H, Oku N (2000) Possible role of immune surveillance at the initial phase of metastasis produced by B16BL6 melanoma cells. FEBS Lett 467:211–216

    Article  PubMed  CAS  Google Scholar 

  7. Fidler IJ (1973) The relationship of embolic homogeneity, number, size and viability to the incidence of experimental metastasis. Eur J Cancer 9:223–227

    Article  PubMed  CAS  Google Scholar 

  8. Lione A, Bosmann HB (1978) Quantitative relationship between volume of tumour cell units and their intravascular survival. Br J Cancer 37:248–253

    Article  PubMed  CAS  Google Scholar 

  9. Meromsky L, Lotan R, Raz A (1986) Implications of endogenous tumor cell surface lectins as mediators of cellular interactions and lung colonization. Cancer Res 46:5270–5275

    PubMed  CAS  Google Scholar 

  10. Glinsky GV, Price JE, Glinsky VV, Mossine VV, Kiriakova G, Metcalf JB (1996) Inhibition of human breast cancer metastasis in nude mice by synthetic glycoamines. Cancer Res 56:5319–5324

    PubMed  CAS  Google Scholar 

  11. McGoogan E, Colgan TJ, Ramzy I, Cochand-Priollet B, Davey DD, Grohs HK, Gurley AM, Husain OA, Hutchinson ML, Knesel EA Jr, Linder J, Mango LJ, Mitchell H, Peebles A, Reith A, Robinowitz M, Sauer T, Shida S, Solomon D, Topalidis T, Wilbur DC, Yamauchi K (1998) Cell preparation methods and criteria for sample adequacy. International Academy of Cytology Task Force Summary. Diagnostic Cytology Towards the 21st Century: An International Expert Conference and Tutorial. Acta Cytol 42:25–32

    Article  PubMed  CAS  Google Scholar 

  12. Cha RS, Thilly WG, Zarbl H (1994) N-Nitroso-N-methylurea-induced rat mammary tumors arise from cells with preexisting Hrasi gene mutation. Proc Natl Acad Sci USA 91:3749–3753

    Article  PubMed  CAS  Google Scholar 

  13. Illmensee K, Mintz B (1976) Totipotency and normal differentiation of single teratocarcinoma cell cloned by injection into blastocysts. Proc Natl Acad Sci USA 73:549–553

    Article  PubMed  CAS  Google Scholar 

  14. Coleman W, Wennerberg AE, Smith GJ, Grisham JW (1997) Regulation of the differentiation of diploid and aneuploid rat liver epithelial cells by the liver microenvironment. Am J Pathol 142:1373–1382

    Google Scholar 

  15. McCullough KD, Coleman WB, Smith GJ, Grisham JW (1994) Age-dependant regulation of the tumorogenic potential of neoplastically transformed rat liver epithelial cells by the liver microenvironment. Cancer research 54: 3668–3671

    PubMed  CAS  Google Scholar 

  16. Hain SF, O’Doherty MJ, Timothy AR, Leslie MD, Harper PG, Huddart (2000) Fluorodeoxyglucose positron emission tomography in the evaluation of germ cell tumours at relapse. Br J Cancer 83:863–869

    Article  PubMed  CAS  Google Scholar 

  17. Miyauchi J, Matsuoka K, Oka T, Kamii Y, Honna T,Bessho F, Sasaki S, Melanowska J, Tsuchida Y (1997) Histopathologic findings of advanced neuroblastoma after intensive induction chemotherapy. J Pediatr Surg 32:1620–1625

    Article  PubMed  CAS  Google Scholar 

  18. Rubin H (1997) Cell aging in vivo and in vitro. Mech Aging Dev 98:1–35

    Article  PubMed  CAS  Google Scholar 

  19. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–592

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schwartz, L. (2004). Are Cancer Cells Malignant Per Se?. In: Cancer — Between Glycolysis and Physical Constraint. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18543-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18543-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20496-1

  • Online ISBN: 978-3-642-18543-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics