Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Germinal centres: role in B-cell physiology and malignancy

Key Points

  • The germinal centre (GC) of lymphoid organs is the main structure where antigen-activated B cells diversify their immunoglobulin genes by somatic hypermutation (SHM) to generate high-affinity antibodies. Most of the cells also undergo class-switch recombination (CSR) to generate antibodies with specialized effector functions.

  • The processes of SHM and CSR are associated with DNA-strand breaks. GC B cells use specialized mechanisms that allow for the activity of those DNA-modifying processes without inducing a DNA-damage response, foremost by inhibiting the p53-dependent and p53-independent responses.

  • Centroblasts, which are GC B cells that undergo active SHM, are programmed to proliferate extremely rapidly and thereby generate a large number of immunoglobulin mutations in a short time from which high-affinity antibodies can be selected. Moreover, these cells have a pro-apoptotic programme that ensures the rapid elimination of B cells expressing newly generated antibodies with suboptimal binding characteristics.

  • The transcription factor BCL-6 (B-cell lymphoma 6) is the master regulator of GC B-cell differentiation, as it mediates the repression of genes involved in negative cell cycle regulation as well as the inhibition of genes involved in B-cell activation, plasma-cell and memory B-cell differentiation, and in the response to genotoxic stress.

  • GC B cells that produce high-affinity antibodies are selected to differentiate into plasma cells and memory B cells through specific gene expression changes that coordinately regulate proliferation, apoptosis and differentiation. Essential for these processes are several major transcriptional regulators that, besides BCL-6, include PAX5 (paired box protein 5), NF-κB (nuclear factor-κB), IRF4 (interferon-regulatory factor 4), BLIMP1 (B-lymphocyte-induced maturation protein 1), and XBP1 (X-box binding protein 1).

  • Genes critically involved in the regulation of proliferation, apoptosis and differentiation during the GC response are occasionally dysregulated by genomic alterations — such as chromosomal translocations or aberrant SHM in regulatory regions — resulting from errors during antibody gene modifications. Therefore, the production of high-affinity antibodies comes at the risk of oncogenic transformation.

Abstract

Over the past several years, studies on normal and malignant B cells have provided new insights into the unique physiology of the germinal centre (GC). In particular, advances in technology have allowed a more precise dissection of the phenotypes of GC B cells and the specific transcriptional programmes that are responsible for this phenotype. Furthermore, substantial progress has been made in the understanding of the mechanism controlling the exit of B cells from the GC and the decision to become a memory B cell or plasma cell. This Review focuses on these recent advances and discusses their implications for the pathogenesis of B-cell lymphomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The germinal centre microenvironment.
Figure 2: Biological functions and regulating pathways: BCL-6 expression in the germinal centre.
Figure 3: Termination of the GC transcriptional programme and post-GC B-cell development.
Figure 4: DNA lesions in germinal centre B cells and their functional consequences.
Figure 5: Molecular mechanisms promoting B-cell lymphomagenesis.

Similar content being viewed by others

References

  1. MacLennan, I. C. & Gray, D. Antigen-driven selection of virgin and memory B cells. Immunol. Rev. 91, 61–85 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. Jacob, J., Kelsoe, G., Rajewsky, K. & Weiss, U. Intraclonal generation of antibody mutants in germinal centres. Nature 354, 389–392 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Berek, C., Berger, A. & Apel, M. Maturation of the immune response in germinal centers. Cell 67, 1121–1129 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. MacLennan, I. C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Küppers, R., Klein, U., Hansmann, M. L. & Rajewsky, K. Cellular origin of human B-cell lymphomas. N. Engl. J. Med. 341, 1520–1529 (1999).

    Article  PubMed  Google Scholar 

  6. Stevenson, F. et al. Insight into the origin and clonal history of B-cell tumors as revealed by analysis of immunoglobulin variable region genes. Immunol. Rev. 162, 247–259 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Camacho, S. A., Kosco-Vilbois, M. H. & Berek, C. The dynamic structure of the germinal center. Immunol. Today 19, 511–514 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, Y. & Carter, R. H. CD19 regulates B cell maturation, proliferation, and positive selection in the FDC zone of murine splenic germinal centers. Immunity 22, 749–761 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Allen, C. D., Okada, T., Tang, H. L. & Cyster, J. G. Imaging of germinal center selection events during affinity maturation. Science 315, 528–531 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Schwickert, T. A. et al. In vivo imaging of germinal centres reveals a dynamic open structure. Nature 446, 83–87 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Hauser, A. E. et al. Definition of germinal-center B cell migration in vivo reveals predominant intrazonal circulation patterns. Immunity 26, 655–667 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Brink, R. Germinal-center B cells in the zone. Immunity 26, 552–554 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Hauser, A. E., Shlomchik, M. J. & Haberman, A. M. In vivo imaging studies shed light on germinal-centre development. Nature Rev. Immunol. 7, 499–504 (2007).

    Article  CAS  Google Scholar 

  14. Allen, C. D. et al. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nature Immunol. 5, 943–952 (2004). This work provided insights into the trafficking of cells between the dark and light zones of GCs and is the first in an elegant series of studies (see references 9,10 and 11 ) that dissects the dynamics of GC B-cell differentiation using sophisticated experimental systems.

    Article  CAS  Google Scholar 

  15. Klein, U. et al. Transcriptional analysis of the B cell germinal center reaction. Proc. Nat Acad. Sci. USA 100, 2639–2644 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shaffer, A. L. et al. Signatures of the immune response. Immunity 15, 375–385 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Phan, R. T. & Dalla-Favera, R. The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature 432, 635–639 (2004). This study shows that the p53-dependent response to DNA damage normally resulting in growth arrest and apoptotic responses is specifically suppressed in centroblasts by BCL-6.

    Article  CAS  PubMed  Google Scholar 

  18. Hu, B. T., Lee, S. C., Marin, E., Ryan, D. H. & Insel, R. A. Telomerase is up-regulated in human germinal center B cells in vivo and can be re-expressed in memory B cells activated in vitro. J. Immunol. 159, 1068–1071 (1997).

    CAS  PubMed  Google Scholar 

  19. Liu, Y. J. et al. Mechanism of antigen-driven selection in germinal centres. Nature 342, 929–931 (1989). This is the first demonstration that GC B cells do not survive in vitro unless rescued by CD40 stimulation, thereby providing the first indication that centroblasts are characterized by a pro-apoptotic gene expression programme.

    Article  CAS  PubMed  Google Scholar 

  20. Feuillard, J., Taylor, D., Casamayor-Palleja, M., Johnson, G. D. & MacLennan, I. C. Isolation and characteristics of tonsil centroblasts with reference to Ig class switching. Int. Immunol. 7, 121–130 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Billian, G., Bella, C., Mondiere, P. & Defrance, T. Identification of a tonsil IgD+ B cell subset with phenotypical and functional characteristics of germinal center B cells. Eur. J. Immunol. 26, 1712–1719 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, Y. J. et al. Germinal center cells express BCL-2 protein after activation by signals which prevent their entry into apoptosis. Eur. J. Immunol. 21, 1905–1910 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Martinez-Valdez, H. et al. Human germinal center B cells express the apoptosis-inducing genes Fas, c-myc, P53, and Bax but not the survival gene bcl-2. J. Exp. Med. 183, 971–977 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Smith, K. G., Nossal, G. J. & Tarlinton, D. M. FAS is highly expressed in the germinal center but is not required for regulation of the B-cell response to antigen. Proc. Natl Acad. Sci. USA 92, 11628–11632 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Takahashi, Y., Ohta, H. & Takemori, T. Fas is required for clonal selection in germinal centers and the subsequent establishment of the memory B cell repertoire. Immunity 14, 181–192 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. de Villartay, J. P., Fischer, A. & Durandy, A. The mechanisms of immune diversification and their disorders. Nature Rev. Immunol. 3, 962–972 (2003).

    Article  CAS  Google Scholar 

  27. Han, S. et al. Cellular interaction in germinal centers. Roles of CD40 ligand and B7–2 in established germinal centers. J. Immunol. 155, 556–567 (1995).

    CAS  PubMed  Google Scholar 

  28. Basso, K. et al. Tracking CD40 signaling during germinal center development. Blood 104, 4088–4096 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Kosco-Vilbois, M. H., Bonnefoy, J. Y. & Chvatchko, Y. The physiology of murine germinal center reactions. Immunol. Rev. 156, 127–136 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Su, G. H. et al. Defective B cell receptor-mediated responses in mice lacking the Ets protein, Spi-B. EMBO J. 16, 7118–7129 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Muto, A. et al. The transcriptional programme of antibody class switching involves the repressor Bach2. Nature 429, 566–571 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Lee, C. H. et al. Regulation of the germinal center gene program by interferon (IFN) regulatory factor 8/IFN consensus sequence-binding protein. J. Exp. Med. 203, 63–72 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Toyama, H. et al. Memory B cells without somatic hypermutation are generated from Bcl6-deficient B cells. Immunity 17, 329–339 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. William, J., Euler, C., Christensen, S. & Shlomchik, M. J. Evolution of autoantibody responses via somatic hypermutation outside of germinal centers. Science 297, 2066–2070 (2002).

    Article  PubMed  Google Scholar 

  35. Weller, S. et al. Human blood IgM “memory” B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire. Blood 104, 3647–3654 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Shen, H. M., Peters, A., Baron, B., Zhu, X. & Storb, U. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science 280, 1750–1752 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Pasqualucci, L. et al. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc. Natl Acad. Sci. USA 95, 11816–11821 (1998). References 36 and 37 describe for the first time that the somatic hypermutation machinery can act outside the antibody gene loci.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wagner, S. D. & Neuberger, M. S. Somatic hypermutation of immunoglobulin genes. Annu. Rev. Immunol. 14, 441–457 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Papavasiliou, F. N. & Schatz, D. G. Cell-cycle-regulated DNA double-stranded breaks in somatic hypermutation of immunoglobulin genes. Nature 408, 216–221 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Bross, L. et al. DNA double-strand breaks in immunoglobulin genes undergoing somatic hypermutation. Immunity 13, 589–597 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000). References 41 and 42 identify AID as the enzyme required for SHM and CSR.

    Article  CAS  PubMed  Google Scholar 

  43. Petersen-Mahrt, S. K., Harris, R. S. & Neuberger, M. S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–103 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Bransteitter, R., Pham, P., Scharff, M. D. & Goodman, M. F. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl Acad. Sci. USA 100, 4102–4107 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chaudhuri, J. et al. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422, 726–730 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Di Noia, J. & Neuberger, M. S. Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature 419, 43–48 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Dickerson, S. K., Market, E., Besmer, E. & Papavasiliou, F. N. AID mediates hypermutation by deaminating single stranded DNA. J. Exp. Med. 197, 1291–1296 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ramiro, A. R., Stavropoulos, P., Jankovic, M. & Nussenzweig, M. C. Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nature Immunol. 4, 452–456 (2003).

    Article  CAS  Google Scholar 

  49. Di Noia, J. M. & Neuberger, M. S. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem. 76, 1–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Küppers, R., Zhao, M., Hansmann, M. L. & Rajewsky, K. Tracing B cell development in human germinal centres by molecular analysis of single cells picked from histological sections. EMBO J. 12, 4955–4967 (1993).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Pasqualucci, L. et al. Expression of the AID protein in normal and neoplastic B cells. Blood 104, 3318–3325 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Cattoretti, G. et al. Nuclear and cytoplasmic AID in extrafollicular and germinal center B cells. Blood 107, 3967–3975 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Sayegh, C. E., Quong, M. W., Agata, Y. & Murre, C. E-proteins directly regulate expression of activation-induced deaminase in mature B cells. Nature Immunol. 4, 586–593 (2003).

    Article  CAS  Google Scholar 

  54. Gonda, H. et al. The balance between Pax5 and Id2 activities is the key to AID gene expression. J. Exp. Med. 198, 1427–1437 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chaudhuri, J., Khuong, C. & Alt, F. W. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature 430, 992–998 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Basu, U. et al. The AID antibody diversification enzyme is regulated by protein kinase A phosphorylation. Nature 438, 508–511 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Pasqualucci, L., Kitaura, Y., Gu, H. & Dalla-Favera, R. PKA-mediated phosphorylation regulates the function of activation-induced deaminase (AID) in B cells. Proc. Natl Acad. Sci. USA 103, 395–400 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. McBride, K. M. et al. Regulation of hypermutation by activation-induced cytidine deaminase phosphorylation. Proc. Natl Acad. Sci. USA 103, 8798–8803 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pasqualucci, L. et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 412, 341–346 (2001). This is the first demonstration that proto-oncogenes in a certain type of lymphoma are frequently hypermutated in their promoter region, and may contribute to lymphomagenesis by causing dysregulated expression.

    Article  CAS  PubMed  Google Scholar 

  60. Ye, B. H. et al. Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science 262, 747–750 (1993).

    Article  CAS  PubMed  Google Scholar 

  61. Cattoretti, G. et al. BCL-6 protein is expressed in germinal-center B cells. Blood 86, 45–53 (1995).

    CAS  PubMed  Google Scholar 

  62. Allman, D. et al. BCL-6 expression during B-cell activation. Blood 87, 5257–5268 (1996).

    CAS  PubMed  Google Scholar 

  63. Dent, A. L., Shaffer, A. L., Yu, X., Allman, D. & Staudt, L. M. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science 276, 589–592 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Ye, B. H. et al. The BCL-6 proto-oncogene controls germinal-centre formation and Th2-type inflammation. Nature Genet. 16, 161–170 (1997). References 63 and 64 show that the BCL6 proto-oncogene is required for the formation of GCs in T-cell-dependent immune responses.

    Article  CAS  PubMed  Google Scholar 

  65. Cattoretti, G. et al. Deregulated BCL6 expression recapitulates the pathogenesis of human diffuse large B cell lymphomas in mice. Cancer Cell 7, 445–455 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Polo, J. M. et al. Specific peptide interference reveals BCL6 transcriptional and oncogenic mechanisms in B-cell lymphoma cells. Nature Med. 10, 1329–1335 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Fujita, N. et al. MTA3 and the Mi-2/NuRD complex regulate cell fate during B lymphocyte differentiation. Cell 119, 75–86 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Parekh, S. et al. BCL6 programs lymphoma cells for survival and differentiation through distinct biochemical mechanisms. Blood 110, 2067–2074 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shaffer, A. L. et al. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 13, 199–212 (2000). This study employs an elegant global gene expression-profiling approach to identify BCL-6 target genes, providing novel insights into BCL-6 function.

    Article  CAS  PubMed  Google Scholar 

  70. Niu, H., Cattoretti, G. & Dalla-Favera, R. BCL6 controls the expression of the B7–1/CD80 costimulatory receptor in germinal center B cells. J. Exp. Med. 198, 211–221 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Phan, R. T., Saito, M., Basso, K., Niu, H. & Dalla-Favera, R. BCL6 interacts with the transcription factor Miz-1 to suppress the cyclin-dependent kinase inhibitor p21 and cell cycle arrest in germinal center B cells. Nature Immunol. 6, 1054–1060 (2005).

    Article  CAS  Google Scholar 

  72. Ranuncolo, S. M. et al. Bcl-6 mediates the germinal center B cell phenotype and lymphomagenesis through transcriptional repression of the DNA-damage sensor ATR. Nature Immunol. 8, 705–714 (2007).

    Article  CAS  Google Scholar 

  73. Phan, R. T., Saito, M., Kitagawa, Y., Means, A. & Dalla-Favera, R. Genotoxic stress regulates expression of the BCL6 proto-oncogene in germinal center B cells. Nature Immunol. 8, 1132–1139 (2007).

    Article  CAS  Google Scholar 

  74. Tunyaplin, C. et al. Direct repression of prdm1 by Bcl-6 inhibits plasmacytic differentiation. J. Immunol. 173, 1158–1165 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Vasanwala, F. H., Kusam, S., Toney, L. M. & Dent, A. L. Repression of AP-1 function: a mechanism for the regulation of Blimp-1 expression and B lymphocyte differentiation by the B cell lymphoma-6 protooncogene. J. Immunol. 169, 1922–1929 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Turner, C. A. Jr, Mack, D. H. & Davis, M. M. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 77, 297–306 (1994).

    Article  CAS  PubMed  Google Scholar 

  77. Shapiro-Shelef, M. et al. Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity 19, 607–620 (2003). References 76 and 77 show that the transcriptional repressor BLIMP1 is essential for the terminal differentiation of a B cell into a plasma cell.

    Article  CAS  PubMed  Google Scholar 

  78. Kuo, T. C. et al. Repression of BCL-6 is required for the formation of human memory B cells in vitro. J. Exp. Med. 204, 819–830 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Niu, H., Ye, B. H. & Dalla-Favera, R. Antigen receptor signaling induces MAP kinase-mediated phosphorylation and degradation of the BCL-6 transcription factor. Genes Dev. 12, 1953–1961 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Saito, M. et al. A signaling pathway mediating down-regulation of BCL6 in germinal center B-cells is blocked by BCL6 gene alterations in B-cell lymphoma. Cancer Cell 12, 280–292 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Bereshchenko, O. R., Gu, W. & Dalla-Favera, R. Acetylation inactivates the transcriptional repressor BCL6. Nature Genet. 32, 606–613 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Blink, E. J. et al. Early appearance of germinal center-derived memory B cells and plasma cells in blood after primary immunization. J. Exp. Med. 201, 545–554 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shih, T. A., Meffre, E., Roederer, M. & Nussenzweig, M. C. Role of BCR affinity in T cell dependent antibody responses in vivo. Nature Immunol. 3, 570–575 (2002).

    Article  CAS  Google Scholar 

  84. Phan, T. G. et al. High affinity germinal center B cells are actively selected into the plasma cell compartment. J. Exp. Med. 203, 2419–2424 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Barreto, V., Reina-San-Martin, B., Ramiro, A. R., McBride, K. M. & Nussenzweig, M. C. C-terminal deletion of AID uncouples class switch recombination from somatic hypermutation and gene conversion. Mol. Cell 12, 501–508 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Ta, V. T. et al. AID mutant analyses indicate requirement for class-switch-specific cofactors. Nature Immunol. 4, 843–848 (2003).

    Article  CAS  Google Scholar 

  87. Rooney, S., Chaudhuri, J. & Alt, F. W. The role of the non-homologous end-joining pathway in lymphocyte development. Immunol. Rev. 200, 115–131 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Liu, Y. J. et al. Within germinal centers, isotype switching of immunoglobulin genes occurs after the onset of somatic mutation. Immunity 4, 241–250 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. Tafuri, A. et al. ICOS is essential for effective T-helper-cell responses. Nature 409, 105–109 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. McAdam, A. J. et al. ICOS is critical for CD40-mediated antibody class switching. Nature 409, 102–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Castigli, E. et al. TACI and BAFF-R mediate isotype switching in B cells. J. Exp. Med. 201, 35–39 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Klein, U. et al. IRF4 controls plasma cell differentiation and class switch recombination. Nature Immunol. 7, 773–782 (2006).

    Article  CAS  Google Scholar 

  93. Sciammas, R. et al. Graded expression of interferon regulatory factor-4 coordinates isotype switching with plasma cell differentiation. Immunity 25, 225–236 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Liu, Y. J. & Banchereau, J. Regulation of B-cell commitment to plasma cells or to memory B cells. Semin. Immunol. 9, 235–240 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Shan, H., Shlomchik, M. & Weigert, M. Heavy-chain class switch does not terminate somatic mutation. J. Exp. Med. 172, 531–536 (1990).

    Article  CAS  PubMed  Google Scholar 

  96. Cobaleda, C., Schebesta, A., Delogu, A. & Busslinger, M. Pax5: the guardian of B cell identity and function. Nature Immunol. 8, 463–470 (2007).

    Article  CAS  Google Scholar 

  97. Delogu, A. et al. Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity 24, 269–281 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Nera, K. P. et al. Loss of Pax5 promotes plasma cell differentiation. Immunity 24, 283–293 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Kallies, A. et al. Initiation of plasma-cell differentiation is independent of the transcription factor blimp-1. Immunity 26, 555–566 (2007). This study demonstrates that the earliest step in plasma-cell differentiation is mediated by the downregulation of PAX5, followed by BLIMP1 upregulation.

    Article  CAS  PubMed  Google Scholar 

  100. Falini, B. et al. A monoclonal antibody (MUM1p) detects expression of the MUM1/IRF4 protein in a subset of germinal center B cells, plasma cells, and activated T cells. Blood 95, 2084–2092 (2000).

    CAS  PubMed  Google Scholar 

  101. Angelin-Duclos, C., Cattoretti, G., Lin, K. I. & Calame, K. Commitment of B lymphocytes to a plasma cell fate is associated with Blimp-1 expression in vivo. J. Immunol. 165, 5462–5471 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Reimold, A. M. et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature 412, 300–307 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Shaffer, A. L. et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21, 81–93 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Mittrücker, H. W. et al. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science 275, 540–543 (1997).

    Article  PubMed  Google Scholar 

  105. Fornek, J. L. et al. Critical role for Stat3 in T-dependent terminal differentiation of IgG B cells. Blood 107, 1085–1091 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Scheeren, F. A. et al. STAT5 regulates the self-renewal capacity and differentiation of human memory B cells and controls Bcl-6 expression. Nature Immunol. 6, 303–313 (2005).

    Article  CAS  Google Scholar 

  107. Reljic, R., Wagner, S. D., Peakman, L. J. & Fearon, D. T. Suppression of signal transducer and activator of transcription 3-dependent B lymphocyte terminal differentiation by BCL-6. J. Exp. Med. 192, 1841–1848 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Arpin, C. et al. Generation of memory B cells and plasma cells in vitro. Science 268, 720–722 (1995).

    Article  CAS  PubMed  Google Scholar 

  109. Stevenson, F. et al. Insight into the origin and clonal history of B-cell tumors as revealed by analysis of immunoglobulin variable region genes. Immunol. Rev. 162, 247–259 (1998).

    Article  CAS  PubMed  Google Scholar 

  110. Küppers, R. & Dalla-Favera, R. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene 20, 5580–5594 (2001).

    Article  PubMed  Google Scholar 

  111. Küppers, R. Mechanisms of B-cell lymphoma pathogenesis. Nature Rev. Cancer 5, 251–262 (2005).

    Article  CAS  Google Scholar 

  112. Lenz, G. et al. Aberrant immunoglobulin class switch recombination and switch translocations in activated B cell-like diffuse large B cell lymphoma. J. Exp. Med. 204, 633–643 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Pasqualucci, L. et al. Mutations of the BCL6 proto-oncogene disrupt its negative autoregulation in diffuse large B-cell lymphoma. Blood 101, 2914–2923 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Okazaki, I. M. et al. Constitutive expression of AID leads to tumorigenesis. J. Exp. Med. 197, 1173–1181 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ramiro, A. R. et al. AID is required for c-myc/IgH chromosome translocations in vivo. Cell 118, 431–438 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Unniraman, S., Zhou, S. & Schatz, D. G. Identification of an AID-independent pathway for chromosomal translocations between the Igh switch region and Myc. Nature Immunol. 5, 1117–1123 (2004).

    Article  CAS  Google Scholar 

  117. Franco, S. et al. H2AX prevents DNA breaks from progressing to chromosome breaks and translocations. Mol. Cell 21, 201–214 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Kotani, A. et al. Activation-induced cytidine deaminase (AID) promotes B cell lymphomagenesis in Emu-cmyc transgenic mice. Proc. Natl Acad. Sci. USA 104, 1616–1620 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pasqualucci, L. et al. Activation induced cytidine deaminase (AID) is required for germinal-center-derived lymphomagenesis. Nature Genet. 9 December 2007 (doi:10.1038/ng.2007.35) References 118 and 119 identify AID as being crucially involved in the pathogenesis of GC-derived B-cell lymphomas.

  120. McDonnell, T. J. & Korsmeyer, S. J. Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14;18). Nature 349, 254–256 (1991).

    Article  CAS  PubMed  Google Scholar 

  121. Iida, S. et al. The t(9;14)(p13;q32) chromosomal translocation associated with lymphoplasmacytoid lymphoma involves the PAX-5 gene. Blood 88, 4110–4117 (1996).

    CAS  PubMed  Google Scholar 

  122. Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Vafa, O. et al. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol. Cell 9, 1031–1044 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Dominguez-Sola, D. et al. Non-transcriptional control of DNA replication by c-Myc. Nature 448, 445–451 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Tam, W. et al. Mutational analysis of PRDM1 indicates a tumor-suppressor role in diffuse large B-cell lymphomas. Blood 107, 4090–4100 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Pasqualucci, L. et al. Inactivation of the PRDM1/BLIMP1 gene in diffuse large B cell lymphoma. J. Exp. Med. 203, 311–317 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Davis, R. E., Brown, K. D., Siebenlist, U. & Staudt, L. M. Constitutive nuclear factor κB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J. Exp. Med. 194, 1861–1874 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Thai, T. H. et al. Regulation of the germinal center response by microRNA-155. Science 316, 604–608 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Rodriguez, A. et al. Requirement of bic/microRNA-155 for normal immune function. Science 316, 608–611 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Goossens, T., Klein, U. & Küppers, R. Frequent occurrence of deletions and duplications during somatic hypermutation: implications for oncogene translocations and heavy chain disease. Proc. Natl Acad. Sci. USA 95, 2463–2468 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Toellner, K. M., Gulbranson-Judge, A., Taylor, D. R., Sze, D. M. & MacLennan, I. C. Immunoglobulin switch transcript production in vivo related to the site and time of antigen-specific B cell activation. J. Exp. Med. 183, 2303–2312 (1996).

    Article  CAS  PubMed  Google Scholar 

  132. Seki, M., Gearhart, P. J. & Wood, R. D. DNA polymerases and somatic hypermutation of immunoglobulin genes. EMBO Rep. 6, 1143–1148 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Martin, A. & Scharff, M. D. AID and mismatch repair in antibody diversification. Nature Rev. Immunol. 2, 605–614 (2002).

    Article  CAS  Google Scholar 

  134. Shaffer, A. L. et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity 17, 51–62 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Lin, K. I., Angelin-Duclos, C., Kuo, T. C. & Calame, K. Blimp-1-dependent repression of Pax-5 is required for differentiation of B cells to immunoglobulin M-secreting plasma cells. Mol. Cell. Biol. 22, 4771–4780 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to thank the members of the Dalla-Favera laboratory, and in particular L. Pasqualucci and M. Saito, for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Dalla-Favera.

Glossary

Memory B cells

Antigen-experienced B cells that express high-affinity antibodies and quickly differentiate into plasma cells in antigen-recall responses.

Plasma cells

Non-dividing, terminally differentiated, antibody-secreting cells of the B-cell lineage.

Antibody-secreting cells

A term that denotes both proliferating plasmablasts and non-proliferating plasma cells. The term is used when both cell types might be present.

Plasmablast

The B-cell lineage precursor of non-dividing plasma cells, which has the capacity to divide and that has migratory potential.

Follicular dendritic cell

Specialized non-haematopoietic stromal cells that reside in the lymphoid follicles and germinal centres. These cells possess long dendrites and carry intact antigen on their surface. They are crucial for the optimal selection of B cells that produce antigen-binding antibody.

Centroblast

A proliferating germinal-centre B cell of which the rearranged variable-region immunoglobulin genes are undergoing somatic hypermutation.

Centrocyte

The progeny of a centroblast. These cells undergo immunoglobulin class switching and are selected on the basis of the improved affinity of their immunoglobulin for antigen following interaction with immune complexes that are associated with follicular dendritic cells, and on their ability to elicit help from follicular B helper T (TFH) cells.

Two-photon intravital microscopy

Laser-scanning microscopy that uses pulsed infrared laser light for the excitation of conventional fluorophores or fluorescent proteins. The main advantage is deep tissue penetration of the infrared light, owing to the low level of light scattering within the tissue.

Telomerase

An enzyme that is capable of extending the ends of telomeres after replication by using an RNA template that is part of the enzyme complex.

Programmed cell death

A common form of cell death, which is also known as apoptosis. Many physiological and developmental stimuli cause apoptosis, and this mechanism is frequently used to delete unwanted, superfluous or potentially harmful cells, such as those undergoing transformation. Apoptosis involves cell shrinkage, chromatin condensation in the periphery of the nucleus, plasma-membrane blebbing and DNA fragmentation into segments of about 180 base pairs. Eventually, the cell breaks up into many membrane-bound 'apoptotic bodies', which are phagocytosed by neighbouring cells.

p53 tumour-suppressor gene.

The mutation of the p53 gene in cancer can lead to a lack of cell-cycle control and apoptosis.

Ubiquitin-mediated proteasomal degradation

An important proteolytic process that involves the tagging of unwanted proteins with ubiquitin, which allows their recognition by the proteasome — a large, multi-component protein-degrading complex.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, U., Dalla-Favera, R. Germinal centres: role in B-cell physiology and malignancy. Nat Rev Immunol 8, 22–33 (2008). https://doi.org/10.1038/nri2217

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2217

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing