Skip to main content

Immunology of the Lymphomas

  • Chapter
  • First Online:
Neoplastic Diseases of the Blood

Abstract

In the past 50 years, important discoveries have helped our current understanding of the immune system and its neoplasms. Early investigations led to the identification of distinct subpopulations of lymphocytes, the T (thymic-derived), B (bursa-equivalent), and natural killer (NK) lymphocytes that were not necessarily discernible by morphology and had differing functions (Papermaster and Good, Nature, 196:838–840, 1962 and Cooper et al., Nature 205:143–146, 1965). Cell-mediated immunity was found to be a function of T lymphocytes, while antibody responses (humoral immunity) were found to be a function of B lymphocytes. T and B cells were differentiated by the presence of certain antigens or proteins on their cell surfaces, specifically erythrocyte-rosette receptors (T) and surface immunoglobulins (B). It was later noted that different stages of lymphocyte maturation could be distinguished by the combination of particular antigens, generally glycoproteins, present on the cell surface, termed differentiation antigens. These antigens may be identified by specific, pure hybridoma antibodies (monoclonal antibodies) raised against them. The discovery of surface antigens on lymphocytes revolutionized the study of lymphoma (Nowell, Cancer Res, 20:462–466, 1960; Shevach et al. Transplant Rev, 16:3–28, 1973; and Jaffe et al., Cancer Treat Rep, 61:953–962, 1977). The combination of surface antigens (now termed cluster designation or CD group) present on a particular cell was designated its immunophenotype. The use of immunophenotypes has been helpful in classifying lymphomas into groups of B- or T-cell types and has provided insight into lymphocyte maturation. The result has been the development of new schemas of lymphocyte differentiation and new histologic classification systems attempting to correlate histology with phenotype. The progress in technology at the molecular level now permits detection of the earliest commitment to B- and T-lymphoid differentiation and serves to confirm immunophenotypic data. These technological advances have also led to the development of novel, targeted therapeutics in the form of monoclonal antibodies specific for the malignant equivalent of the developmental antigens associated with differentiation. As our understanding of immunologic interactions and function has matured, it has also become possible to modify these functions that may prevent tumor cell apoptosis and augment tumor cell killing by T and NK cells. Most recently, immune checkpoint inhibitors active in lymphoma have also been developed and are now becoming standard of care in treating a variety of lymphoid tumors. As described below, our ability to harness the immune system has progressed from developing a single “magic bullet” to amassing an arsenal of weaponry in the treatment of lymphoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Papermaster BW, Good RA. Relative contributions of the thymus and the bursa of Fabricius to the maturation of the lymphoreticular system and immunological potential in the chicken. Nature. 1962;196:838–40.

    Article  CAS  PubMed  Google Scholar 

  2. Cooper MD, Peterson RD, Good RA. Delineation of the thymic and bursal lymphoid systems in the chicken. Nature. 1965;205:143–6.

    Article  CAS  PubMed  Google Scholar 

  3. Nowell PC. Phytohemagglutinin: an initiator of mitosis in cultures of normal human leukocytes. Cancer Res. 1960;20:462–6.

    CAS  PubMed  Google Scholar 

  4. Shevach EM, Jaffe ES, Green I. Receptors for complement and immunoglobulin on human and animal lymphoid cells. Transplant Rev. 1973;16:3–28.

    CAS  PubMed  Google Scholar 

  5. Jaffe ES, Braylan RC, Nanba K, Frank MM, Berard CW. Functional markers: a new perspective on malignant lymphomas. Cancer Treat Rep. 1977;61(6):953–62.

    CAS  PubMed  Google Scholar 

  6. Hodgkin T. On some morbid appearances of the absorbent glands and spleen. 1832.

    Google Scholar 

  7. Gall EA, Mallory TB. Malignant lymphoma: a clinico-pathologic survey of 618 cases. Am J Clin Pathol. 1942;18(3):381.

    CAS  Google Scholar 

  8. Gall EA, Morrison HR, Scott AT. The follicular type of malignant lymphoma; a survey of 63 cases. Ann Intern Med. 1941;14(11):2073–90.

    Article  Google Scholar 

  9. Rappaport H, Winter WJ, Hicks EB. Follicular lymphoma. A re-evaluation of its position in the scheme of malignant lymphoma based on a survey of 253 cases. Cancer. 1956;9(4):792–821.

    Article  PubMed  Google Scholar 

  10. Rappaport H. Atlas of tumor pathology, vol. 8. Washington, DC: Armed Forces Institute of Pathology; 1966.

    Google Scholar 

  11. Jaffe ES, Shevach EM, Frank MM, Berard CW, Green I. Nodular lymphoma—evidence for origin from follicular B lymphocytes. N Engl J Med. 1974;290(15):813–9.

    Article  CAS  PubMed  Google Scholar 

  12. Jaffe ES, Braylan RC, Frank MM, Green I, Berard CW. Heterogeneity of immunologic markers and surface morphology in childhood lymphoblastic lymphoma. Blood. 1976;48(2):213–22.

    CAS  PubMed  Google Scholar 

  13. Tsukimoto I, Wong KY, Lampkin BC. Surface markers and prognostic factors in acute lymphoblastic leukemia. N Engl J Med. 1976;294(5):245–8.

    Article  CAS  PubMed  Google Scholar 

  14. Howard FD, Ledbetter J, Wong J, Bieber C, Stinson E, Herzenberg L. A human T lymphocyte differentiation marker defined by monoclonal antibodies that block E-rosette formation. J Immunol. 1981;126(6):2117–22.

    CAS  PubMed  Google Scholar 

  15. Hünig T. The cell surface molecule recognized by the erythrocyte receptor of T lymphocytes. Identification and partial characterization using a monoclonal antibody. J Exp Med. 1985;162(3):890–901.

    Article  PubMed  Google Scholar 

  16. Taylor C. A practical approach to immunohistologic studies of lymphoreticular neoplasia. Introduction. J Histochem Cytochem. 1979;27(8):1188.

    Article  CAS  PubMed  Google Scholar 

  17. Peiper S, Kahn L, Ross D, Reddick R. Ultrastructural organization of the reed-Sternberg cell: its resemblance to cells of the monocyte-macrophage system. Blood Cells. 1979;6(3):515–23.

    Google Scholar 

  18. Wood GW, Travers H. Non-Hodgkin’s lymphoma: identification of the monoclonal B lymphocyte component in the presence of polyclonal immunoglobulin. J Histochem Cytochem. 1982;30(10):1015–21.

    Article  CAS  PubMed  Google Scholar 

  19. Isaacson P, Wright DH. Anomolous staining patterns in immunohistologic studies of malignant lymphoma. J Histochem Cytochem. 1979;27(8):1197–9.

    Article  CAS  PubMed  Google Scholar 

  20. Isaacson P. Immunochemical demonstration of J chain: a marker of B-cell malignancy. J Clin Pathol. 1979;32(8):802–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495–7.

    Article  PubMed  Google Scholar 

  22. McMichael AJ, Pilch JR, Fabre JW, Mason DY, Galfré G, Milstein C. A human thymocyte antigen defined by a hybrid myeloma monoclonal antibody. Eur J Immunol. 1979;9(3):205–10.

    Article  CAS  PubMed  Google Scholar 

  23. Bernard A, Boumsell L. The clusters of differentiation (CD) defined by the first international workshop on human leucocyte differentiation antigens. Hum Immunol. 1984;11(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  24. Zola H, Swart B, Banham A, et al. CD molecules 2006—human cell differentiation molecules. J Immunol Methods. 2007;319(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  25. Borella L, Casper J, Lauer S. Shifts in expression of cell membrane phenotypes in childhood lymphoid malignancies at relapse. Blood. 1979;54(1):64–71.

    CAS  PubMed  Google Scholar 

  26. Frenkel E, Smith R, Ligler F, et al. Analysis and detection of B cell neoplasms. Blood Cells. 1979;6(4):783–98.

    Google Scholar 

  27. Minowada J, Koshiba H, Sagawa K, et al. Marker profiles of human leukemia and lymphoma cell lines. J Cancer Res Clin Oncol. 1981;101(1):91–100.

    Article  CAS  PubMed  Google Scholar 

  28. Woda BA, Knowles DM. Nodular lymphocytic lymphoma eventuating into diffuse histiocytic lymphoma. Immunoperoxidase demonstration of monoclonality. Cancer. 1979;43(1):303–7.

    Article  CAS  PubMed  Google Scholar 

  29. Van Den Tweel JG, Lukes RJ, Taylor CR. Pathophysiology of lymphocyte transformation: a study of so-called composite lymphomas. American J Clin Pathol. 1979;71(5):509–20.

    Article  Google Scholar 

  30. Landaas T, Godal T, Marton P, et al. Cell-associated immunoglobulin in human non-Hodgkin lymphomas. A comparative study of surface immunoglobulin on cells in suspension and cytoplasmic immunoglobulin by immunohistochemistry. Acta Pathol Microbiol Scand A. 1981;89(2):91–101.

    CAS  PubMed  Google Scholar 

  31. Lukes R. The immunologic approach to the pathology of malignant lymphomas. American J Clin Pathol. 1979;72(4 Suppl):657–69.

    CAS  Google Scholar 

  32. Falini B, De Solas I, Levine AM, Parker JW, Lukes RJ, Taylor CR. Emergence of B-immunoblastic sarcoma in patients with multiple myeloma: a clinicopathologic study of 10 cases. Blood. 1982;59(5):923–33.

    CAS  PubMed  Google Scholar 

  33. Harousseau J, Flandrin G, Tricot G, Brouet J, Seligmann M, Bernard J. Malignant lymphoma supervening in chronic lymphocytic leukemia and related disorders. Richter’s syndrome: a study of 25 cases. Cancer. 1981;48(6):1302–8.

    Article  CAS  PubMed  Google Scholar 

  34. Foon KA. Laboratory and clinical applications of monoclonal antibodies for leukemias and non-Hodkin’s lymphoma. Curr Probl Cancer. 1989;13(2):63–128.

    Article  Google Scholar 

  35. Wood BL, Arroz M, Barnett D, et al. 2006 Bethesda international consensus recommendations on the immunophenotypic analysis of hematolymphoid neoplasia by flow cytometry: optimal reagents and reporting for the flow cytometric diagnosis of hematopoietic neoplasia. Cytometry B Clin Cytom. 2007;72(S1):S14–22.

    Article  PubMed  Google Scholar 

  36. Ault KA. Detection of small numbers of monoclonal B lymphocytes in the blood of patients with lymphoma. N Engl J Med. 1979;300(25):1401–5.

    Article  CAS  PubMed  Google Scholar 

  37. Krajewski A, Dewar A. Studies on blood lymphocytes of patients with nodular poorly differentiated lymphocytic lymphoma. J Clin Pathol. 1981;34(8):896–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sobol RE, Astarita RW, Chisari FV, Griffiths JC, Royston I. Use of immunoglobulin light chain analysis to detect bone marrow involvement in B-cell neoplasms. Clin Immunol Immunopathol. 1982;24(1):139–44.

    Article  CAS  PubMed  Google Scholar 

  39. Krajewski A, Dewar A, Ramage E. T and B lymphocyte markers in effusions of patients with non-Hodgkin’s lymphoma. J Clin Pathol. 1982;35(11):1216–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brudler O, Han T, Barcos M, et al. Determination of clonal excess in non-Hodgkin’s lymphoma: clinical significance. Prog Clin Biol Res. 1983;133:197.

    CAS  PubMed  Google Scholar 

  41. Kroft SH. Monoclones, monotypes, and neoplasia. Am J Clin Pathol. 2004;121(4):457–9.

    Article  PubMed  Google Scholar 

  42. Attygalle AD, Liu H, Shirali S, et al. Atypical marginal zone hyperplasia of mucosa-associated lymphoid tissue: a reactive condition of childhood showing immunoglobulin lambda light-chain restriction. Blood. 2004;104(10):3343–8.

    Article  CAS  PubMed  Google Scholar 

  43. Du M-Q, Liu H, Diss TC, et al. Kaposi sarcoma–associated herpesvirus infects monotypic (IgMλ) but polyclonal naive B cells in Castleman disease and associated lymphoproliferative disorders. Blood. 2001;97(7):2130–6.

    Article  CAS  PubMed  Google Scholar 

  44. Kussick SJ, Kalnoski M, Braziel RM, Wood BL. Prominent clonal B-cell populations identified by flow cytometry in histologically reactive lymphoid proliferations. Am J Clin Pathol. 2004;121(4):464–72.

    Article  PubMed  Google Scholar 

  45. Kennedy GA, Tey SK, Cobcroft R, et al. Incidence and nature of CD20-negative relapses following rituximab therapy in aggressive B-cell non-Hodgkin’s lymphoma: a retrospective review. Br J Haematol. 2002;119(2):412–6.

    Article  CAS  PubMed  Google Scholar 

  46. Li S, Eshleman JR, Borowitz MJ. Lack of surface immunoglobulin light chain expression by flow cytometric immunophenotyping can help diagnose peripheral B-cell lymphoma. Am J Clin Pathol. 2002;118(2):229–34.

    Article  CAS  PubMed  Google Scholar 

  47. Swerdllow S, Campo E, Harris NL. WHO classification of tumours of haematopoietic and lymphoid tissues. France: IARC Press; 2008.

    Google Scholar 

  48. Craig FE, Foon KA. Flow cytometric immunophenotyping for hematologic neoplasms. Blood. 2008;111(8):3941–67.

    Article  CAS  PubMed  Google Scholar 

  49. Ahmad E, Garcia D, Davis BH. Clinical utility of CD23 and FMC7 antigen coexistent expression in B-cell lymphoproliferative disorder subclassification. Cytometry. 2002;50(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  50. Delgado J, Matutes E, Morilla AM, et al. Diagnostic significance of CD20 and FMC7 expression in B-cell disorders. Am J Clin Pathol. 2003;120(5):754–9.

    Article  CAS  PubMed  Google Scholar 

  51. Rassenti LZ, Kipps TJ. Clinical utility of assessing ZAP-70 and CD38 in chronic lymphocytic leukemia. Cytometry B Clin Cytom. 2006;70(4):209–13.

    Article  PubMed  CAS  Google Scholar 

  52. Hamblin TJ, Orchard JA, Ibbotson RE, et al. CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease. Blood. 2002;99(3):1023–9.

    Article  CAS  PubMed  Google Scholar 

  53. Weiss A, Chan A, Iwashima M, Straus D, Irving B. Regulation of protein tyrosine kinase activation by the T-cell antigen receptor ζ chain. Cold Spring Harb Symp Quant Biol. 1992;57:107–16.

    Article  CAS  PubMed  Google Scholar 

  54. Crespo M, Bosch F, Villamor N, et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med. 2003;348(18):1764–75.

    Article  CAS  PubMed  Google Scholar 

  55. Rassenti LZ, Huynh L, Toy TL, et al. ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N Engl J Med. 2004;351(9):893–901.

    Article  CAS  PubMed  Google Scholar 

  56. Wiestner A, Rosenwald A, Barry TS, et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood. 2003;101(12):4944–51.

    Article  CAS  PubMed  Google Scholar 

  57. Del Principe MI, Del Poeta G, Buccisano F, et al. Clinical significance of ZAP-70 protein expression in B-cell chronic lymphocytic leukemia. Blood. 2006;108(3):853–61.

    Article  PubMed  CAS  Google Scholar 

  58. Raffeid M, Jaffe ES. Bcl-1, t (ll; 14), and mantle cell-derived lymphomas. Blood. 1991;78(2):269–3.

    Google Scholar 

  59. Meyerson HJ, MacLennan G, Husel W, Tse W, Lazarus HM, Kaplan D. D cyclins in CD5+ B-cell lymphoproliferative disorders. Am J Clin Pathol. 2006;125(2):241–50.

    Article  CAS  PubMed  Google Scholar 

  60. Kroft SH, Dawson DB, McKenna RW. Large cell lymphoma transformation of chronic lymphocytic leukemia/small lymphocytic lymphoma. Am J Clin Pathol. 2001;115(3):385–95.

    Article  CAS  PubMed  Google Scholar 

  61. Yamaguchi M, Seto M, Okamoto M, et al. De novo CD5+ diffuse large B-cell lymphoma: a clinicopathologic study of 109 patients. Blood. 2002;99(3):815–21.

    Article  CAS  PubMed  Google Scholar 

  62. Yamaguchi M, Nakamura N, Suzuki R, et al. De novo CD5+ diffuse large B-cell lymphoma: results of a detailed clinicopathological review in 120 patients. Haematologica. 2008;93(8):1195–202.

    Article  PubMed  Google Scholar 

  63. Gary-Gouy H, Harriague J, Bismuth G, Platzer C, Schmitt C, Dalloul AH. Human CD5 promotes B-cell survival through stimulation of autocrine IL-10 production. Blood. 2002;100(13):4537–43.

    Article  CAS  PubMed  Google Scholar 

  64. Ferry JA, Yang W-I, Zukerberg LR, Wotherspoon AC, Arnold A, Harris NL. CD5+ extranodal marginal zone B-cell (MALT) lymphoma: a low grade neoplasm with a propensity for bone marrow involvement and relapse. Am J Clin Pathol. 1996;105(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  65. Remstein ED, Dogan A, Einerson RR, et al. The incidence and anatomic site specificity of chromosomal translocations in primary extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) in North America. Am J Surg Pathol. 2006;30(12):1546–53.

    Article  PubMed  Google Scholar 

  66. Isaacson P, Wright DH. Extranodal malignant lymphoma arising from mucosa-associated lymphoid tissue. Cancer. 1984;53(11):2515–24.

    Article  CAS  PubMed  Google Scholar 

  67. Hyjek E, Smith WJ, Isaacson PG. Primary B-cell lymphoma of salivary glands and its relationship to myoepithelial sialadenitis. Hum Pathol. 1988;19(7):766–76.

    Article  CAS  PubMed  Google Scholar 

  68. Hyjek E, Isaacson PG. Primary B cell lymphoma of the thyroid and its relationship to Hashimoto’s thyroiditis. Hum Pathol. 1988;19(11):1315–26.

    Article  CAS  PubMed  Google Scholar 

  69. Eidt S, Stolte M, Fischer R. Helicobacter pylori gastritis and primary gastric non-Hodgkin’s lymphomas. J Clin Pathol. 1994;47(5):436–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Eidt S, Stolte M. Prevalence of lymphoid follicles and aggregates in helicobacter pylori gastritis in antral and body mucosa. J Clin Pathol. 1993;46(9):832–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Isaacson PG, Wotherspoon AC, Diss T, Pan L. Follicular colonization in B-cell lymphoma of mucosa-associated lymphoid tissue. Am J Surg Pathol. 1991;15(9):819–28.

    Article  CAS  PubMed  Google Scholar 

  72. Wotherspoon A, Ortiz-Hidalgo C, Falzon M, Isaacson P. Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet. 1991;338(8776):1175–6.

    Article  CAS  PubMed  Google Scholar 

  73. Nakamura S, Yao T, Aoyagi K, Iida M, Fujishima M, Tsuneyoshi M. Helicobacter pylori and primary gastric lymphoma. Cancer. 1997;79(1):3–11.

    Article  CAS  PubMed  Google Scholar 

  74. Nakamura S, Aoyagi K, Furuse M, et al. B-cell monoclonality precedes the development of gastric MALT lymphoma in helicobacter pylori-associated chronic gastritis. Am J Pathol. 1998;152(5):1271.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hussell T, Isaacson P, Spencer J, Crabtree J. The response of cells from low-grade B-cell gastric lymphomas of mucosa-associated lymphoid tissue to helicobacter pylori. Lancet. 1993;342(8871):571–4.

    Article  CAS  PubMed  Google Scholar 

  76. Hussell T, Isaacson PG, Crabtree JE, Spencer J. Helicobacter pylori-specific tumour-infiltrating T cells provide contact dependent help for the growth of malignant B cells in low-grade gastric lymphoma of mucosa-associated lymphoid tissue. J Pathol. 1996;178(2):122–7.

    Article  CAS  PubMed  Google Scholar 

  77. Bayerdörffer E, Rudolph B, Neubauer A, et al. Regression of primary gastric lymphoma of mucosa-associated lymphoid tissue type after cure of helicobacter pylori infection. Lancet. 1995;345(8965):1591–4.

    Article  PubMed  Google Scholar 

  78. Wotherspoon A, Diss T, Pan L, et al. Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of helicobacter pylori. Lancet. 1993;342(8871):575–7.

    Article  CAS  PubMed  Google Scholar 

  79. Mueller A, O’Rourke J, Chu P, et al. The role of antigenic drive and tumor-infiltrating accessory cells in the pathogenesis of helicobacter-induced mucosa-associated lymphoid tissue lymphoma. Am J Pathol. 2005;167(3):797–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Knörr C, Amrehn C, Seeberger H, et al. Expression of costimulatory molecules in low-grade mucosa-associated lymphoid tissue-type lymphomas in vivo. Am J Pathol. 1999;155(6):2019–27.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bende RJ, Aarts WM, Riedl RG, de Jong D, Pals ST, van Noesel CJ. Among B cell non-Hodgkin’s lymphomas, MALT lymphomas express a unique antibody repertoire with frequent rheumatoid factor reactivity. J Exp Med. 2005;201(8):1229–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Qin Y, Greiner A, Trunk M, Schmausser B, Ott M, Muller-Hermelink H. Somatic hypermutation in low-grade mucosa-associated lymphoid tissue-type B-cell lymphoma. Blood. 1995;86(9):3528–34.

    CAS  PubMed  Google Scholar 

  83. Du M, Diss T, Xu C, Peng H, Isaacson P, Pan L. Ongoing mutation in MALT lymphoma immunoglobulin gene suggests that antigen stimulation plays a role in the clonal expansion. Leukemia. 1996;10(7):1190–7.

    CAS  PubMed  Google Scholar 

  84. Craig VJ, Arnold I, Gerke C, et al. Gastric MALT lymphoma B cells express polyreactive, somatically mutated immunoglobulins. Blood. 2010;115(3):581–91.

    Article  CAS  PubMed  Google Scholar 

  85. Wright G, Tan B, Rosenwald A, Hurt EH, Wiestner A, Staudt LM. A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc Natl Acad Sci. 2003;100(17):9991–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rosenwald A, Wright G, Chan WC, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(25):1937–47.

    Article  PubMed  Google Scholar 

  87. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11.

    Article  CAS  PubMed  Google Scholar 

  88. Ye BH, Lista F, Lo Coco F, et al. Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science. 1993;262(5134):747–50.

    Article  CAS  PubMed  Google Scholar 

  89. Klein U, Dalla-Favera R. Germinal centres: role in B-cell physiology and malignancy. Nat Rev Immunol. 2008;8(1):22–33.

    Article  CAS  PubMed  Google Scholar 

  90. Ding BB, Yu JJ, Yu RY-L, et al. Constitutively activated STAT3 promotes cell proliferation and survival in the activated B-cell subtype of diffuse large B-cell lymphomas. Blood. 2008;111(3):1515–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lam LT, Wright G, Davis RE, et al. Cooperative signaling through the signal transducer and activator of transcription 3 and nuclear factor-κB pathways in subtypes of diffuse large B-cell lymphoma. Blood. 2008;111(7):3701–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Seth A, Watson DK. ETS transcription factors and their emerging roles in human cancer. Eur J Cancer. 2005;41(16):2462–78.

    Article  CAS  PubMed  Google Scholar 

  93. Lenz G, Nagel I, Siebert R, et al. Aberrant immunoglobulin class switch recombination and switch translocations in activated B cell–like diffuse large B cell lymphoma. J Exp Med. 2007;204(3):633–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Su GH, Ip HS, Cobb BS, Lu M-M, Chen H-M, Simon MC. The Ets protein Spi-B is expressed exclusively in B cells and T cells during development. J Exp Med. 1996;184(1):203–14.

    Article  CAS  PubMed  Google Scholar 

  95. Schotte R, Rissoan M-C, Bendriss-Vermare N, et al. The transcription factor Spi-B is expressed in plasmacytoid DC precursors and inhibits T-, B-, and NK-cell development. Blood. 2003;101(3):1015–23.

    Article  CAS  PubMed  Google Scholar 

  96. Su GH, Chen HM, Muthusamy N, et al. Defective B cell receptor-mediated responses in mice lacking the Ets protein, Spi-B. EMBO J. 1997;16(23):7118–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shaffer A, Lin K-I, Kuo TC, et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity. 2002;17(1):51–62.

    Article  CAS  PubMed  Google Scholar 

  98. Glass AG, Karnell LH, Menck HR. The national cancer data base report on non-hodgkin’s lymphoma. Cancer. 1997;80(12):2311–20.

    Article  CAS  PubMed  Google Scholar 

  99. A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin’s lymphoma. The non-Hodgkin’s lymphoma classification project. Blood. 1997;89(11):3909–18.

    Google Scholar 

  100. Letai AG. Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. Nat Rev Cancer. 2008;8(2):121–32.

    Article  CAS  PubMed  Google Scholar 

  101. McDonnell TJ, Korsmeyer SJ. Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14; 18). Nature. 1991;349(6306):254–6.

    Article  CAS  PubMed  Google Scholar 

  102. Liu Y, Hernandez AM, Shibata D, Cortopassi GA. BCL2 translocation frequency rises with age in humans. Proc Natl Acad Sci U S A. 1994;91(19):8910–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Limpens J, de Jong D, van Krieken JH, et al. Bcl-2/JH rearrangements in benign lymphoid tissues with follicular hyperplasia. Oncogene. 1991;6(12):2271–6.

    CAS  PubMed  Google Scholar 

  104. Eray M, Postila V, Eeva J, et al. Follicular lymphoma cell lines, an in vitro model for antigenic selection and cytokine-mediated growth regulation of germinal centre B cells. Scand J Immunol. 2003;57(6):545–55.

    Article  CAS  PubMed  Google Scholar 

  105. Park CS, Choi YS. How do follicular dendritic cells interact intimately with B cells in the germinal centre? Immunology. 2005;114(1):2–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chang KC, Huang X, Medeiros LJ, Jones D. Germinal centre-like versus undifferentiated stromal immunophenotypes in follicular lymphoma. J Pathol. 2003;201(3):404–12.

    Article  PubMed  Google Scholar 

  107. Shiozawa E, Yamochi-Onizuka T, Yamochi T, et al. Disappearance of CD21-positive follicular dendritic cells preceding the transformation of follicular lymphoma: immunohistological study of the transformation using CD21, p53, Ki-67, and P-glycoprotein. Pathol Res Pract. 2003;199(5):293–302.

    Article  CAS  PubMed  Google Scholar 

  108. Bohen SP, Troyanskaya OG, Alter O, et al. Variation in gene expression patterns in follicular lymphoma and the response to rituximab. Proc Natl Acad Sci U S A. 2003;100(4):1926–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dave SS, Wright G, Tan B, et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med. 2004;351(21):2159–69.

    Article  CAS  PubMed  Google Scholar 

  110. Glas AM, Kersten MJ, Delahaye LJ, et al. Gene expression profiling in follicular lymphoma to assess clinical aggressiveness and to guide the choice of treatment. Blood. 2005;105(1):301–7.

    Article  CAS  PubMed  Google Scholar 

  111. Hoglund M, Sehn L, Connors JM, et al. Identification of cytogenetic subgroups and karyotypic pathways of clonal evolution in follicular lymphomas. Genes Chromosom Cancer. 2004;39(3):195–204.

    Article  PubMed  Google Scholar 

  112. de Jong D. Molecular pathogenesis of follicular lymphoma: a cross talk of genetic and immunologic factors. J Clin Oncol. 2005;23(26):6358–63.

    Article  PubMed  Google Scholar 

  113. Farinha P, Masoudi H, Skinnider BF, et al. Analysis of multiple biomarkers shows that lymphoma-associated macrophage (LAM) content is an independent predictor of survival in follicular lymphoma (FL). Blood. 2005;106(6):2169–74.

    Article  CAS  PubMed  Google Scholar 

  114. Byers RJ, Sakhinia E, Joseph P, et al. Clinical quantitation of immune signature in follicular lymphoma by RT-PCR-based gene expression profiling. Blood. 2008;111(9):4764–70.

    Article  CAS  PubMed  Google Scholar 

  115. Chapman CJ, Wright D, Stevenson FK. Insight into Burkitt’s lymphoma from immunoglobulin variable region gene analysis. Leuk Lymphoma. 1998;30(3–4):257–67.

    Article  CAS  PubMed  Google Scholar 

  116. Rajewsky K. Clonal selection and learning in the antibody system. Nature. 1996;381(6585):751–8.

    Article  CAS  PubMed  Google Scholar 

  117. Honjo T. Does AID need another aid? Nat Immunol. 2002;3:800–1.

    Article  CAS  PubMed  Google Scholar 

  118. Di Noia JM, Neuberger MS. Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem. 2007;76:1–22.

    Article  PubMed  CAS  Google Scholar 

  119. Pasqualucci L, Neumeister P, Goossens T, et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature. 2001;412(6844):341–6.

    Article  CAS  PubMed  Google Scholar 

  120. Kuppers R, Dalla-Favera R. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene. 2001;20(40):5580–94.

    Article  CAS  PubMed  Google Scholar 

  121. Schuhmacher M, Kohlhuber F, Holzel M, et al. The transcriptional program of a human B cell line in response to Myc. Nucleic Acids Res. 2001;29(2):397–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cole MD, Cowling VH. Transcription-independent functions of MYC: regulation of translation and DNA replication. Nat Rev Mol Cell Biol. 2008;9(10):810–5.

    Article  CAS  PubMed  Google Scholar 

  123. Adams JM, Harris AW, Pinkert CA, et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature. 1985;318(6046):533–8.

    Article  CAS  PubMed  Google Scholar 

  124. Kovalchuk AL, Kishimoto T, Janz S. Lymph nodes and Peyer’s patches of IL-6 transgenic BALB/c mice harbor T(12;15) translocated plasma cells that contain illegitimate exchanges between the immunoglobulin heavy-chain mu locus and c-myc. Leukemia. 2000;14(6):1127–35.

    Article  CAS  PubMed  Google Scholar 

  125. Chesi M, Robbiani DF, Sebag M, et al. AID-dependent activation of a MYC transgene induces multiple myeloma in a conditional mouse model of post-germinal center malignancies. Cancer Cell. 2008;13(2):167–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Scheller H, Tobollik S, Kutzera A, et al. C-Myc overexpression promotes a germinal center-like program in Burkitt’s lymphoma. Oncogene. 2010;29(6):888–97.

    Article  CAS  PubMed  Google Scholar 

  127. Rowe M, Kelly GL, Bell AI, Rickinson AB. Burkitt’s lymphoma: the Rosetta stone deciphering Epstein-Barr virus biology. Semin Cancer Biol. 2009;19(6):377–88.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Rochford R, Cannon MJ, Moormann AM. Endemic Burkitt’s lymphoma: a polymicrobial disease? Nat Rev Microbiol. 2005;3(2):182–7.

    Article  CAS  PubMed  Google Scholar 

  129. Whittle HC, Brown J, Marsh K, et al. T-cell control of Epstein-Barr virus-infected B cells is lost during P. Falciparum malaria. Nature. 1984;312(5993):449–50.

    Article  CAS  PubMed  Google Scholar 

  130. Njie R, Bell AI, Jia H, et al. The effects of acute malaria on Epstein-Barr virus (EBV) load and EBV-specific T cell immunity in Gambian children. J Infect Dis. 2009;199(1):31–8.

    Article  PubMed  Google Scholar 

  131. Moormann AM, Chelimo K, Sumba OP, et al. Exposure to holoendemic malaria results in elevated Epstein-Barr virus loads in children. J Infect Dis. 2005;191(8):1233–8.

    Article  PubMed  Google Scholar 

  132. Rasti N, Falk KI, Donati D, et al. Circulating epstein-barr virus in children living in malaria-endemic areas. Scand J Immunol. 2005;61(5):461–5.

    Article  CAS  PubMed  Google Scholar 

  133. Yone CL, Kube D, Kremsner PG, Luty AJ. Persistent Epstein-Barr viral reactivation in young African children with a history of severe plasmodium falciparum malaria. Trans R Soc Trop Med Hyg. 2006;100(7):669–76.

    Article  CAS  PubMed  Google Scholar 

  134. Ioachim HL, Cronin W, Roy M, Maya M. Persistent lymphadenopathies in people at high risk for HIV infection. Clinicopathologic correlations and long-term follow-up in 79 cases. Am J Clin Pathol. 1990;93(2):208–18.

    Article  CAS  PubMed  Google Scholar 

  135. Rowe M, Rowe DT, Gregory CD, et al. Differences in B cell growth phenotype reflect novel patterns of Epstein-Barr virus latent gene expression in Burkitt’s lymphoma cells. EMBO J. 1987;6(9):2743–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Gregory CD, Rowe M, Rickinson AB. Different Epstein-Barr virus-B cell interactions in phenotypically distinct clones of a Burkitt’s lymphoma cell line. J Gen Virol. 1990;71(Pt 7):1481–95.

    Article  CAS  PubMed  Google Scholar 

  137. Rowe DT, Hall L, Joab I, Laux G. Identification of the Epstein-Barr virus terminal protein gene products in latently infected lymphocytes. J Virol. 1990;64(6):2866–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Masucci MG, Torsteindottir S, Colombani J, Brautbar C, Klein E, Klein G. Down-regulation of class I HLA antigens and of the Epstein-Barr virus-encoded latent membrane protein in Burkitt lymphoma lines. Proc Natl Acad Sci U S A. 1987;84(13):4567–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Rowe M, Khanna R, Jacob CA, et al. Restoration of endogenous antigen processing in Burkitt’s lymphoma cells by Epstein-Barr virus latent membrane protein-1: coordinate up-regulation of peptide transporters and HLA-class I antigen expression. Eur J Immunol. 1995;25(5):1374–84.

    Article  CAS  PubMed  Google Scholar 

  140. Torsteinsdottir S, Masucci MG, Ehlin-Henriksson B, et al. Differentiation-dependent sensitivity of human B-cell-derived lines to major histocompatibility complex-restricted T-cell cytotoxicity. Proc Natl Acad Sci U S A. 1986;83(15):5620–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Khanna R, Burrows SR, Argaet V, Moss DJ. Endoplasmic reticulum signal sequence facilitated transport of peptide epitopes restores immunogenicity of an antigen processing defective tumour cell line. Int Immunol. 1994;6(4):639–45.

    Article  CAS  PubMed  Google Scholar 

  142. Rooney CM, Rowe M, Wallace LE, Rickinson AB. Epstein-Barr virus-positive Burkitt’s lymphoma cells not recognized by virus-specific T-cell surveillance. Nature. 1985;317(6038):629–31.

    Article  CAS  PubMed  Google Scholar 

  143. Gregory CD, Dive C, Henderson S, et al. Activation of Epstein-Barr virus latent genes protects human B cells from death by apoptosis. Nature. 1991;349(6310):612–4.

    Article  CAS  PubMed  Google Scholar 

  144. Henderson S, Rowe M, Gregory C, et al. Induction of bcl-2 expression by Epstein-Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell. 1991;65(7):1107–15.

    Article  CAS  PubMed  Google Scholar 

  145. Wang S, Rowe M, Lundgren E. Expression of the Epstein Barr virus transforming protein LMP1 causes a rapid and transient stimulation of the Bcl-2 homologue mcl-1 levels in B-cell lines. Cancer Res. 1996;56(20):4610–3.

    CAS  PubMed  Google Scholar 

  146. D’Souza B, Rowe M, Walls D. The bfl-1 gene is transcriptionally upregulated by the Epstein-Barr virus LMP1, and its expression promotes the survival of a Burkitt’s lymphoma cell line. J Virol. 2000;74(14):6652–8.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Cuadros M, Dave SS, Jaffe ES, et al. Identification of a proliferation signature related to survival in nodal peripheral T-cell lymphomas. J Clin Oncol. 2007;25(22):3321–9.

    Article  PubMed  Google Scholar 

  148. Gallamini A, Stelitano C, Calvi R, et al. Peripheral T-cell lymphoma unspecified (PTCL-U): a new prognostic model from a retrospective multicentric clinical study. Blood. 2004;103(7):2474–9.

    Article  CAS  PubMed  Google Scholar 

  149. Jaffe ES. The 2008 WHO classification of lymphomas: implications for clinical practice and translational research. Hematology Am Soc Hematol Educ Program. 2009;2009:523–31.

    Google Scholar 

  150. de Leval L, Rickman DS, Thielen C, et al. The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood. 2007;109(11):4952–63.

    Article  PubMed  CAS  Google Scholar 

  151. Rudiger T, Weisenburger DD, Anderson JR, et al. Peripheral T-cell lymphoma (excluding anaplastic large-cell lymphoma): results from the non-Hodgkin’s lymphoma classification project. Ann Oncol. 2002;13(1):140–9.

    Article  CAS  PubMed  Google Scholar 

  152. Geissinger E, Odenwald T, Lee SS, et al. Nodal peripheral T-cell lymphomas and, in particular, their lymphoepithelioid (Lennert’s) variant are often derived from CD8(+) cytotoxic T-cells. Virchows Arch. 2004;445(4):334–43.

    Article  PubMed  Google Scholar 

  153. Went P, Agostinelli C, Gallamini A, et al. Marker expression in peripheral T-cell lymphoma: a proposed clinical-pathologic prognostic score. J Clin Oncol. 2006;24(16):2472–9.

    Article  CAS  PubMed  Google Scholar 

  154. Dogan A, Attygalle AD, Kyriakou C. Angioimmunoblastic T-cell lymphoma. Br J Haematol. 2003;121(5):681–91.

    Article  PubMed  Google Scholar 

  155. Lee SS, Rudiger T, Odenwald T, Roth S, Starostik P, Muller-Hermelink HK. Angioimmunoblastic T cell lymphoma is derived from mature T-helper cells with varying expression and loss of detectable CD4. Int J Cancer. 2003;103(1):12–20.

    Article  CAS  PubMed  Google Scholar 

  156. Jones D, Fletcher CD, Pulford K, Shahsafaei A, Dorfman DM. The T-cell activation markers CD30 and OX40/CD134 are expressed in nonoverlapping subsets of peripheral T-cell lymphoma. Blood. 1999;93(10):3487–93.

    CAS  PubMed  Google Scholar 

  157. Jones D, O’Hara C, Kraus MD, et al. Expression pattern of T-cell-associated chemokine receptors and their chemokines correlates with specific subtypes of T-cell non-Hodgkin lymphoma. Blood. 2000;96(2):685–90.

    CAS  PubMed  Google Scholar 

  158. Ree HJ, Kadin ME, Kikuchi M, Ko YH, Suzumiya J, Go JH. Bcl-6 expression in reactive follicular hyperplasia, follicular lymphoma, and angioimmunoblastic T-cell lymphoma with hyperplastic germinal centers: heterogeneity of intrafollicular T-cells and their altered distribution in the pathogenesis of angioimmunoblastic T-cell lymphoma. Hum Pathol. 1999;30(4):403–11.

    Article  CAS  PubMed  Google Scholar 

  159. Grogg KL, Attygalle AD, Macon WR, Remstein ED, Kurtin PJ, Dogan A. Angioimmunoblastic T-cell lymphoma: a neoplasm of germinal-center T-helper cells? Blood. 2005;106:1501–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Dupuis J, Boye K, Martin N, et al. Expression of CXCL13 by neoplastic cells in angioimmunoblastic T-cell lymphoma (AITL): a new diagnostic marker providing evidence that AITL derives from follicular helper T cells. Am J Surg Pathol. 2006;30(4):490–4.

    Article  PubMed  Google Scholar 

  161. Grogg KL, Attygalle AD, Macon WR, Remstein ED, Kurtin PJ, Dogan A. Expression of CXCL13, a chemokine highly upregulated in germinal center T-helper cells, distinguishes angioimmunoblastic T-cell lymphoma from peripheral T-cell lymphoma, unspecified. Mod Pathol. 2006;19(8):1101–7.

    Article  CAS  PubMed  Google Scholar 

  162. Krenacs L, Schaerli P, Kis G, Bagdi E. Phenotype of neoplastic cells in angioimmunoblastic T-cell lymphoma is consistent with activated follicular B helper T cells. Blood. 2006;108:1110–1.

    Article  CAS  PubMed  Google Scholar 

  163. Piccaluga PP, Agostinelli C, Califano A, et al. Gene expression analysis of angioimmunoblastic lymphoma indicates derivation from T follicular helper cells and vascular endothelial growth factor deregulation. Cancer Res. 2007;67(22):10703–10.

    Article  CAS  PubMed  Google Scholar 

  164. Geissinger E, Bonzheim I, Krenacs L, et al. Nodal peripheral T-cell lymphomas correspond to distinct mature T-cell populations. J Pathol. 2006;210(2):172–80.

    Article  CAS  PubMed  Google Scholar 

  165. Bruns I, Fox F, Reinecke P, et al. Complete remission in a patient with relapsed angioimmunoblastic T-cell lymphoma following treatment with bevacizumab. Leukemia. 2005;19:1993–5.

    Article  CAS  PubMed  Google Scholar 

  166. Iqbal J, Weisenburger DD, Greiner TC, et al. Molecular signatures to improve diagnosis in peripheral T-cell lymphoma and prognostication in angioimmunoblastic T-cell lymphoma. Blood. 2010;115(5):1026–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Piccaluga PP, Agostinelli C, Califano A, et al. Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets. J Clin Invest. 2007;117(3):823–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Attygalle A, Al-Jehani R, Diss TC, et al. Neoplastic T cells in angioimmunoblastic T-cell lymphoma express CD10. Blood. 2002;99(2):627–33.

    Article  CAS  PubMed  Google Scholar 

  169. Sayos J, Wu C, Morra M, et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature. 1998;395(6701):462–9.

    Article  CAS  PubMed  Google Scholar 

  170. McCausland MM, Yusuf I, Tran H, Ono N, Yanagi Y, Crotty S. SAP regulation of follicular helper CD4 T cell development and humoral immunity is independent of SLAM and Fyn kinase. J Immunol. 2007;178(2):817–28.

    Article  CAS  PubMed  Google Scholar 

  171. Pene J, Gauchat JF, Lecart S, et al. Cutting edge: IL-21 is a switch factor for the production of IgG1 and IgG3 by human B cells. J Immunol. 2004;172(9):5154–7.

    Article  CAS  PubMed  Google Scholar 

  172. Vose J, Armitage J, Weisenburger D. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol. 2008;26(25):4124–30.

    Article  PubMed  Google Scholar 

  173. Savage KJ, Harris NL, Vose JM, et al. ALK- anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the international peripheral T-cell lymphoma project. Blood. 2008;111(12):5496–504.

    Article  CAS  PubMed  Google Scholar 

  174. Fornari A, Piva R, Chiarle R, Novero D, Inghirami G. Anaplastic large cell lymphoma: one or more entities among T-cell lymphoma? Hematol Oncol. 2009;27(4):161–70.

    Article  CAS  PubMed  Google Scholar 

  175. Stein H, Mason DY, Gerdes J, et al. The expression of the Hodgkin’s disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood. 1985;66(4):848–58.

    CAS  PubMed  Google Scholar 

  176. Morris SW, Kirstein MN, Valentine MB, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1995;267(5196):316–7.

    Article  CAS  PubMed  Google Scholar 

  177. Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer. 2008;8(1):11–23.

    Article  CAS  PubMed  Google Scholar 

  178. Thompson MA, Stumph J, Henrickson SE, et al. Differential gene expression in anaplastic lymphoma kinase-positive and anaplastic lymphoma kinase-negative anaplastic large cell lymphomas. Hum Pathol. 2005;36(5):494–504.

    Article  CAS  PubMed  Google Scholar 

  179. Lamant L, de Reynies A, Duplantier MM, et al. Gene-expression profiling of systemic anaplastic large-cell lymphoma reveals differences based on ALK status and two distinct morphologic ALK+ subtypes. Blood. 2007;109(5):2156–64.

    Article  CAS  PubMed  Google Scholar 

  180. Salaverria I, Bea S, Lopez-Guillermo A, et al. Genomic profiling reveals different genetic aberrations in systemic ALK-positive and ALK-negative anaplastic large cell lymphomas. Br J Haematol. 2008;140(5):516–26.

    Article  PubMed  Google Scholar 

  181. ten Berge RL, de Bruin PC, Oudejans JJ, Ossenkoppele GJ, van der Valk P, Meijer CJ. ALK-negative anaplastic large-cell lymphoma demonstrates similar poor prognosis to peripheral T-cell lymphoma, unspecified. Histopathology. 2003;43(5):462–9.

    Article  PubMed  Google Scholar 

  182. ten Berge RL, Oudejans JJ, Ossenkoppele GJ, Meijer CJ. ALK-negative systemic anaplastic large cell lymphoma: differential diagnostic and prognostic aspects—a review. J Pathol. 2003;200(1):4–15.

    Article  PubMed  CAS  Google Scholar 

  183. Piva R, Agnelli L, Pellegrino E, et al. Gene expression profiling uncovers molecular classifiers for the recognition of anaplastic large-cell lymphoma within peripheral T-cell neoplasms. J Clin Oncol. 2010;28(9):1583–90.

    Article  CAS  PubMed  Google Scholar 

  184. Bonzheim I, Geissinger E, Roth S, et al. Anaplastic large cell lymphomas lack the expression of T-cell receptor molecules or molecules of proximal T-cell receptor signaling. Blood. 2004;104(10):3358–60.

    Article  CAS  PubMed  Google Scholar 

  185. Franchini G, Nicot C, Johnson JM. Seizing of T cells by human T-cell leukemia/lymphoma virus type 1. Adv Cancer Res. 2003;89:69–132.

    Article  CAS  PubMed  Google Scholar 

  186. Azran I, Schavinsky-Khrapunsky Y, Aboud M. Role of tax protein in human T-cell leukemia virus type-I leukemogenicity. Retrovirology. 2004;1:20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Murphy EL, Hanchard B, Figueroa JP, et al. Modelling the risk of adult T-cell leukemia/lymphoma in persons infected with human T-lymphotropic virus type I. Int J Cancer. 1989;43(2):250–3.

    Article  CAS  PubMed  Google Scholar 

  188. Okamoto T, Ohno Y, Tsugane S, et al. Multi-step carcinogenesis model for adult T-cell leukemia. Jpn J Cancer Res. 1989;80(3):191–5.

    Article  CAS  PubMed  Google Scholar 

  189. Boxus M, Twizere JC, Legros S, Dewulf JF, Kettmann R, Willems L. The HTLV-1 tax interactome. Retrovirology. 2008;5:76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Boxus M, Willems L. Mechanisms of HTLV-1 persistence and transformation. Br J Cancer. 2009;101(9):1497–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. de La Fuente C, Deng L, Santiago F, Arce L, Wang L, Kashanchi F. Gene expression array of HTLV type 1-infected T cells: up-regulation of transcription factors and cell cycle genes. AIDS Res Hum Retrovir. 2000;16(16):1695–700.

    Article  Google Scholar 

  192. Harhaj EW, Good L, Xiao G, Sun SC. Gene expression profiles in HTLV-I-immortalized T cells: deregulated expression of genes involved in apoptosis regulation. Oncogene. 1999;18(6):1341–9.

    Article  CAS  PubMed  Google Scholar 

  193. Ng PW, Iha H, Iwanaga Y, et al. Genome-wide expression changes induced by HTLV-1 tax: evidence for MLK-3 mixed lineage kinase involvement in tax-mediated NF-kappaB activation. Oncogene. 2001;20(33):4484–96.

    Article  CAS  PubMed  Google Scholar 

  194. Pise-Masison CA, Radonovich M, Mahieux R, et al. Transcription profile of cells infected with human T-cell leukemia virus type I compared with activated lymphocytes. Cancer Res. 2002;62(12):3562–71.

    CAS  PubMed  Google Scholar 

  195. Gatza ML, Watt JC, Marriott SJ. Cellular transformation by the HTLV-I tax protein, a jack-of-all-trades. Oncogene. 2003;22(33):5141–9.

    Article  CAS  PubMed  Google Scholar 

  196. Roncador G, Brown PJ, Maestre L, et al. Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level. Eur J Immunol. 2005;35(6):1681–91.

    Article  CAS  PubMed  Google Scholar 

  197. Read S, Powrie F. CD4(+) regulatory T cells. Curr Opin Immunol. 2001;13(6):644–9.

    Article  CAS  PubMed  Google Scholar 

  198. Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001;27(1):20–1.

    Article  CAS  PubMed  Google Scholar 

  199. Curiel TJ. Regulatory T-cell development: is Foxp3 the decider? Nat Med. 2007;13:250–3.

    Article  CAS  PubMed  Google Scholar 

  200. Matsuoka M. Human T-cell leukemia virus type I (HTLV-I) infection and the onset of adult T-cell leukemia (ATL). Retrovirology. 2005;2:27.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Karube K, Ohshima K, Tsuchiya T, et al. Expression of FoxP3, a key molecule in CD4CD25 regulatory T cells, in adult T-cell leukaemia/lymphoma cells. Br J Haematol. 2004;126(1):81–4.

    Article  CAS  PubMed  Google Scholar 

  202. Roncador G, Garcia J, Maestre L, et al. FOXP3, a selective marker for a subset of adult T-cell leukaemia/lymphoma. Leukemia. 2005;19(12):2247–53.

    Article  CAS  PubMed  Google Scholar 

  203. Matsubara Y, Hori T, Morita R, Sakaguchi S, Uchiyama T. Phenotypic and functional relationship between adult T-cell leukemia cells and regulatory T cells. Leukemia. 2005;19(3):482–3.

    Article  CAS  PubMed  Google Scholar 

  204. Matsubara Y, Hori T, Morita R, Sakaguchi S, Uchiyama T. Delineation of immunoregulatory properties of adult T-cell leukemia cells. Int J Hematol. 2006;84(1):63–9.

    Article  CAS  Google Scholar 

  205. Yamamoto M, Tsuji-Takayama K, Suzuki M, et al. Comprehensive analysis of FOXP3 mRNA expression in leukemia and transformed cell lines. Leuk Res. 2008;32(4):651–8.

    Article  CAS  PubMed  Google Scholar 

  206. Criscione VD, Weinstock MA. Incidence of cutaneous T-cell lymphoma in the United States, 1973–2002. Arch Dermatol. 2007;143(7):854–9.

    Article  PubMed  Google Scholar 

  207. Willemze R, Jaffe ES, Burg G, et al. WHO-EORTC classification for cutaneous lymphomas. Blood. 2005;105(10):3768–85.

    Article  CAS  PubMed  Google Scholar 

  208. van Doorn R, van Kester MS, Dijkman R, et al. Oncogenomic analysis of mycosis fungoides reveals major differences with Sezary syndrome. Blood. 2009;113(1):127–36.

    Article  PubMed  CAS  Google Scholar 

  209. Kim EJ, Hess S, Richardson SK, et al. Immunopathogenesis and therapy of cutaneous T cell lymphoma. J Clin Invest. 2005;115(4):798–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Kupper TS, Fuhlbrigge RC. Immune surveillance in the skin: mechanisms and clinical consequences. Nat Rev Immunol. 2004;4(3):211–22.

    Article  CAS  PubMed  Google Scholar 

  211. Kazakov D, Burg G, Kempf W. Clinicopathological spectrum of mycosis fungoides. J Eur Acad Dermatol Venereol. 2004;18(4):397–415.

    Article  CAS  PubMed  Google Scholar 

  212. Shin J, Monti S, Aires DJ, et al. Lesional gene expression profiling in cutaneous T-cell lymphoma reveals natural clusters associated with disease outcome. Blood. 2007;110(8):3015–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Litvinov IV, Jones DA, Sasseville D, Kupper TS. Transcriptional profiles predict disease outcome in patients with cutaneous T-cell lymphoma. Clin Cancer Res. 2010;16(7):2106–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Aggarwal S, Gurney AL. IL-17: prototype member of an emerging cytokine family. J Leukoc Biol. 2002;71(1):1–8.

    CAS  PubMed  Google Scholar 

  215. Berger CL, Tigelaar R, Cohen J, et al. Cutaneous T-cell lymphoma: malignant proliferation of T-regulatory cells. Blood. 2005;105(4):1640–7.

    Article  CAS  PubMed  Google Scholar 

  216. Wong HK, Wilson AJ, Gibson HM, et al. Increased expression of CTLA-4 in malignant T-cells from patients with mycosis fungoides–cutaneous T cell lymphoma. J Invest Dermatol. 2006;126(1):212–9.

    Article  CAS  PubMed  Google Scholar 

  217. Tiemessen MM, Mitchell TJ, Hendry L, Whittaker SJ, Taams LS, John S. Lack of suppressive CD4+ CD25+ FOXP3+ T cells in advanced stages of primary cutaneous T-cell lymphoma. J Invest Dermatol. 2006;126(10):2217–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Chong BF, Wilson AJ, Gibson HM, et al. Immune function abnormalities in peripheral blood mononuclear cell cytokine expression differentiates stages of cutaneous T-cell lymphoma/mycosis fungoides. Clin Cancer Res. 2008;14(3):646–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Wu X-S, Lonsdorf AS, Hwang ST. Cutaneous T-cell lymphoma: roles for chemokines and chemokine receptors. J Invest Dermatol. 2009;129(5):1115–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Schön MP, Ruzicka T. Psoriasis: the plot thickens. Nat Immunol. 2001;2(2):91.

    Article  PubMed  Google Scholar 

  221. Wu M, Fang H, Hwang ST. Cutting edge: CCR4 mediates antigen-primed T cell binding to activated dendritic cells. J Immunol. 2001;167(9):4791–5.

    Article  CAS  PubMed  Google Scholar 

  222. Ferenczi K, Fuhlbrigge RC, Kupper TS, Pinkus JL, Pinkus GS. Increased CCR4 expression in cutaneous T cell lymphoma. J Invest Dermatol. 2002;119(6):1405–10.

    Article  CAS  PubMed  Google Scholar 

  223. Narducci MG, Scala E, Bresin A, et al. Skin homing of Sezary cells involves SDF-1-CXCR4 signaling and down-regulation of CD26/dipeptidylpeptidase IV. Blood. 2006;107(3):1108–15.

    Article  CAS  PubMed  Google Scholar 

  224. Kakinuma T, Sugaya M, Nakamura K, et al. Thymus and activation-regulated chemokine (TARC/CCL17) in mycosis fungoides: serum TARC levels reflect the disease activity of mycosis fungoides. J Am Acad Dermatol. 2003;48(1):23–30.

    Article  PubMed  Google Scholar 

  225. Scala E, Cadoni S, Girardelli CR, et al. Skewed expression of activation, differentiation and homing-related antigens in circulating cells from patients with cutaneous T cell lymphoma associated with CD7–T helper lymphocytes expansion. J Invest Dermatol. 1999;113(4):622–7.

    Article  CAS  PubMed  Google Scholar 

  226. Kohrt H, Advani R. Extranodal natural killer/T-cell lymphoma: current concepts in biology and treatment. Leuk Lymphoma. 2009;50(11):1773–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Huang Y, De Reynies A, De Leval L, et al. Gene expression profiling identifies emerging oncogenic pathways operating in extranodal NK/T-cell lymphoma, nasal type. Blood. 2010;115(6):1226–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Sedelies KA, Sayers TJ, Edwards KM, et al. Discordant regulation of granzyme H and granzyme B expression in human lymphocytes. J Biol Chem. 2004;279(25):26581–7.

    Article  CAS  PubMed  Google Scholar 

  229. Fellows E, Gil-Parrado S, Jenne DE, Kurschus FC. Natural killer cell–derived human granzyme H induces an alternative, caspase-independent cell-death program. Blood. 2007;110(2):544–52.

    Article  CAS  PubMed  Google Scholar 

  230. Schnitzer B. Hodgkin lymphoma. Hematol Oncol Clin North Am. 2009;23(4):747–68.

    Article  PubMed  Google Scholar 

  231. Schmitz R, Stanelle J, Hansmann M-L, Küppers R. Pathogenesis of classical and lymphocyte-predominant Hodgkin lymphoma. Ann Rev Pathol Mech Dis. 2009;4:151–74.

    Article  CAS  Google Scholar 

  232. Küppers R. The biology of Hodgkin’s lymphoma. Nat Rev Cancer. 2009;9(1):15–27.

    Article  PubMed  CAS  Google Scholar 

  233. Küppers R. Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer. 2005;5(4):251–62.

    Article  PubMed  CAS  Google Scholar 

  234. Schwering I, Bräuninger A, Klein U, et al. Loss of the B-lineage–specific gene expression program in Hodgkin and reed-Sternberg cells of Hodgkin lymphoma. Blood. 2003;101(4):1505–12.

    Article  CAS  PubMed  Google Scholar 

  235. Stein H, Marafioti T, Foss H-D, et al. Down-regulation of BOB. 1/OBF. 1 and Oct2 in classical Hodgkin disease but not in lymphocyte predominant Hodgkin disease correlates with immunoglobulin transcription. Blood. 2001;97(2):496–501.

    Article  CAS  PubMed  Google Scholar 

  236. Mathas S, Janz M, Hummel F, et al. Intrinsic inhibition of transcription factor E2A by HLH proteins ABF-1 and Id2 mediates reprogramming of neoplastic B cells in Hodgkin lymphoma. Nat Immunol. 2006;7(2):207–15.

    Article  CAS  PubMed  Google Scholar 

  237. Re D, Müschen M, Ahmadi T, et al. Oct-2 and bob-1 deficiency in Hodgkin and reed Sternberg cells. Cancer Res. 2001;61(5):2080–4.

    CAS  PubMed  Google Scholar 

  238. Torlakovic E, Tierens A, Dang HD, Delabie J. The transcription factor PU. 1, necessary for B-cell development is expressed in lymphocyte predominance, but not classical Hodgkin’s disease. Am J Pathol. 2001;159(5):1807–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Küppers R, Klein U, Schwering I, et al. Identification of Hodgkin and reed-Sternberg cell-specific genes by gene expression profiling. J Clin Invest. 2003;111(4):529–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Renné C, Martin-Subero JI, Eickernjäger M, et al. Aberrant expression of ID2, a suppressor of B-cell-specific gene expression, in Hodgkin’s lymphoma. Am J Pathol. 2006;169(2):655–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Foss H-D, Reusch R, Demel G, et al. Frequent expression of the B-cell–specific activator protein in reed-Sternberg cells of classical Hodgkin’s disease provides further evidence for its B-cell origin. Blood. 1999;94(9):3108–13.

    CAS  PubMed  Google Scholar 

  242. Aguilera NS, Chen J, Bijwaard KE, et al. Gene rearrangement and comparative genomic hybridization studies of classic Hodgkin lymphoma expressing T-cell antigens. Arch Pathol Lab Med. 2006;130(12):1772–9.

    CAS  PubMed  Google Scholar 

  243. Müschen M, Rajewsky K, Bräuninger A, et al. Rare occurrence of classical Hodgkin’s disease as a T cell lymphoma. J Exp Med. 2000;191(2):387–94.

    Article  PubMed  PubMed Central  Google Scholar 

  244. Seitz V, Hummel M, Marafioti T, Anagnostopoulos I, Assaf C, Stein H. Detection of clonal T-cell receptor gamma-chain gene rearrangements in reed-Sternberg cells of classic Hodgkin disease. Blood. 2000;95(10):3020–4.

    CAS  PubMed  Google Scholar 

  245. Tzankov A, Bourgau C, Kaiser A, et al. Rare expression of T-cell markers in classical Hodgkin’s lymphoma. Mod Pathol. 2005;18(12):1542–9.

    Article  CAS  PubMed  Google Scholar 

  246. Willenbrock K, Ichinohasama R, Kadin ME, et al. T-cell variant of classical Hodgkin’s lymphoma with nodal and cutaneous manifestations demonstrated by single-cell polymerase chain reaction. Lab Investig. 2002;82(9):1103–9.

    Article  CAS  PubMed  Google Scholar 

  247. Willenbrock K, Kuppers R, Renné C, et al. Common features and differences in the transcriptome of large cell anaplastic lymphoma and classical Hodgkin’s lymphoma. Haematologica. 2006;91(5):596–604.

    CAS  PubMed  Google Scholar 

  248. Jundt F, Acikgöz Ö, Kwon S, et al. Aberrant expression of Notch1 interferes with the B-lymphoid phenotype of neoplastic B cells in classical Hodgkin lymphoma. Leukemia. 2008;22(8):1587–94.

    Article  CAS  PubMed  Google Scholar 

  249. Brune V, Tiacci E, Pfeil I, et al. Origin and pathogenesis of nodular lymphocyte–predominant Hodgkin lymphoma as revealed by global gene expression analysis. J Exp Med. 2008;205(10):2251–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Kilger E, Kieser A, Baumann M, Hammerschmidt W. Epstein–Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J. 1998;17(6):1700–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Mancao C, Hammerschmidt W. Epstein-Barr virus latent membrane protein 2A is a B-cell receptor mimic and essential for B-cell survival. Blood. 2007;110(10):3715–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Bechtel D, Kurth J, Unkel C, Küppers R. Transformation of BCR-deficient germinal-center B cells by EBV supports a major role of the virus in the pathogenesis of Hodgkin and posttransplantation lymphomas. Blood. 2005;106(13):4345–50.

    Article  CAS  PubMed  Google Scholar 

  253. Chaganti S, Bell AI, Pastor NB, et al. Epstein-Barr virus infection in vitro can rescue germinal center B cells with inactivated immunoglobulin genes. Blood. 2005;106(13):4249–52.

    Article  CAS  PubMed  Google Scholar 

  254. Bargou RC, Emmerich F, Krappmann D, et al. Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J Clin Invest. 1997;100(12):2961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Carbone A, Gloghini A, Gruss H-J, Pinto A. CD40 ligand is constitutively expressed in a subset of T cell lymphomas and on the microenvironmental reactive T cells of follicular lymphomas and Hodgkin’s disease. Am J Pathol. 1995;147(4):912.

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Chiu A, Xu W, He B, et al. Hodgkin lymphoma cells express TACI and BCMA receptors and generate survival and proliferation signals in response to BAFF and APRIL. Blood. 2007;109(2):729–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Fiumara P, Snell V, Li Y, et al. Functional expression of receptor activator of nuclear factor κB in Hodgkin disease cell lines. Blood. 2001;98(9):2784–90.

    Article  CAS  PubMed  Google Scholar 

  258. Joos S, Menz CK, Wrobel G, et al. Classical Hodgkin lymphoma is characterized by recurrent copy number gains of the short arm of chromosome 2. Blood. 2002;99(4):1381–7.

    Article  CAS  PubMed  Google Scholar 

  259. Martı́n-Subero JI, Gesk S, Harder L, et al. Recurrent involvement of the REL and BCL11Aloci in classical Hodgkin lymphoma. Blood. 2002;99(4):1474–7.

    Article  PubMed  Google Scholar 

  260. Kato M, Sanada M, Kato I, et al. Frequent inactivation of A20 in B-cell lymphomas. Nature. 2009;459(7247):712–6.

    Article  CAS  PubMed  Google Scholar 

  261. Schmitz R, Hansmann M-L, Bohle V, et al. TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med. 2009;206(5):981–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Skinnider BF, Mak TW. The role of cytokines in classical Hodgkin lymphoma. Blood. 2002;99(12):4283–97.

    Article  CAS  PubMed  Google Scholar 

  263. Marshall NA, Christie LE, Munro LR, et al. Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood. 2004;103(5):1755–62.

    Article  CAS  PubMed  Google Scholar 

  264. Reed DM. On the pathological changes in Hodgkin’s disease, with especial reference to its relation to tuberculosis. Johns Hopkins Hosp Rep. 1902;10:133–96.

    Google Scholar 

  265. Green I, CORSO PF. A study of skin homografting in patients with lymphomas. Blood. 1959;14(3):235–45.

    CAS  PubMed  Google Scholar 

  266. Miller DG, Lizardo JG, Snyderman RK. Homologous and heterologous skin transplantation in patients with lymphomatous disease. J Natl Cancer Inst. 1961;26:569–83.

    CAS  PubMed  Google Scholar 

  267. Baglin T, Joysey V, Horsford J, Johnson R, Broadbent V, Marcus R. Transfusion-associated graft-versus-host disease in patients with Hodgkin’s disease and T cell lymphoma. Transfus Med. 1992;2(3):195–9.

    Article  CAS  PubMed  Google Scholar 

  268. Wood KJ, Sakaguchi S. Regulatory T cells in transplantation tolerance. Nat Rev Immunol. 2003;3(3):199–210.

    Article  CAS  PubMed  Google Scholar 

  269. Levings MK, Roncarolo M-G. T-regulatory 1 cells: a novel subset of CD4+ T cells with immunoregulatory properties. J Allergy Clin Immunol. 2000;106(1):S109–12.

    Article  CAS  PubMed  Google Scholar 

  270. Piccirillo CA, Letterio JJ, Thornton AM, et al. CD4+ CD25+ regulatory T cells can mediate suppressor function in the absence of transforming growth factor β1 production and responsiveness. J Exp Med. 2002;196(2):237–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. McHugh RS, Shevach EM. The role of suppressor T cells in regulation of immune responses. J Allergy Clin Immunol. 2002;110(5):693–702.

    Article  CAS  PubMed  Google Scholar 

  272. Hall AM, Ward FJ, Vickers MA, Stott L-M, Urbaniak SJ, Barker RN. Interleukin-10–mediated regulatory T-cell responses to epitopes on a human red blood cell autoantigen. Blood. 2002;100(13):4529–36.

    Article  CAS  PubMed  Google Scholar 

  273. Vandenborre K, Delabie J, Boogaerts MA, et al. Human CTLA-4 is expressed in situ on T lymphocytes in germinal centers, in cutaneous graft-versus-host disease, and in Hodgkin’s disease. Am J Pathol. 1998;152(4):963.

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Steidl C, Lee T, Shah SP, et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med. 2010;362(10):875–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Jones RJ, Gocke CD, Kasamon YL, et al. Circulating clonotypic B cells in classic Hodgkin lymphoma. Blood. 2009;113(23):5920–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. McLaughlin P, Grillo-López AJ, Link BK, et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol. 1998;16(8):2825–33.

    Article  CAS  PubMed  Google Scholar 

  277. Colombat P, Brousse N, Morschhauser F, et al. Single treatment with rituximab monotherapy for low-tumor burden follicular lymphoma (FL): survival analyses with extended follow-up (F/up) of 7 years. Blood. 2006;108(11):486.

    Google Scholar 

  278. Davis TA, Grillo-López AJ, White CA, et al. Rituximab anti-CD20 monoclonal antibody therapy in non-Hodgkin’s lymphoma: safety and efficacy of re-treatment. J Clin Oncol. 2000;18(17):3135–43.

    Article  CAS  PubMed  Google Scholar 

  279. Hainsworth JD, Litchy S, Barton JH, et al. Single-agent rituximab as first-line and maintenance treatment for patients with chronic lymphocytic leukemia or small lymphocytic lymphoma: a phase II trial of the Minnie pearl cancer research network. J Clin Oncol. 2003;21(9):1746–51.

    Article  CAS  PubMed  Google Scholar 

  280. Piro L, White C, Grillo-Lopez A, et al. Extended rituximab (anti-CD20 monoclonal antibody) therapy for relapsed or refractory low-grade or follicular non-Hodgkin’s lymphoma. Ann Oncol. 1999;10(6):655–61.

    Article  CAS  PubMed  Google Scholar 

  281. Witzig TE, Vukov AM, Habermann TM, et al. Rituximab therapy for patients with newly diagnosed, advanced-stage, follicular grade I non-Hodgkin’s lymphoma: a phase II trial in the north central cancer treatment group. J Clin Oncol. 2005;23(6):1103–8.

    Article  CAS  PubMed  Google Scholar 

  282. Marcus R, Imrie K, Solal-Celigny P, et al. Phase III study of R-CVP compared with cyclophosphamide, vincristine, and prednisone alone in patients with previously untreated advanced follicular lymphoma. J Clin Oncol. 2008;26(28):4579–86.

    Article  CAS  PubMed  Google Scholar 

  283. Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(4):235–42.

    Article  CAS  PubMed  Google Scholar 

  284. Forstpointner R, Dreyling M, Repp R, et al. The addition of rituximab to a combination of fludarabine, cyclophosphamide, mitoxantrone (FCM) significantly increases the response rate and prolongs survival as compared with FCM alone in patients with relapsed and refractory follicular and mantle cell lymphomas: results of a prospective randomized study of the German low-grade lymphoma study group. Blood. 2004;104(10):3064–71.

    Article  CAS  PubMed  Google Scholar 

  285. Habermann TM, Weller EA, Morrison VA, et al. Rituximab-CHOP versus CHOP alone or with maintenance rituximab in older patients with diffuse large B-cell lymphoma. J Clin Oncol. 2006;24(19):3121–7.

    Article  CAS  PubMed  Google Scholar 

  286. Herold M, Haas A, Srock S, et al. Rituximab added to first-line mitoxantrone, chlorambucil, and prednisolone chemotherapy followed by interferon maintenance prolongs survival in patients with advanced follicular lymphoma: an east German study group hematology and oncology study. J Clin Oncol. 2007;25(15):1986–92.

    Article  CAS  PubMed  Google Scholar 

  287. Hiddemann W, Kneba M, Dreyling M, et al. Frontline therapy with rituximab added to the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) significantly improves the outcome for patients with advanced-stage follicular lymphoma compared with therapy with CHOP alone: results of a prospective randomized study of the German low-grade lymphoma study group. Blood. 2005;106(12):3725–32.

    Article  CAS  PubMed  Google Scholar 

  288. Lenz G, Dreyling M, Hoster E, et al. Immunochemotherapy with rituximab and cyclophosphamide, doxorubicin, vincristine, and prednisone significantly improves response and time to treatment failure, but not long-term outcome in patients with previously untreated mantle cell lymphoma: results of a prospective randomized trial of the German low grade lymphoma study group (GLSG). J Clin Oncol. 2005;23(9):1984–92.

    Article  CAS  PubMed  Google Scholar 

  289. Pfreundschuh M, Trümper L, Österborg A, et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera international trial (MInT) group. Lancet Oncol. 2006;7(5):379–91.

    Article  CAS  PubMed  Google Scholar 

  290. Pfreundschuh M, Schubert J, Ziepert M, et al. Six versus eight cycles of bi-weekly CHOP-14 with or without rituximab in elderly patients with aggressive CD20+ B-cell lymphomas: a randomised controlled trial (RICOVER-60). Lancet Oncol. 2008;9(2):105–16.

    Article  CAS  PubMed  Google Scholar 

  291. van Oers MH, Klasa R, Marcus RE, et al. Rituximab maintenance improves clinical outcome of relapsed/resistant follicular non-Hodgkin lymphoma in patients both with and without rituximab during induction: results of a prospective randomized phase 3 intergroup trial. Blood. 2006;108(10):3295–301.

    Article  PubMed  CAS  Google Scholar 

  292. Feugier P, Van Hoof A, Sebban C, et al. Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: a study by the Groupe d’Etude des Lymphomes de l’Adulte. J Clin Oncol. 2005;23(18):4117–26.

    Article  CAS  PubMed  Google Scholar 

  293. Teeling JL, Mackus WJ, Wiegman LJ, et al. The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J Immunol. 2006;177(1):362–71.

    Article  CAS  PubMed  Google Scholar 

  294. Hagenbeek A, Gadeberg O, Johnson P, et al. First clinical use of ofatumumab, a novel fully human anti-CD20 monoclonal antibody in relapsed or refractory follicular lymphoma: results of a phase 1/2 trial. Blood. 2008;111(12):5486–95.

    Article  CAS  PubMed  Google Scholar 

  295. Osterborg A, Kipps TJ, Mayer J, et al. Ofatumumab (HuMax-CD20), a novel CD20 monoclonal antibody, is an active treatment for patients with CLL refractory to both fludarabine and alemtuzumab or bulky fludarabine-refractory disease: results from the planned interim analysis of an international pivotal trial. Blood. 2008;112(11):328.

    Google Scholar 

  296. Robak T, Janssens A, Govindbabu K, et al. Ofatumumab+ chlorambucil versus chlorambucil alone in patients with untreated chronic lymphocytic leukemia (CLL): results of the phase III study complement 1 (OMB110911). Blood. 2013;122(21):528.

    Google Scholar 

  297. Czuczman MS, Fayad L, Delwail V, et al. Ofatumumab monotherapy in rituximab-refractory follicular lymphoma: results from a multicenter study. Blood. 2012;119(16):3698–704.

    Article  CAS  PubMed  Google Scholar 

  298. Coiffier B, Bosly A, Wu KL, et al. Ofatumumab monotherapy for treatment of patients with relapsed/progressive diffuse large B-cell lymphoma: results from a multicenter phase II study. Blood. 2010;116(21):3955.

    Google Scholar 

  299. Czuczman MS, Hess G, Gadeberg OV, et al. Chemoimmunotherapy with ofatumumab in combination with CHOP in previously untreated follicular lymphoma. Br J Haematol. 2012;157(4):438–45.

    Article  CAS  PubMed  Google Scholar 

  300. Bologna L, Gotti E, Manganini M, et al. Mechanism of action of type II, glycoengineered, anti-CD20 monoclonal antibody GA101 in B-chronic lymphocytic leukemia whole blood assays in comparison with rituximab and alemtuzumab. J Immunol. 2011;186(6):3762–9.

    Article  CAS  PubMed  Google Scholar 

  301. Goede V, Fischer K, Busch R, et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med. 2014;370(12):1101–10.

    Article  CAS  PubMed  Google Scholar 

  302. Sehn LH. Obinutuzumab plus bendamustine versus bendamustine monotherapy in patients with rituximab-refractory indolent non-Hodgkin lymphoma (GADOLIN): a randomised, controlled, open-label, multicentre, phase 3 trial. 2016.

    Google Scholar 

  303. Daridon C, Blassfeld D, Reiter K, et al. Epratuzumab targeting of CD22 affects adhesion molecule expression and migration of B-cells in systemic lupus erythematosus. Arthritis Res Ther. 2010;12(6):R204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  304. Carnahan J, Wang P, Kendall R, et al. Epratuzumab, a humanized monoclonal antibody targeting CD22: characterization of in vitro properties. Clin Cancer Res. 2003;9(10 Pt 2):3982s–90s.

    CAS  PubMed  Google Scholar 

  305. Chang CH, Wang Y, Gupta P, Goldenberg DM. Extensive crosslinking of CD22 by epratuzumab triggers BCR signaling and caspase-dependent apoptosis in human lymphoma cells. MAbs. 2015;7(1):199–211.

    Article  CAS  PubMed  Google Scholar 

  306. Leonard JP, Coleman M, Ketas JC, et al. Phase I/II trial of epratuzumab (humanized anti-CD22 antibody) in indolent non-Hodgkin’s lymphoma. J Clin Oncol. 2003;21(16):3051–9.

    Article  CAS  PubMed  Google Scholar 

  307. Leonard JP, Coleman M, Ketas JC, et al. Epratuzumab, a humanized anti-CD22 antibody, in aggressive non-Hodgkin’s lymphoma: phase I/II clinical trial results. Clin Cancer Res. 2004;10(16):5327–34.

    Article  CAS  PubMed  Google Scholar 

  308. Leonard JP, Schuster SJ, Emmanouilides C, et al. Durable complete responses from therapy with combined epratuzumab and rituximab: final results from an international multicenter, phase 2 study in recurrent, indolent, non-Hodgkin lymphoma. Cancer. 2008;113(10):2714–23.

    Article  CAS  PubMed  Google Scholar 

  309. Grant BW, Jung SH, Johnson JL, et al. A phase 2 trial of extended induction epratuzumab and rituximab for previously untreated follicular lymphoma: CALGB 50701. Cancer. 2013;119(21):3797–804.

    Article  CAS  PubMed  Google Scholar 

  310. Micallef IN, Maurer MJ, Wiseman GA, et al. Epratuzumab with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone chemotherapy in patients with previously untreated diffuse large B-cell lymphoma. Blood. 2011;118(15):4053–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Keating MJ, Flinn I, Jain V, et al. Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine: results of a large international study. Blood. 2002;99(10):3554–61.

    Article  CAS  PubMed  Google Scholar 

  312. Hillmen P, Skotnicki AB, Robak T, et al. Alemtuzumab compared with chlorambucil as first-line therapy for chronic lymphocytic leukemia. J Clin Oncol. 2007;25(35):5616–23.

    Article  CAS  PubMed  Google Scholar 

  313. Enblad G, Hagberg H, Erlanson M, et al. A pilot study of alemtuzumab (anti-CD52 monoclonal antibody) therapy for patients with relapsed or chemotherapy-refractory peripheral T-cell lymphomas. Blood. 2004;103(8):2920–4.

    Article  CAS  PubMed  Google Scholar 

  314. Lundin J, Hagberg H, Repp R, et al. Phase 2 study of alemtuzumab (anti-CD52 monoclonal antibody) in patients with advanced mycosis fungoides/Sezary syndrome. Blood. 2003;101(11):4267–72.

    Article  CAS  PubMed  Google Scholar 

  315. Ishida T, Inagaki H, Utsunomiya A, et al. CXC chemokine receptor 3 and CC chemokine receptor 4 expression in T-cell and NK-cell lymphomas with special reference to clinicopathological significance for peripheral T-cell lymphoma, unspecified. Clin Cancer Res. 2004;10(16):5494–500.

    Article  CAS  PubMed  Google Scholar 

  316. Hristov AC, Vonderheid EC, Borowitz MJ. Simplified flow cytometric assessment in mycosis fungoides and Sézary syndrome. Am J Clin Pathol. 2011;136(6):944–53.

    Article  PubMed  Google Scholar 

  317. Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10(9):942–9.

    Article  CAS  PubMed  Google Scholar 

  318. Olkhanud PB, Baatar D, Bodogai M, et al. Breast cancer lung metastasis requires expression of chemokine receptor CCR4 and regulatory T cells. Cancer Res. 2009;69(14):5996–6004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Ito A, Ishida T, Yano H, et al. Defucosylated anti-CCR4 monoclonal antibody exercises potent ADCC-mediated antitumor effect in the novel tumor-bearing humanized NOD/Shi-scid, IL-2Rgamma(null) mouse model. Cancer Immunol Immunother. 2009;58(8):1195–206.

    Article  CAS  PubMed  Google Scholar 

  320. Duvic M, Pinter-Brown LC, Foss FM, et al. Phase 1/2 study of mogamulizumab, a defucosylated anti-CCR4 antibody, in previously treated patients with cutaneous T-cell lymphoma. Blood. 2015;125(12):1883–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Ogura M, Ishida T, Hatake K, et al. Multicenter phase II study of mogamulizumab (KW-0761), a defucosylated anti-cc chemokine receptor 4 antibody, in patients with relapsed peripheral T-cell lymphoma and cutaneous T-cell lymphoma. J Clin Oncol. 2014;32(11):1157–63.

    Article  CAS  PubMed  Google Scholar 

  322. Lewis TS, Sutherland MS, Jonas M, et al. The humanized anti-CD40 antibody, SGN-40, promotes apoptosis signaling and is effective in combination with standard therapies in lymphoma xenograft models. Blood. 2006;108(11):2499.

    Google Scholar 

  323. de Vos S, Forero-Torres A, Ansell SM, et al. A phase II study of dacetuzumab (SGN-40) in patients with relapsed diffuse large B-cell lymphoma (DLBCL) and correlative analyses of patient-specific factors. J Hematol Oncol. 2014;7:44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  324. Forero-Torres A, Bartlett N, Beaven A, et al. Pilot study of dacetuzumab in combination with rituximab and gemcitabine for relapsed or refractory diffuse large B-cell lymphoma. Leuk Lymphoma. 2013;54(2):277–83.

    Article  CAS  PubMed  Google Scholar 

  325. Luqman M, Klabunde S, Lin K, et al. The antileukemia activity of a human anti-CD40 antagonist antibody, HCD122, on human chronic lymphocytic leukemia cells. Blood. 2008;112(3):711–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Fanale M, Assouline S, Kuruvilla J, et al. Phase IA/II, multicentre, open-label study of the CD40 antagonistic monoclonal antibody lucatumumab in adult patients with advanced non-Hodgkin or Hodgkin lymphoma. Br J Haematol. 2014;164(2):258–65.

    Article  CAS  PubMed  Google Scholar 

  327. Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Muenst S, Hoeller S, Dirnhofer S, Tzankov A. Increased programmed death-1+ tumor-infiltrating lymphocytes in classical Hodgkin lymphoma substantiate reduced overall survival. Hum Pathol. 2009;40(12):1715–22.

    Article  CAS  PubMed  Google Scholar 

  329. Tzankov A, Meier C, Hirschmann P, Went P, Pileri SA, Dirnhofer S. Correlation of high numbers of intratumoral FOXP3+ regulatory T cells with improved survival in germinal center-like diffuse large B-cell lymphoma, follicular lymphoma and classical Hodgkin’s lymphoma. Haematologica. 2008;93(2):193–200.

    Article  CAS  PubMed  Google Scholar 

  330. Carreras J, Lopez-Guillermo A, Roncador G, et al. High numbers of tumor-infiltrating programmed cell death 1–positive regulatory lymphocytes are associated with improved overall survival in follicular lymphoma. J Clin Oncol. 2009;27(9):1470–6.

    Article  PubMed  Google Scholar 

  331. Green MR, Monti S, Rodig SJ, et al. Integrative analysis reveals selective 9p24. 1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116(17):3268–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Chen BJ, Chapuy B, Ouyang J, et al. PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res. 2013;19(13):3462–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Andorsky DJ, Yamada RE, Said J, Pinkus GS, Betting DJ, Timmerman JM. Programmed death ligand 1 is expressed by non–Hodgkin lymphomas and inhibits the activity of tumor-associated T cells. Clin Cancer Res. 2011;17(13):4232–44.

    Article  CAS  PubMed  Google Scholar 

  334. Green MR, Rodig S, Juszczynski P, et al. Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin Cancer Res. 2012;18(6):1611–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Tsushima F, Yao S, Shin T, et al. Interaction between B7-H1 and PD-1 determines initiation and reversal of T-cell anergy. Blood. 2007;110(1):180–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Walker LS, Sansom DM. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev Immunol. 2011;11(12):852–63.

    Article  CAS  PubMed  Google Scholar 

  337. Linsley PS, Greene JL, Brady W, Bajorath J, Ledbetter JA, Peach R. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity. 1994;1(9):793–801.

    Article  CAS  PubMed  Google Scholar 

  338. Ansell SM, Hurvitz SA, Koenig PA, et al. Phase I study of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res. 2009;15(20):6446–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Bashey A, Medina B, Corringham S, et al. CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood. 2009;113(7):1581–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Davids MS, Kim HT, Costello CL, et al. A multicenter phase I study of CTLA-4 blockade with ipilimumab for relapsed hematologic malignancies after allogeneic hematopoietic cell transplantation. Blood. 2014;124(21):3964.

    Google Scholar 

  341. Westin JR, Chu F, Zhang M, et al. Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. Lancet Oncol. 2014;15(1):69–77.

    Article  CAS  PubMed  Google Scholar 

  342. Lesokhin AM, Ansell SM, Armand P, et al. Preliminary results of a phase I study of nivolumab (BMS-936558) in patients with relapsed or refractory lymphoid malignancies. Blood. 2014;124(21):291.

    Google Scholar 

  343. Ansell SM, Lesokhin AM, Borrello I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–9.

    Article  PubMed  CAS  Google Scholar 

  344. Armand P, Shipp MA, Ribrag V, et al. Programmed death-1 blockade with pembrolizumab in patients with classical hodgkin lymphoma after brentuximab vedotin failure. J Clin Oncol. 2016;34(31):3733–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Francisco JA, Cerveny CG, Meyer DL, et al. cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood. 2003;102(4):1458–65.

    Article  CAS  PubMed  Google Scholar 

  346. Sutherland MS, Sanderson RJ, Gordon KA, et al. Lysosomal trafficking and cysteine protease metabolism confer target-specific cytotoxicity by peptide-linked anti-CD30-auristatin conjugates. J Biol Chem. 2006;281(15):10540–7.

    Article  CAS  PubMed  Google Scholar 

  347. Younes A, Gopal AK, Smith SE, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol. 2012;30(18):2183–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Moskowitz CH, Nademanee A, Masszi T, et al. Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin’s lymphoma at risk of relapse or progression (AETHERA): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2015;385(9980):1853–62.

    Article  CAS  PubMed  Google Scholar 

  349. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci. 1989;86(24):10024–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci U S A. 1993;90(2):720–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Lee J, Sadelain M, Brentjens R. Retroviral transduction of murine primary T lymphocytes. Methods Mol Biol. 2009;506:83–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Quintas-Cardama A, Yeh RK, Hollyman D, et al. Multifactorial optimization of gammaretroviral gene transfer into human T lymphocytes for clinical application. Hum Gene Ther. 2007;18(12):1253–60.

    Article  CAS  PubMed  Google Scholar 

  353. Huang X, Guo H, Kang J, et al. Sleeping beauty transposon-mediated engineering of human primary T cells for therapy of CD19+ lymphoid malignancies. Mol Ther. 2008;16(3):580–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Brentjens RJ, Riviere I, Park JH, et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood. 2011;118(18):4817–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Park JH, et al. Impact of the conditioning chemotherapy on outcomes in adoptive T cell therapy: results from a phase I clinical trial of autologous CD19-targeted T cells for patients with relapsed CLL. Blood. 2012;120:a1797.

    Article  Google Scholar 

  356. Kalos M, Levine BL, Porter DL, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3(95):95ra73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Porter DL, et al. Randomized, phase II dose optimization study of chimeric antigen receptor modified T cells directed against CD19 (CTL019) in patients with relapsed, refractory CLL. Blood. 2014;124:a1982.

    Google Scholar 

  358. Kochenderfer JN, Wilson WH, Janik JE, et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood. 2010;116(20):4099–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Kochenderfer JN, Dudley ME, Kassim SH, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015;33(6):540–9.

    Article  CAS  PubMed  Google Scholar 

  360. Schuster SJ, Svoboda J, Nasta SD, et al. Sustained remissions following chimeric antigen receptor modified T cells directed against CD19 (CTL019) in patients with relapsed or refractory CD19+ lymphomas. Blood. 2015;126(23):183.

    Google Scholar 

  361. Turtle CJ, Berger C, Sommermeyer D, et al. Anti-CD19 chimeric antigen receptor-modified T cell therapy for B cell non-hodgkin lymphoma and chronic lymphocytic leukemia: Fludarabine and cyclophosphamide lymphodepletion improves in vivo expansion and persistence of CAR-T cells and clinical outcomes. Blood. 2015;126(23):184.

    Google Scholar 

  362. Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124(2):188–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–28.

    Article  CAS  PubMed  Google Scholar 

  364. Davila ML, Riviere I, Wang X, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6(224):224ra225.

    Article  CAS  Google Scholar 

  365. Witzig TE, Flinn IW, Gordon LI, et al. Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20(15):3262–9.

    Article  CAS  PubMed  Google Scholar 

  366. Witzig TE, Gordon LI, Cabanillas F, et al. Randomized controlled trial of yttrium-90–labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20(10):2453–63.

    Article  CAS  PubMed  Google Scholar 

  367. Morschhauser F, Radford J, Van Hoof A, et al. Phase III trial of consolidation therapy with yttrium-90–ibritumomab tiuxetan compared with no additional therapy after first remission in advanced follicular lymphoma. J Clin Oncol. 2008;26(32):5156–64.

    Article  CAS  PubMed  Google Scholar 

  368. Morschhauser F, Illidge T, Huglo D, et al. Efficacy and safety of yttrium-90 ibritumomab tiuxetan in patients with relapsed or refractory diffuse large B-cell lymphoma not appropriate for autologous stem-cell transplantation. Blood. 2007;110(1):54–8.

    Article  CAS  PubMed  Google Scholar 

  369. Kaminski MS, Zelenetz AD, Press OW, et al. Pivotal study of iodine I 131 tositumomab for chemotherapy-refractory low-grade or transformed low-grade B-cell non-Hodgkin’s lymphomas. J Clin Oncol. 2001;19(19):3918–28.

    Article  CAS  PubMed  Google Scholar 

  370. Kaminski MS, Tuck M, Estes J, et al. 131I-tositumomab therapy as initial treatment for follicular lymphoma. N Engl J Med. 2005;352(5):441–9.

    Article  CAS  PubMed  Google Scholar 

  371. Press OW, Unger JM, Braziel RM, et al. Phase II trial of CHOP chemotherapy followed by tositumomab/iodine I-131 tositumomab for previously untreated follicular non-Hodgkin’s lymphoma: five-year follow-up of southwest oncology group protocol S9911. J Clin Oncol. 2006;24(25):4143–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Sequeira M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Sequeira, C., Ozer, H. (2018). Immunology of the Lymphomas. In: Wiernik, P., Dutcher, J., Gertz, M. (eds) Neoplastic Diseases of the Blood. Springer, Cham. https://doi.org/10.1007/978-3-319-64263-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64263-5_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64262-8

  • Online ISBN: 978-3-319-64263-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics