Skip to main content

Cooperativity in the Ca2+ Regulation of Muscle Contraction

  • Chapter
Molecular Interactions of Actin

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 36))

Abstract

We have recently reviewed the evidence that the muscle thin filament operates as a classical Monod-Wyman-Changeux (MWC, 1965) cooperative/allosteric system while interacting with myosin heads (Lehrer and Geeves 1998). We showed that much of the available biochemical in vitro data can be explained if actin is considered to be the catalyst (enzyme) which accelerates the loss of Pi from the myosin-ADP-Pi substrate. In this scheme, tropomyosin (Tm) is the regulatory component, myosin complexed with ADP is the activating ligand and troponin (Tn) in the absence or presence of Ca2+ is the allosteric inhibitor or activator, respectively. The myosin product complex “turns-on” the activity by shifting the equilibrium from the T (closed) to the R-state (open), facilitated by Tn in the presence of Ca2+. Thus, the ATPase activity of the system is mostly off in the absence of myosin heads, even in the presence of Ca2+.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brandt PW, Cox RN, Kawai M (1980) Can the binding of Ca' to two regulatory sites on troponin C determine the steep pCa/tension relationship of skeletal muscle? Proc Natl Acad Sci USA 77: 4717 - 4720

    Article  PubMed  CAS  Google Scholar 

  • Bremel RD, Weber A (1972) Cooperation within actin filament in vertebrate skeletal muscle. Nat New Biol 238: 97 - 101

    PubMed  CAS  Google Scholar 

  • Bremel RD, Murray JM, Weber A (1972) Manifestations of cooperative behavior in the regulated actin filament during actin-activated ATP hydrolysis in the presence of calcium. Cold Spring Harbor Symp Quant Biol 37: 267 - 275

    Article  Google Scholar 

  • Brenner B (1988) Effect of Ca' on cross-bridge turnover kinetics in skinned single rabbit psoas fibers: implications for regulation of muscle contraction. Proc Natl Acad Sci USA 85: 3265 - 3269

    Article  PubMed  CAS  Google Scholar 

  • Geeves M A (1991) The dynamics of actin and myosin association and the crossbridge model of muscle contraction. Biochem J 274: 1 - 14

    PubMed  CAS  Google Scholar 

  • Geeves MA, Halsall DJ (1987) Two step ligand binding and cooperativity. Biophys J 52: 215 - 220

    Article  PubMed  CAS  Google Scholar 

  • Geeves MA, Lehrer SS (1994) Dynamics of the muscle thin filament regulatory switch: the size of the cooperative unit. Biophys J 67: 273 - 282

    Article  Google Scholar 

  • Geeves MA, Goody RS, Gutfreund, H (1984) The kinetics of acto-S1 interaction as a guide to a model for the crossbridge cycle. J Muscle Res Cell Motil 5: 351 - 361

    Article  PubMed  CAS  Google Scholar 

  • Gordon AM, Ridgway EB, Yates LD, Allen T (1988) Muscle cross-bridge attachment: effects on calcium binding and calcium activation. Adv Exp Med Biol 226: 89 - 99

    PubMed  CAS  Google Scholar 

  • Grabarek Z, Grabarek J, Leavis P, Gergely J (1983) Cooperative binding to the Ca”-specific sites of troponin C in regulated actin and actomyosin. J Biol Chem 258: 14098 - 14102

    PubMed  CAS  Google Scholar 

  • Greene L (1982) The effect of nucleotide on the binding of myosin subfragment 1 to regulated actin. J Biol Chem 257: 13993 - 13999

    PubMed  CAS  Google Scholar 

  • Greene L (1986) Cooperative binding of myosin subfragment 1 to regulated actin as measured by fluorescence changes of troponin I modified with different fluorophors. J Biol Chem 26: 1279 - 1285

    Google Scholar 

  • Greene L, Eisenberg E (1980) Cooperative binding of myosin subfragment 1 to the actintropomyosin-troponin complex. Proc Natl Acad Sci USA 77: 2616 - 1620

    Article  PubMed  CAS  Google Scholar 

  • Hancock WO, Huntsman LL, Gordon AM (1997) Models of calcium activation account for differences between skeletal and cardiac force redevelopment kinetics. J Musc Res and Cell Motil 18: 671 - 681

    Article  CAS  Google Scholar 

  • Head JG, Ritchie MD, Geeves MA (1995) Characterization of the equilibrium between blocked and closed states of muscle thin filaments. Eur J Biochem 227: 694 - 699

    Article  PubMed  CAS  Google Scholar 

  • Hill T, Eisenberg E, Greene L (1980) Theoretical models for the cooperative equilibrium binding of myosin subfragment 1 to the actin-tropomyosin-troponin complex. Proc Natl Acad Sci USA 77: 3186 - 3190

    Article  PubMed  CAS  Google Scholar 

  • Hoffman PA, Fuchs F (1987a) Effect of length and cross-bridge attachment on Ca” binding to cardiac troponin C. Am J Physiol 253: C90 - C96

    Google Scholar 

  • Hoffman PA, Fuchs F (1987b) Evidence for a force-dependent component of calcium binding to cardiac troponin C. Am J Physiol 253: C541 - 0546

    Google Scholar 

  • Hoffman PA, Greaser ML, Moss RL (1991) C-protein limits shortening velocity of rabbit skeletal muscle fibres at low levels of Ca” activation. J Physiol (Lond) 439: 701 - 715

    Google Scholar 

  • Holmes KC (1995) The actomyosin interaction and its control by tropomyosin. Biophys J 68: 2s - 7s

    PubMed  CAS  Google Scholar 

  • Howard J (1997) Molecular motors. Nature 389: 561 - 167

    Article  PubMed  CAS  Google Scholar 

  • Huxley AF (1998) How molecular motors work in muscle. Nature 391: 239

    Article  PubMed  CAS  Google Scholar 

  • Ishii Y, Lehrer SS (1985) Fluorescence studies of the conformation of pyrene-labeled tropomyosin. Effects of F-actin and myosin subfragment 1. Biochemistry 24: 6631 - 6638

    Article  PubMed  CAS  Google Scholar 

  • Ishii Y, Lehrer SS (1990) Excimer fluorescence of pyrenyliodoacetamide-labeled tropomyosin: a probe of the state of tropomyosin in reconstituted muscle thin filaments. Biochemistry 29: 1160

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto H, (1998) Thin filament cooperativity as a major determinant of shortening velocity in skeletal muscle fibers. Biophys J 74: 1452 - 1464

    Article  PubMed  CAS  Google Scholar 

  • Kawai M, Cox RN, Brandt PW (1981) Effect of Ca' ion concentration on cross-bridge kinetics in rabbit psoas fibers. Biophys J 35: 375 - 384

    Article  PubMed  CAS  Google Scholar 

  • Lehrer SS (1994) the regulatory switch of the muscle thin filament: Ca' or myosin heads? J Musc Res Cell Motil 15: 232 - 236

    Google Scholar 

  • Lehrer SS, Geeves MA (1998) The muscle thin filament as a classical cooperative/allosteric regulatory system. J Mol Biol 277: 1081 - 1089

    Article  PubMed  CAS  Google Scholar 

  • Lehrer SS, Morris EP (1982) Dual effects of tropomyosin and tropomyosin-troponin on actomyosin subfragment 1 ATPase. J Biol Chem 257: 8073 - 8080

    PubMed  CAS  Google Scholar 

  • Lehrer SS, Golitsina NL, Geeves MA (1997) Actin-tropomyosin activation of myosin subfragment 1 ATPase and thin filament cooperativity. Biochemistry 36: 13449 - 13454

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Wu J-L, Gergely J, Tao T (1998) Localization of Cys 133 of rabbit skeletal troponin-I with respect to troponin-C by resonance energy transfer. Biophys J 74: 3111 - 3119

    Article  PubMed  CAS  Google Scholar 

  • Maytum R, Konrad M, Geeves MA (1998) Effect of N-terminal mutations on the properties of yeast tropomyosin. Biophys J 74: A53

    Google Scholar 

  • Maytum R, Lehrer SS, Geeves MA (1999) Cooperativity and switching within the three-state model of muscle regulation. Biochemistry 38: 1102 - 1110

    Article  PubMed  CAS  Google Scholar 

  • McDonald KS, Field LJ, Parmacek MS, Soonpaa M, Leiden JM, Moss RL (1995) Length dependence of Ca' sensitivity of tension in mouse cardiac myocytes expressing skeletal troponin C. J Physiol 483: 131 - 139

    PubMed  CAS  Google Scholar 

  • McKillop DFA, Geeves MA (1993) Regulation of the interaction between actin and myosin sub-fragment 1: evidence for three states of the thin filament. Biophys J 65: 693 - 701

    Article  PubMed  CAS  Google Scholar 

  • Miki M, Miura T, Sano K-I, Kimura H, Kondo H, Ishida H, Maeda Y (1998) Fluorescence resonance energy transfer between points on tropomyosin and actin in skeletal muscle thin filaments: does tropomyosin move? J Biochem 123: 1104 - 1111

    Article  PubMed  CAS  Google Scholar 

  • Millar NC, Homsher E (1990) The effect of phosphate and Ca on force generation in glycerinated rabbit skeletal muscle fibers. J Biol Chem 265: 20234 - 20240

    PubMed  CAS  Google Scholar 

  • Moens PC, Yee DJ, dos Remedios CG (1994) Determination of the radial coordinate of Cys 374 in F-actin using fluorescence energy transfer_Biochemistry 33: 13102 - 13108

    CAS  Google Scholar 

  • Monod J, Wyman J, Changeux J-P (1965) On the nature of allosteric transitions. J Mol Biol 12:88 Moss RL (1992) Ca” regulation of mechanical properties of striated muscle. Circulation Res 70: 865 - 884

    Google Scholar 

  • Murray JM, Weber A, Bremel RD (1975) Could cooperativity in the actin filament play a role in muscle contraction? In: Carafoli E (ed) Calcium transport in contraction and secretion. Elsevier/North-Holland, New York, pp 489 - 496

    Google Scholar 

  • Nagashima H, Asakura S (1982) Studies on cooperative properties of tropomyosin-actin and tropomyosin-troponin-actin complexes by the use of N-ethyl maleimide-treated and untreated species of myosin subfragment 1. J Mol Biol 155: 409 - 428

    Article  PubMed  CAS  Google Scholar 

  • Pemrick S, Weber A (1976) Mechanism of inhibition of relaxation by N-ethyl maleimide treatment of myosin. Biochemistry 15: 5193 - 5198

    Article  PubMed  CAS  Google Scholar 

  • Phillips GN, Fillers JP, Cohen C (1986) Tropomyosin crystal structure and muscle regulation. J Mol Biol 192: 111 - 131

    Article  PubMed  CAS  Google Scholar 

  • Potter JD, Gergely J (1975) Troponin tropomyosin and actin interactions in the regulation of muscle contraction. Biochemistry 13: 26 - 97

    Google Scholar 

  • Reiffert SU, Jacquel K, Heilmeyer LMGJ, Ritchie MD Geeves MA (1996) Bisphosphorylation of cardiac troponin I modulates the Ca-dependent binding of myosin subfragment 1 to reconstituted thin filaments. FEBS Lett 384: 43 - 47

    Article  PubMed  CAS  Google Scholar 

  • Schaertl S, Lehrer SS, Geeves MA (1995) Separation and characterization of the two functional regions of troponin involved in muscle thin filament regulation Biochemistry 34:15890-15894

    Google Scholar 

  • She M, Xing J, Dong W J, Umeda P K, Cheung H C (1998) Calcium binding to the regulatory domain of skeletal muscle troponin C induces a highly constrained open conformation. J Mol Biol 281: 445 - 452

    Article  PubMed  CAS  Google Scholar 

  • Squire JM, Morris EP (1998) A new look at thin filament regulation in vertebrate skeletal muscle. FASEB J 12: 761 - 771

    PubMed  CAS  Google Scholar 

  • Swartz D, Moss RL, Greaser ML (1996) Calcium alone does not fully activate the thin filament for Si binding to rigor myofibrils. Biophys J 71: 1891 - 1904

    Article  PubMed  CAS  Google Scholar 

  • Szczesna D, Fajer PG (1995) The tropomyosin domain is flexible and disordered in reconstituted thin filaments. Biochemistry 34: 3614 - 3620

    Article  PubMed  CAS  Google Scholar 

  • Tao T, Gong B-J, Leavis PC (1990) Ca-induced movement of TnI relative to actin in skeletal muscle thin filaments Science 247: 1339 - 1341

    CAS  Google Scholar 

  • Trybus KM, Taylor EW (1980) Kinetics of the cooperative binding of subfragment 1 to regulated actin. Proc Natl Acad Sci USA 77: 7209 - 7213

    Article  PubMed  CAS  Google Scholar 

  • Vibert P, Craig R, Lehman W (1997) Steric-model for activation of muscle thin filaments. J Mol Biol 266: 8 - 14

    Article  PubMed  CAS  Google Scholar 

  • Zot AS, Potter JD (1987) Structural aspects of troponin-tropomyosin regulation of skeletal muscle contraction. Annu Rev Biophys Chem 16: 535 - 559

    Article  CAS  Google Scholar 

  • Zot AS, Potter JD (1989) Reciprocal coupling between TnC and myosin crossbridge attachment. Biochemistry 28: 6751 - 6756

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Geeves, M.A., Lehrer, S.S. (2002). Cooperativity in the Ca2+ Regulation of Muscle Contraction. In: Thomas, D.D., Dos Remedios, C.G. (eds) Molecular Interactions of Actin. Results and Problems in Cell Differentiation, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46558-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46558-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08641-0

  • Online ISBN: 978-3-540-46558-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics