Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular motors: structural adaptations to cellular functions

Abstract

Molecular motors are protein machines whose directed movement along cytoskeletal filaments is driven by ATP hydrolysis. Eukaryotic cells contain motors that help to transport organelles to their correct cellular locations and to establish and alter cellular morphology during cell locomotion and division. The best-studied motors, myosin from skeletal muscle and conventional kinesin from brain, are remarkably similar in structure, yet have very different functions. These differences can be understood in terms of the ‘duty ratio’, the fraction of the time that a motor is attached to its filament. Differences in duty ratio can explain the diversity of structures, speeds and oligomerization states of members of the large kinesin, myosin and dynein families of motors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of conventional kinesin and muscle myosin based on electron microscopy and sequence analysis.
Figure 2: The crossbridge cycle.
Figure 3: Structural and chemical models for the movement of a, kinesin, and b, myosin.
Figure 4: Ways in which myosin might increase its working stroke.

Similar content being viewed by others

References

  1. Bloom, G. S. & Endow, S. A. Motor proteins 1: kinesins. Protein Profile 2, 1105–1171 (1995).

    CAS  PubMed  Google Scholar 

  2. Barton, N. R. & Goldstein, L. S. B. Going mobile: microtubule motors and chromosome segregation. Proc. Natl Acad. Sci. USA 93, 1735–1742 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mooseker, M. S. & Cheney, R. E. Unconventional myosins. Annu. Rev. Cell Dev. Biol. 11, 633–675 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Sellers, J. R. & Goodson, H. V. Motor proteins 2: myosin. Protein Profile 2, 1323–1423 (1995).

    CAS  PubMed  Google Scholar 

  5. Gibbons, B. H., Asai, D. J., Tang, W.-J. Y., Hays, T. S. & Gibbons, I. R. Phylogeny and expression of axonemal and cytoplasmic dynein genes in sea urchins. Mol. Biol. Cell 5, 57–70 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gillespie, P. G. Molecular machinery of auditory and vestibular transduction. Curr. Opin. Neurobiol. 5, 449–455 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Bahler, M. Myosins on the move to signal transduction. Curr. Opin. Cell Biol. 8, 18–22 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Rayment, I. et al. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261, 50–58 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Kull, F. J., Sablin, E. P., Lau, R., Fletterick, R. J. & Vale, R. D. Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380, 550–555 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 256, 721–727 (1993).

    Article  ADS  Google Scholar 

  11. Finer, J. T., Simmons, R. M. & Spudich, J. A. Single myosin molecule mechanics: piconewton forces and nanometer steps. Nature 368, 113–119 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Meyhöfer, E. & Howard, J. The force generated by a single kinesin molecule against an elastic load. Proc. Natl Acad. Sci. USA 92, 574–578 (1995).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  13. Funatsu, T., Harada, Y., Tokunaga, M., Saito, K. & Yanagida, T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374, 555–559 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Huxley, H. E. The mechanism of muscular contraction. Sci. Am. 18–27 (November (1965)).

  15. Miller, R. H. & Lasek, R. J. Cross-bridges mediate anterograde and retrograde vesicle transport along microtubules in squid axoplasm. J. Cell Biol. 101, 2181–2193 (1985).

    Article  CAS  PubMed  Google Scholar 

  16. Sanger, J. M. & Sanger, J. W. Microtubule-based motility. Cell Motil. Cytoskel.(video suppl. 2, (1990)).

  17. Howard, J., Hudspeth, A. J. & Vale, R. D. Movement of microtubules by single kinesin molecules. Nature 342, 154–158 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Harada, Y., Sakurada, K., Aoki, T., Thomas, D. D. & Yanagida, T. Mechanochemical coupling in actomyosin energy transduction studies by in vitro movement assay. J. Mol. Biol. 216, 49–68 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Uyeda, T. Q. P., Kron, S. J. & Spudich, J. A. Myosin step size: estimation from slow sliding movement of actin over low densities of heavy meromyosin. J. Mol. Biol. 214, 699–710 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Bagshaw, C. R. Muscle Contraction 2nd edn (Chapman and Hall, London, (1993)).

    Book  Google Scholar 

  21. Svoboda, K. & Block, S. M. Force and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Molloy, J. E., Burns, J. E., Kendrick-Jones, J., Tregear, R. T. & White, D. C. S. Force and movement produced by a single myosin head. Nature 378, 209–212 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Ishijima, A. et al. Multiple- and single-molecule analysis of the actomyosin motor by nanometer-piconewton manipulation with a microneedle: unitary steps and forces. Biophys. J. 70, 383–400 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dillon, P. F. & Murphy, R. A. High force development and cross-bridge attachment in smooth muscle from swine carotid arteries. Circ. Res. 50, 799–804 (1982).

    Article  CAS  PubMed  Google Scholar 

  25. Leibler, S. & Huse, D. Porters versus rowers: a unified stochastic model of motor proteins. J. Cell Biol. 121, 1357–1368 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Toyoshima, Y. Y., Kron, S. J. & Spudich, J. A. The myosin step size. Proc. Natl Acad. Sci. USA 87, 7130–7134 (1990).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hackney, D. D. Highly processive microtubule-stimulated ATP hydrolysis by dimeric kinesin head domains. Nature 377, 448–450 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Hua, W., Young, E. C., Fleming, M. L. & Gelles, J. Coupling of kinesin steps to ATP hydrolysis. Nature 388, 390–393 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Schnitzer, M. J. & Block, S. Kinesin hydrolyses one ATP per 8-nm step. Nature 388, 386–390 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Yanagida, T., Arata, T. & Oosawa, F. Sliding distance of actin filament induced by a myosin cross-bridge during one ATP hydrolysis cycle. Nature 316, 366–369 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Higuchi, H. & Goldman, Y. E. Sliding distance between actin and myosin filaments per ATP molecule hydrolysed in skinned muscle fibres. Nature 352, 352–354 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Wade, R. H. & Chrétien, D. Cryoelectron microscopy of microtubules. J. Struct. Biol. 110, 1–27 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Ray, S., Meyhöfer, E., Milligan, R. A. & Howard, J. Kinesin follows the microtubule's protofilament axis. J. Cell Biol. 121, 1083–1093 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Huang, T.-G., Suhan, J., Hackney, D. D. Drosophila kinesin motor domain extending to amino acid positon 392 is dimeric when expressed in Escherichia coli. J. Biol. Chem. 269, 16502–16507 (1994).

    CAS  PubMed  Google Scholar 

  35. Hirose, K., Lockhart, A., Cross, R. A. & Amos, L. A. Three-dimensional cryoelectron microscopy of dimeric kinesin and ncd motor domains on microtubules. Proc. Natl Acad. Sci. USA 93, 9539–9544 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Howard, J. The movement of kinesin along microtubules. Annu. Rev. Physiol. 58, 703–729 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Sase, I., Miyata, H., Ishiwata, S. & Kinosita, K. J Axial rotation of sliding actin filaments revealed by single-fluorophore imaging. Proc. Natl Acad. Sci. USA 94, 5646–5650 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Suzuki, N., Miyata, H., Ishiwata, S. & Kinosita, K. J Preparation of bead-tailed actin filaments: estimation of the torque produced by the sliding force in an in vitro motility assay. Biophys. J. 70, 401–408 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Molloy, J. E., Burnes, J. E., Sparrow, J. C., Tregear, R. T., Kendrick-Jones, J. & White, D. C. S. Single-molecule mechanics of heavy meromyosin and S1 interacting with rabbit or Drosophila actins using optical tweezers. Biophys. J. 68, 298s–305s (1995).

    Google Scholar 

  40. Eisenberg, E., Hill, T. L. & Chen, Y.-D. Crossbridge model of muscle contraction: quantitative analysis. Biophys. J. 29, 195–227 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rayment, I. et al. Structure of the actin–myosin complex and its implications for muscle contraction. Science 261, 58–65 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Huxley, A. F. & Tideswell, S. Filament compliance and tension transients in muscle. J. Musc. Res. Cell Motil. 17, 507–511 (1996).

    Article  CAS  Google Scholar 

  43. Mehta, A. D., Fiber, J. T. & Spudich, J. A. Detection of single molecule interactions using correlated thermal diffusion. Proc. Natl Acad. Sci. USA 94, 7927–7931 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guilford, W. H. et al. Smooth muscle and skeletal muscle myosins produce similar unitary forces and displacements in the laser trap. Biophys. J. 72, 1006–10021 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Block, S. M. One small step for myosin. Nature 378, 132–133 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Huxley, A. F. & Simmons, R. M. Proposed mechanism for force generation in striated muscle. Nature 233, 533–538 (1971).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Lombardi, V., Piazzesi, G. & Linari, M. Rapid regeneration of the actin–myosin power stroke in contracting muscle. Nature 355, 638–641 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Huxley, H. E., Stewart, A., Sosa, H. & Irving, T. X-ray diffraction measurements of the extensibiity of actin and myosin filaments in contracting muscle. Biophys. J. 67, 2411–2421 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wakabayashi, K. et al. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction. Biophys. J. 67, 2422–2435 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cooke, R., Crowder, M. S. & Thomas, D. D. Orientation of spin labels attached to cross-bridges in contracting muscle fibres. Nature 300, 776–778 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Higuchi, H., Yanagida, T. & Goldman, T. E. Compliance of thin filaments in skinned fibers of rabbit skeletal muscle. Biophys. J. 69, 1000–1010 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kojima, H., Ishijima, A. & Yanagida, T. Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation. Proc. Natl Acad. Sci. USA 91, 12962–12966 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen, Y.-D. & Brenner, B. On the generation of the actin-myosin power stroke in contracting muscle. Proc. Natl Acad. Sci. USA 90, 5148–5152 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ferenczi, M. A., Goldman, Y. E. & Simmons, R. M. The dependence of force and shortening velocity on substrate concentration in skinned muscle fibers from Rana Temporaria. J. Physiol. 350, 519–543 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Block, S. Fifty ways to love your lever: myosin motors. Cell 87, 151–157 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Holmes, K. C. The swinging lever-arm hypothesis of muscle contraction. Curr. Biol. 7, R112–R118 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Hackney, D. D. Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. Proc. Natl Acad. Sci. USA 91, 6865–6869 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stewart, R. J., Thaler, J. P. & Goldstein, L. S. B. Direction of microtubule movement is an intrinsic property of the motor domains of kinesin heavy chain and Drosophila ncd protein. Proc. Natl Acad. Sci. USA 90, 5209–5213 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schnapp, B. J., Crise, B., Sheetz, M. P., Reese, T. S. & Khan, S. Delayed start-up of kinesin-driven microtubule gliding following inhibition by adenosine 5′-[β,γ-imido]triphosphate. Proc. Natl Acad. Sci. USA 87, 10053–10057 (1990).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ma, Y.-Z. & Taylor, E. W. Interacting head mechanism of microtubule–kinesin ATPase. J. Biol. Chem. 272, 724–730 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Hunt, A. J., Gittes, F. T. & Howard, J. The force exerted by a kinesin molecule against a viscous load. Biophys. J. 67, 766–781 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ford, L. E., Huxley, A. F. & Simmons, R. M. Tension transients during steady shortening of frog muscle fibers. J. Physiol. 361, 131–150 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hamasaki, T., Holwill, M. E., Barkalow, K. & Satir, P. Mechanochemical aspects of axonemal dynein activity studied by in vitro microtubule translocation. Biophys. J. 69, 2569–2579 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Paschal, B. M., Shpetner, H. S. & Vallee, R. B. MAP 1C is a mitrotubule-activated ATPase which translocates microtubules in vitro and has dynein-like properties. J. Cell Biol. 105, 1273–1282 (1987).

    Article  CAS  PubMed  Google Scholar 

  65. Crevel, I. M.-T. C., Lockhart, A. & Cross, R. A. Kinetic evidence for low chemical processivity in ncd and Eg5. J. Mol. Biol.(in the press).

  66. Govindan, B., Bowser, R. & Novick, P. The role of Myo2, a yeast class V myosin, in vesicular transport. J. Cell Biol. 128, 1055–1068 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Cheney, R. E. et al. Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell 75, 13–23 (1993).

    Article  CAS  PubMed  Google Scholar 

  68. Whittaker, M. et al. A35-Å movement of smooth muscle myosin on ADP release. Nature 378, 748–751 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  69. Jontes, J. D., Wilson-Kubalek, E. M. & Milligan, R. A. A32° tail swing in brush border myosin I on ADP release. Nature 378, 751–753 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Hille, B. Ionic Channels of Excitable Membranes 2nd edn (Sinnauer, Sunderland, MA, (1992)).

    Google Scholar 

  71. Zot, H. G., Doberstein, S. K. & Pollard, T. D. Myosin-I moves actin filaments on a phospholipid substrate: implications for membrane targeting. J. Cell Biol. 116, 367–376 (1992).

    Article  CAS  PubMed  Google Scholar 

  72. Ostap, E. M. & Pollard, T. D. Biochemical kinetic characterization of the Acanthamoeba myosin-I ATPase. J. Cell Biol. 132, 1053–1060 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Toyoshima, Y. Y. et al. Myosin subfragment-1 is sufficient ot move actin filaments in vitro. Nature 328, 536–539 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Siemankowski, R. F., Wiseman, M. O. & White, H. D. ADP dissociation from actomyosin subfragment 1 is sufficiently slow to limit the unloaded shortening in vertebrate muscle. Proc. Natl Acad. Sci. USA 82, 658–662 (1985).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Warshaw, D. M., Derosiers, J. M., Work, S. S. & Trybus, K. M. Smooth muscle myosin cross-bridge interactions modulate actin filament sliding velocity in vitro. J. Cell Biol. 111, 453–463 (1990).

    Article  CAS  PubMed  Google Scholar 

  76. Rivolta, M. N., Urrutia, R. & Kachar, B. Asoluble motor from the alga Nitella supports fast movement of actin filaments in vitro. Biochim. Biophys. Acta 1232, 1–4 (1995).

    Article  PubMed  Google Scholar 

  77. Brennen, C. & Winet, H. Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech. 9, 339–398 (1977).

    Article  ADS  MATH  Google Scholar 

  78. Yokota, E. & Mabuchi, I. C. Adynein isolated from sea urchin sperm flagellar axonemes. Enzymatic properties and interaction with microtubules. J. Cell Sci. 107, 353–361 (1994).

    CAS  PubMed  Google Scholar 

  79. Brady, S. T., Pfister, K. K. & Bloom, G. S. Amonoclonal antibody against kinesin inhibits both anterograde and retrograde fast axonal transport in squid axoplasm. Proc. Natl Acad. Sci. USA 87, 1061–1065 (1990).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shpetner, H. S., Paschal, B. M. & Vallee, R. B. Characterization of the microtubule-activated ATPase of brain cytoplasmic dynein (MAP 1C). J. Cell Biol. 107, 1001–1009 (1988).

    Article  CAS  PubMed  Google Scholar 

  81. Kozminski, K. G., Beech, P. L. & Rosenbaum, J. L. The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane. J. Cell Biol. 131, 1517–1527 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Cole, D. G. et al. Novel heterotrimeric kinesin-related protein purified from sea urchin eggs. Nature 366, 268–270 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Yeh, E., Skibbens, R. V., Cheng, J. W., Salmon, E. D. & Bloom, K. Spindle dynamics and cell cycle regulation of dynein in the budding yeast Saccharomyces cerevisiae. J. Cell Biol. 130, 687–700 (1995).

    Article  CAS  PubMed  Google Scholar 

  84. Saunders, W. S. & Hoyt, M. A. Kinesin-related proteins required for structural integrity of the mitotic spindle. Cell 70, 451–458 (1992).

    Article  CAS  PubMed  Google Scholar 

  85. Lockhart, A. & Cross, R. A. Kinetics and motility of the Eg5 microtubule motor. Biochemistry 35, 2365–2373 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. Chandra, R., Salmon, E. D., Erickson, H. P., Lockhart, A. & Endow, S. A. J. Biol. Chem. 268, 9005–9013 (1993).

    Google Scholar 

  87. Lockhart, A., Cross, R. A. & McKillop, D. F. A. ADP release is the rate-limiting step of the MT activated ATPase of non-claret disjunctional and kinesin. FEBS Lett. 368, 531–535 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Hirose, K., Lockhart, A., Cross, R. A. & Amos, L. A. Nucleotide-dependent angular change in kinesin motor domain bound to tubulin. Nature 376, 277–279 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This review was written while the author was a Guggenheim fellow on sabbatical leave in the Abteilung Molekulare Zellforschung, Max-Planck-Institut für Medicinische Forschung, Heidelberg. Original research was supported by the NIH and the Human Frontier Science Program. I thank many colleagues in Seattle and Heidelberg as well as M. Geeves, H. Gutfreund and M. Irving for critical comments on earlier drafts of the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howard, J. Molecular motors: structural adaptations to cellular functions. Nature 389, 561–567 (1997). https://doi.org/10.1038/39247

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/39247

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing