Skip to main content

Implication of Molten Globule on the Function and Toxicity of a Protein

  • Chapter
  • First Online:
Protein Toxins in Modeling Biochemistry

Abstract

Molten globule (MG) are the compact globules with significant amount of native secondary structure and a relatively higher side chain mobility compared to native form, stabilized by non-specific hydrophobic interactions. MG states are better understood in the context of the protein folding process existing as the intermediate states. The MG state was long believed to be a non-active state of protein owing to the loss of tertiary structure and different folding than the native state. A better understanding of MG structures in the recent years have however revealed the functional roles of MG states. The MG states are majorly involved in the functioning of biological processes by existing at various intermediate levels during the protein folding or unfolding processes. Majorly, MG functional roles are involved in cellular processes, protein–ligand interaction, enzymatic activity, assisting chaperones, membrane penetration of proteins, translocation of toxins and genetic diseases involving misfolded proteins. The unraveling of the roles of the MG state in the cellular processes will prove to be effective in the design of antidotes as well as diagnostics to counteract effects of various toxins. The understanding of the functional roles of the MG is also vital for the basic understanding of folding pathways and enzymatic activities of the proteins involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abelev GI (1993) Alpha-fetoprotein biology. Sov Sci Rev D Physicochem Biol 11:85–109

    Google Scholar 

  • Allured VS, Collier RJ, Carroll SF et al (1986) Structure of exotoxin A of Pseudomonas aeruginosa at 3.0-Angstrom resolution. Proc Natl Acad Sci U S A 83:1320–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnon SS, Schechter R, Inglesby TV et al (2001) Botulinum toxin as a biological weapon, medical and public health management. JAMA 285:1059–1070

    Article  CAS  PubMed  Google Scholar 

  • Ausio J, Dong F, van Holde KE (1989) Use of selectively trypsinized nucleosome core particles to analyze the role of the histone “Tails” in the stabilization of the nucleosome. J Mol Biol 206:451–463

    Article  CAS  PubMed  Google Scholar 

  • Bailey RW, Dunker AK, Brown CJ et al (2001) Clusterin, a binding protein with a molten globule-like region. Biochemistry 40:11828–11840

    Article  CAS  PubMed  Google Scholar 

  • Bailey R, Griswold MD (1999) Clusterin in the male reproductive system, localization and possible function. Mol Cell Endocrinol 151:17–23

    Article  CAS  PubMed  Google Scholar 

  • Bakás L, Chanturiya A, Herlax V et al (2006) Paradoxical lipid dependence of pores formed by the Escherichia coli alpha-hemolysin in planar phospholipid bilayer membranes. Biophys J 91:3748–3755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bakás L, Ostolaza H, Vaz WL et al (1996) Reversible adsorption and nonreversible insertion of Escherichia coli alpha-hemolysin into lipid bilayers. Biophys J 71:1869–1876

    Article  PubMed  PubMed Central  Google Scholar 

  • Bakás L, Veiga M, Soloaga A et al (1998) Calcium-dependent conformation of E. coli alpha-haemolysin. Implications for the mechanism of membrane insertion and lysis. Biochim Biophys Acta 1368:225–234

    Article  PubMed  Google Scholar 

  • Bantel H, Sinha B, Domschke W et al (2001) α-Toxin is a mediator of Staphylococcus aureus-induced cell death and activates caspases via the intrinsic death pathway independently of death receptor signaling. J Cell Biol 155:637–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baskakov IV, Kumar R, Srinivasan G et al (1999) Trimethylamine N-oxide-induced cooperative folding of an intrinsically unfolded transcription-activating fragment of human glucocorticoid receptor. J Biol Chem 274:10693–10696

    Article  CAS  PubMed  Google Scholar 

  • Bayer TS, Booth LN, Knudsen SM et al (2005) Arginine-rich motifs present multiple interfaces for specific binding by RNA. RNA 11:1848–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhakdi S, Tranum-Jensen J (1991) Alpha-toxin of Staphylococcus aureus. Microbiol Rev 55:733–751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bose HS, Whittal RM, Baldwin MA et al (1999) The active form of the steroidogenic acute regulatory protein, StAR, appears to be a molten globule. Proc Natl Acad Sci U S A 96:7250–7255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourdineaud JP, Boulanger P, Lazdunski C et al (1990a) In vivo properties of colicin A, channel activity is voltage dependent but translocation may be voltage independent. Proc Natl Acad Sci U S A 87:1037–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourdineaud JP, Fierobe HP, Lazdunski C et al (1990b) Involvement of OmpF during reception and translocation steps of colicin N entry. Mol Microbiol 4:1737–1743

    Article  CAS  PubMed  Google Scholar 

  • Bova MP, Ding LL, Horwitz J et al (1997) Subunit exchange of alphaA-crystallin. J Biol Chem 272:29511–29517

    Article  CAS  PubMed  Google Scholar 

  • Bumba L, Masin J, Fiser R et al (2010) Bordetella adenylate cyclase toxin mobilizes its b2 integrin receptor into lipid rafts to accomplish translocation across target cell membrane in two steps. PLoS Pathog 6:e1000901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burge S, Teufel DP, Townsley FM et al (2009) Molecular basis of the interactions between the p73 N terminus and p300, effects on transactivation and modulation by phosphorylation. Proc Natl Acad Sci U S A 106:3142–3147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bychkova VE, Berni R, Rossi GL et al (1992) Retinol-binding protein is in the molten globule state at low pH. Biochemistry 31:7566–7571

    Article  CAS  PubMed  Google Scholar 

  • Bychkova VE, Dujsekina AE, Fantuzzi A et al (1998) Release of retinol and denaturation of its plasma carrier, retinol-binding protein. Fold Des 3:285–291

    Article  CAS  PubMed  Google Scholar 

  • Bychkova VE, Dujsekina AE, Klenin SI et al (1996) Molten globule-like state of cytochrome c under conditions simulating those near the membrane surface. Biochemistry 35:6058–6063

    Article  CAS  PubMed  Google Scholar 

  • Bychkova VE, Pain RH, Ptitsyn OB (1988) The ‘molten globule’ state is involved in the translocation of proteins across membranes? FEBS Lett 238:231–234

    Article  CAS  PubMed  Google Scholar 

  • Bychkova VE, Ptitsyn OB (1993) The molten globule in vitro and in vivo. Chemtracts Biochem Mol Biol 4:133–163

    CAS  Google Scholar 

  • Bychkova VE, Ptitsyn OB (1995) Folding intermediates are involved in genetic diseases? FEBS Lett 359:6–8

    Article  CAS  PubMed  Google Scholar 

  • Cabiaux V, Brasseur R, Wattiez R et al (1989) Secondary structure of diphtheria toxin and its fragments interacting with acidic liposomes studied by polarized infrared spectroscopy. J Biol Chem 264:4928–4938

    CAS  PubMed  Google Scholar 

  • Cai S, Kukreja R, Shoesmith S et al (2006) Botulinum neurotoxin light chain refolds at endosomal pH for its translocation. Protein J 25:455–462

    Article  CAS  PubMed  Google Scholar 

  • Cai S, Singh BR (2001) Role of the disulfide cleavage induced molten globule state of type a botulinum neurotoxin in its endopeptidase activity. Biochemistry 50:15327–15333

    Article  CAS  Google Scholar 

  • Cai Z, Gorin A, Frederick R et al (1998) Solution structure of P22 transcriptional antitermination N peptide-boxB RNA complex. Nat Struct Biol 5:203–212

    Article  CAS  PubMed  Google Scholar 

  • Calnan BJ, Biancalana S, Frankel AD (1991) Analysis of arginine-rich peptides from the HIV Tat protein reveals unusual features of RNA-protein recognition. Genes Dev 5:201–210

    Article  CAS  PubMed  Google Scholar 

  • Casu F, Duggan BM, Hennig M (2013) The arginine-rich RNA-binding motif of HIV-1 Rev is intrinsically disordered and folds upon RRE binding. Biophys J 105:1004–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavalieri SJ, Bohach GA, Snyder IS (1984) Escherichia coli alpha-hemolysin, characteristics and probable role in pathogenicity. Microbiol Rev 48:326–343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chahal SS, Matthews HR, Bradbury EM (1980) Acetylation of histone H4 and its role in chromatin structure and function. Nature 287:76–79

    Article  CAS  PubMed  Google Scholar 

  • Chen E, Van Vranken V, Kliger DS (2008) The folding kinetics of the SDS-induced molten globule form of reduced cytochrome c. Biochemistry 47:5450–5459

    Article  CAS  PubMed  Google Scholar 

  • Chenal A, Guijarro JI, Raynal B et al (2009) RTX calcium binding motifs are intrinsically disordered in the absence of calcium, implication for protein secretion. J Biol Chem 284:1781–1789

    Article  CAS  PubMed  Google Scholar 

  • Chenal A, Karst JC, Sotomayor Pérez AC et al (2010) Calcium-induced folding and stabilization of the intrinsically disordered RTX domain of the CyaA toxin. Biophys J 99:3744–3753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choe S, Bennett MJ, Fujii G et al (1992) The crystal structure of diphtheria toxin. Nature 357:216–222

    Article  CAS  PubMed  Google Scholar 

  • Collier RJ, Young JA (2003) Anthrax toxin. Annu Rev Cell Dev Biol 19:45–70

    Article  CAS  PubMed  Google Scholar 

  • Cortajarena A, Gon˜i FM, Ostolaza H (2001) Glycophorin as a receptor for Escherichia coli R-hemolysin in erythrocytes. J Biol Chem 276:12513–12519

    Article  CAS  PubMed  Google Scholar 

  • Cotte JG (1992) Structural and functional relationships among the RTX toxin determinants of Gram negative bacteria. FEMS Microbiol Rev 88:137–161

    Article  Google Scholar 

  • Craig S, Hollecker M, Creighton TE et al (1985) Single amino acid mutations block a late step in the folding of β-lactamase from Staphylococcus aureus. J Mol Biol 185:681–687

    Article  CAS  PubMed  Google Scholar 

  • Craig S, Schmeissner U, Wingfield P et al (1987) Conformation, stability, and folding of interleukin 1 beta. Biochemistry 26:3570–3576

    Article  CAS  PubMed  Google Scholar 

  • de Jongh HH, Killian JA, de Kruijff B (1992) A water–lipid interface induces a highly dynamic folded state in apocytochrome c and cytochrome c, which may represent a common folding intermediate. Biochemistry 31:1636–1643

    Article  PubMed  Google Scholar 

  • de Silva HV, Harmony JA, Stuart WD et al (1990) Apolipoprotein J, structure and tissue distribution. Biochemistry 29:5380–5389

    Article  PubMed  Google Scholar 

  • Debaisieux S, Rayne F, Yezid H et al (2012) The ins and outs of HIV-1 Tat. Traffic 13:355–363

    Article  CAS  PubMed  Google Scholar 

  • Demarest SJ, Deechongkit S, Dyson HJ et al (2004) Packing, specificity, and mutability at the binding interface between the p160 coactivator and CREB binding protein. Protein Sci 13:203–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demarest SJ, Martinez-Yamout M, Chung J et al (2002) Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature 415:549–553

    Article  CAS  PubMed  Google Scholar 

  • Denton JB, Konishi Y, Scheraga HA (1982) Folding of ribonuclease A from a partially disordered conformation. Kinetic study under folding conditions. Biochemistry 21:5155–5163

    Article  CAS  PubMed  Google Scholar 

  • Dobson CM, Evans PA, Radford SE (1994) Understanding how proteins fold, the lysozyme story so far. Trends Biochem Sci 19:31–37

    Article  CAS  PubMed  Google Scholar 

  • Dolgikh DA, Abaturov LV, Bolotina IA et al (1985) Compact state of a protein molecule with pronounced small-scale mobility, bovine alpha-lactalbumin. Eur Biophys J 13:109–121

    Article  CAS  PubMed  Google Scholar 

  • Dolgikh DA, Abaturov LV, Brazhnikov et al (1983) Acid form of carbonic anhydrase, “molten globule” with a secondary structure. Dokl Akad Nauk SSSR 272:1481–1484

    CAS  PubMed  Google Scholar 

  • Dolgikh DA, Gilmanshin RI, Brazhnikov EV et al (1981) Alpha-lactalbumin, compact state with fluctuating tertiary structure? FEBS Lett 136:311–315

    Article  CAS  PubMed  Google Scholar 

  • Dolgikh DA, Kolomiets AP, Bolotina IA et al (1984) ‘Molten-globule’ state accumulates in carbonic anhydrase folding. FEBS Lett 165:88–92

    Article  CAS  PubMed  Google Scholar 

  • D’Silva PR, Lala AK (1998) Unfolding of diphtheria toxin. Identification of hydrophobic sites exposed on lowering of pH by photolabeling. J Biol Chem 273:16216–16222

    Article  PubMed  Google Scholar 

  • Dumont ME, Richards FM (1988) The pH-dependent conformational change of diphtheria toxin. J Biol Chem 263:2087–2097

    CAS  PubMed  Google Scholar 

  • Dunker AK, Ensign LD, Arnold GE et al (1991a) A model for fd phage penetration and assembly. FEBS Lett 292:271–274

    Article  CAS  PubMed  Google Scholar 

  • Dunker AK, Ensign LD, Arnold GE et al (1991b) Proposed molten globule intermediate in fd phase penetration and assembly. FEBS Lett 292:275–278

    Article  CAS  PubMed  Google Scholar 

  • Dunker AK, Lawson JD, Brown CJ (2001) Intrinsically disordered protein. J Mol Graph Model 19:26–59

    Article  CAS  PubMed  Google Scholar 

  • Ebert MO, Bae SH, Dyson HJ et al (2008) NMR relaxation study of the complex formed between CBP and the activation domain of the nuclear hormone receptor coactivator ACTR. Biochemistry 47:1299–1308

    Article  CAS  PubMed  Google Scholar 

  • Eilers M, Endo T, Schatz G (1989) Adriamycin, a drug interacting with acidic phospholipids, blocks import of precursor proteins by isolated yeast mitochondria. J Biol Chem 264:2945–2950

    CAS  PubMed  Google Scholar 

  • Eliers M, Hwang S, Schatz G (1988) Unfolding and refolding of a purified precursor protein during import into isolated mitochondria. EMBO J 7:1139–1145

    Google Scholar 

  • Eisenberg M, Gresalfi T, Riccio T et al (1979) Absorption of monovalent cations to bilayer membranes containing negative phospholipids. Biochemistry 18:5213–5223

    Article  CAS  PubMed  Google Scholar 

  • Eliezer D, Jennings PA, Dyson HJ et al (1997) Populating the equilibrium molten globule state of apomyoglobin under conditions suitable for structural characterization by NMR. FEBS Lett 417:92–96

    Article  CAS  PubMed  Google Scholar 

  • Endo T, Eilers M, Schatz G (1989) Binding of a tightly folded artificial mitochondrial precursor protein to the mitochondrial outer-membrane involves a lipid-mediated conformational change. J Biol Chem 264:2951–2956

    CAS  PubMed  Google Scholar 

  • Endo T, Schatz G (1988) Latent membrane perturbation activity of a mitochondrial precursor protein is exposed by unfolding. EMBO J 7:1153–1158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farahbakhsh ZT, Wisnieski BJ (1989) The acid-triggered entry pathway of Pseudomonas exotoxin A. Biochemistry 28:580–585

    Article  CAS  PubMed  Google Scholar 

  • Forestier C, Welch RA (1991) Identification of RTX toxin target cell specificity domains by use of hybrid genes. Infect Immun 59:4212–4220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Freskgård PO, Bergenhem N, Jonsson BH et al (1992) Isomerase and chaperone activity of prolyl isomerase in the folding of carbonic anhydrase. Science 258:466–468

    Article  PubMed  Google Scholar 

  • Frey J (2011) The role of RTX toxins in host specificity of animal pathogenic Pasteurellaceae. Vet Microbiol 153:51–58

    Article  CAS  PubMed  Google Scholar 

  • Fridd SL, Lakey JH (2002) Surface aspartate residues are essential for the stability of colicin A P-domain, a mechanism for the formation of an acidic molten-globule. Biochemistry 41:1579–1586

    Article  CAS  PubMed  Google Scholar 

  • Gatewood JM, Schroth GP, Schmid CW et al (1990) Zinc-induced secondary structure transitions in human sperm protamines. J Biol Chem 265:20667–20672

    CAS  PubMed  Google Scholar 

  • Gill DM (1982) Bacterial toxins, A table of lethal amounts. Microbiol Rev 46:86–94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gil’manshin RI, Dolgikh DA, Ptitsyn OB et al (1982) Protein globule without the unique three-dimensional structure, experimental data for alpha-lactalbumins and general model. Biofizika 27:1005–1016

    PubMed  Google Scholar 

  • Gil’manshin RI, Ptitsyn OB (1987) An early intermediate of refolding alpha-lactalbumin forms within 20 ms. FEBS Lett 223:327–329

    Article  Google Scholar 

  • González-Mañas JM, Lakey JH, Pattus F (1992) Brominated phospholipids as a tool for monitoring the membrane insertion of colicin A. Biochemistry 31:7294–7300

    Article  PubMed  Google Scholar 

  • Griffith J, Manning M, Dunn K (1981) Filamentous bacteriophage contract into hollow spherical particles upon exposure to a chloroform–water interface. Cell 23:747–753

    Article  CAS  PubMed  Google Scholar 

  • Griswold MD (1995) Interactions between germ cells and Sertoli cells in the testis. Biol Reprod 52:211–216

    Article  CAS  PubMed  Google Scholar 

  • Grottesi A, Sette M, Palamara T (1998) The conformation of peptide thymosin alpha 1 in solution and in a membrane-like environment by circular dichroism and NMR spectroscopy. A possible model for its interaction with the lymphocyte membrane. Peptides 19:1731–1738

    Article  CAS  PubMed  Google Scholar 

  • Gu W, Shi XL, Roeder RG (1997) Synergistic activation of transcription by CBP and p53. Nature 387:819–823

    Article  CAS  PubMed  Google Scholar 

  • Hanski E, Farfel Z (1985) Bordetella pertussis invasive adenylate cyclase. Partial resolution and properties of its cellular penetration. J Biol Chem 260:5526–5532

    CAS  PubMed  Google Scholar 

  • Hartl FU, Neupert W (1990) Protein sorting to mitochondria, evolutionary conservations of folding and assembly. Science 247:930–938

    Article  CAS  PubMed  Google Scholar 

  • Haslbeck M, Walke S, Stromer T et al (1999) Hsp26, a temperature-regulated chaperone. EMBO J 18:6744–6751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henkens RW, Kitchell BB, Lottich SC et al (1982) Detection and characterization using circular dichroism and fluorescence spectroscopy of a stable intermediate conformation formed in the denaturation of bovine carbonic anhydrase with guanidinium chloride. Biochemistry 21:5918–5923

    Article  CAS  PubMed  Google Scholar 

  • Herlax V, Bakas L (2007) Fatty acids covalently bound to alpha-hemolysin of Escherichia coli are involved in the molten globule conformation, implication of disordered regions in binding promiscuity. Biochemistry 46:5177–5184

    Article  CAS  PubMed  Google Scholar 

  • Herlax V, Maté S, Rimoldi O et al (2009) Relevance of fatty acid covalently bound to Escherichia coli alpha-hemolysin and membrane microdomains in the oligomerization process. J Biol Chem 284:25199–25210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphreys DT, Carver JA, Easterbrook-Smith SB et al (1999) Clusterin has chaperone-like activity similar to that of small heat shock proteins. J Biol Chem 274:6875–6881

    Article  CAS  PubMed  Google Scholar 

  • Ikeguchi M, Kuwajima K, Mitani M et al (1986) Evidence for identity between the equilibrium unfolding intermediate and a transient folding intermediate, a comparative study of the folding reactions of alpha-lactalbumin and lysozyme. Biochemistry 25:6965–6972

    Article  CAS  PubMed  Google Scholar 

  • Iram A, Naeem A (2012) Trifluoroethanol and acetonitrile induced formation of the molten globule states and aggregates of cellulase. Int J Biol Macromol 50:932–938

    Article  CAS  PubMed  Google Scholar 

  • Janowiak BE, Fischer A, Collier RJ (2010) Effects of introducing a single charged residue into the phenylalanine clamp of multimeric anthraxprotective antigen. J Biol Chem 285:8130–8137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang JX, Abrams FS, London E (1991) Folding changes in membrane-inserted diphtheria toxin that may play important roles in its translocation. Biochemistry 30:3857–3864

    Article  CAS  PubMed  Google Scholar 

  • Jiang JX, London E (1990) Involvement of denaturation-like changes in Pseudomonas exotoxin a hydrophobicity and membrane penetration determined by characterization of pH and thermal transitions. Roles of two distinct conformationally altered states. J Biol Chem 265:8636–8641

    CAS  PubMed  Google Scholar 

  • Karn J, Dingwall C, Finch JT et al (1991) RNA binding by the tat and rev proteins of HIV-1. Biochimie 73:9–16

    Article  CAS  PubMed  Google Scholar 

  • Kjaergaard M, Teilum K, Poulsen FM (2010) Conformational selection in the molten globule state of the nuclear coactivator binding domain of CBP. PNAS 107:12535–12540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koide S, Dyson HJ, Wright PE (1993) Characterization of a folding intermediate of apoplastocyanin trapped by proline isomerization. Biochemistry 32:12299–12310

    Article  CAS  PubMed  Google Scholar 

  • Krantz BA, Finkelstein A, Collier RJ (2006) Protein translocation through the anthrax toxin transmembrane pore is driven by a proton gradient. J Mol Biol 355:968–979

    Article  CAS  PubMed  Google Scholar 

  • Krantz BA, Melnyk RA, Zhang S et al (2005) A phenylalanine clamp catalyzes protein translocation through the anthrax toxin pore. Science 309:777–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krantz BA, Trivedi AD, Cunningham K et al (2004) Acid-induced unfolding of the amino-terminal domains of the lethal and edema factors of anthrax toxin. J Mol Biol 344:739–756

    Article  CAS  PubMed  Google Scholar 

  • Kukreja RV, Singh BR (2005) Biologically active novel conformational state of botulinum, the most poisonous poison. J Biol Chem 280:39346–39352

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Kukreja RV, Cai S et al (2014a) Differential role of molten globule and protein folding in distinguishing unique features of botulinum neurotoxin. Biochim Biophys Acta 1844:1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Kumar T, Sharma GS, Singh LR (2014b) Existence of molten globule state in homocysteine-induced protein covalent modifications. PLoS One 9:e113566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuwajim K (1996) The molten globule state of alpha lactalbumin. FASEB J 10:102–109

    Google Scholar 

  • Kuwajima K, Hiraoka Y, Ikeguchi M et al (1985) Comparison of the transient folding intermediates in lysozyme and alpha-lactalbumin. Biochemistry 24:874–881

    Article  CAS  PubMed  Google Scholar 

  • Lacy DB, Tepp W, Cohen AC et al (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol 5:898–902

    Article  CAS  PubMed  Google Scholar 

  • Ladant D, Ullmann A (1999) Bordatella pertussis adenylate cyclase, a toxin with multiple talents. Trends Microbiol 7:172–176

    Article  CAS  PubMed  Google Scholar 

  • Lakey JH, González-Mañas JM, van der Goot FG et al (1992) The membrane insertion of colicins. FEBS Lett 307:26–29

    Article  CAS  PubMed  Google Scholar 

  • Lally ET, Hill RB, Kieba IR et al (1999) The interaction between RTX toxins and target cells. Trends Microbiol 7:356–361

    Article  CAS  PubMed  Google Scholar 

  • Lally ET, Kieba IR, Sato A et al (1997) RTX toxins recognize a beta2 integrin on the surface of human target cells. J Biol Chem 272:30463–30469

    Article  CAS  PubMed  Google Scholar 

  • Laminet AA, Ziegelhoffer T, Georgopoulos C et al (1990) The Escherichia coli heat shock proteins GroEL and GroES modulate the folding of the beta-lactamase precursor. EMBO J 9:2315–2319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lecker SH, Driessen AJM, Wickner W (1990) ProOmpA contains secondary and tertiary structure prior to translocation and is shielded from aggregation by association with SecB protein. EMBO J 9:2309–2314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Chen JD (1998) The receptor-associated coactivator 3 activates transcription through CREB-binding protein recruitment and autoregulation. J Biol Chem 273:5948–5954

    Article  CAS  PubMed  Google Scholar 

  • Li JD, Carroll J, Ellar DJ (1991) Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 Å resolution. Nature 353:815–821

    Article  CAS  PubMed  Google Scholar 

  • Li HM, Theg SM, Bauerle CM et al (1990) Metal-ion-center assembly of ferredoxin and plastocyanin in isolated chloroplasts. Proc Natl Acad Sci U S A 87:6748–6752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim WA, Farrugio DC, Sauer RT (1992) Structural and energetic consequence of disruptive mutations in a protein core. Biochemistry 31:4324–4333

    Article  CAS  PubMed  Google Scholar 

  • Lin RT, Genin P, Mamane Y et al (2000) Selective DNA binding and association with the CREB binding protein coactivator contribute to differential activation of alpha/beta interferon genes by interferon regulatory factors 3 and 7. Mol Cell Biol 20:6342–6353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin RT, Heylbroeck C, Pitha PM et al (1998) Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol Cell Biol 18:2986–2996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linhartová I, Bumba L, Mašín J et al (2010) RTX proteins, a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev 34:1076–1112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lohner K, Esser AF (1991) Thermal unfolding and aggregation of human complement protein C9, a differential scanning calorimetry study. Biochemistry 30:6620–6625

    Article  CAS  PubMed  Google Scholar 

  • London E (1992a) Diphtheria toxin, membrane interaction and membrane translocation. Biochim Biophys Acta 1113:25–51

    Article  CAS  PubMed  Google Scholar 

  • London E (1992b) How bacterial protein toxins enter cells; the role of partial unfolding in membrane translocation. Mol Microbiol 6:3277–3282

    Article  CAS  PubMed  Google Scholar 

  • López G, Bañares-Hidalgo A, Estrada P (2011) Xylanase II from Trichoderma reesei QM 9414, conformational and catalytic stability to Chaotropes, Trifluoroethanol, and pH changes. J Ind Microbiol Biotechnol 38:113–125

    Article  PubMed  CAS  Google Scholar 

  • Luger K, Mader AW, Richmond RK et al (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–260

    Article  CAS  PubMed  Google Scholar 

  • Luger K, Richmond TJ (1998) The histone tails of the nucleosome. Curr Opin Genet Dev 8:140–146

    Article  CAS  PubMed  Google Scholar 

  • Manning M, Chryosogelos S, Griffith J (1981) Mechanism of coliphage M13 contraction, intermediate structures trapped at low temperatures. J Virol 40:912–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning M, Chryosogelos S, Griffith J (1982) Insertion of bacteriophage M13 coat protein into membranes. Biophys J 37:28–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning M, Griffith J (1985) Association of M13 I forms and spheroids with lipid vesicles. Arch Biochem Biophys 236:297–303

    Article  CAS  PubMed  Google Scholar 

  • Marion J, Trovaslet M, Martinez N et al (2015) Pressure-induced molten globule state of human acetylcholinesterase, structural and dynamical changes monitored by neutron scattering. Phys Chem Chem Phys 17:3157–3163

    Article  CAS  PubMed  Google Scholar 

  • Markus MA, Hinck AP, Huang SR et al (1997) High resolution solution structure of ribosomal protein L11-C76, a helical protein with a flexible loop that becomes structured upon binding to RNA. Nat Struct Biol 4:70–77

    Article  CAS  PubMed  Google Scholar 

  • Martin J, Langer T, Boteva R et al (1991) Chaperonin-mediated protein folding at the surface of groEL through a ‘molten globule’-like intermediate. Nature 352:36–42

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP, Shea TB (2003) Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 26:137–146

    Article  CAS  PubMed  Google Scholar 

  • Merchant S, Bogorad L (1986) Rapid degradation of apoplastocyanin in Cu(II)-deficient cells of Chlamydomonas reinhardtii. J Biol Chem 261:15850–15853

    CAS  PubMed  Google Scholar 

  • Merrill AR, Cohen FS, Cramer WA (1990) On the nature of the structural change of the colicin E1 channel peptide necessary for its translocation-competent state. Biochemistry 29:5829–5836

    Article  CAS  PubMed  Google Scholar 

  • Mishra P, Choudhary S, Hosur RV (2015) Ribosomal Protein P2 from apicomplexan parasite Toxoplasma gondii is intrinsically a molten globule. Biophys Chem 200–201:27–33

    Article  PubMed  CAS  Google Scholar 

  • Mizejewski GJ (2004) Biological roles of alpha-fetoprotein during pregnancy and perinatal development. Exp Biol Med (Maywood) 229:439–463

    CAS  Google Scholar 

  • Mizzen CA, Allis CD (1998) Linking histone acetylation to transcriptional regulation. Cell Mol Life Sci 54:6–20

    Article  CAS  PubMed  Google Scholar 

  • Naeem A, Khan RH (2004) Characterization of molten globule state of cytochrome c at alkaline, native and acidic pH induced by butanol and SDS. Int J Biochem Cell Biol 36:2281–2292

    Article  CAS  PubMed  Google Scholar 

  • Nassi S, Collier RJ, Finkelstein A (2002) PA63 channel of anthrax toxin, an extended beta-barrel. Biochemistry 41:1445–1450

    Article  CAS  PubMed  Google Scholar 

  • Nishimura C, Dyson HJ, Wright PE (2008) The kinetic and equilibrium molten globule intermediates of apoleghemoglobin differ in structure. J Mol Biol 378:715–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obeid R, Herrmann W (2006) Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett 580:2994–3005

    Article  CAS  PubMed  Google Scholar 

  • Ohgushi M, Wada A (1983) ‘Molten-globule state’, a compact form of globular proteins with mobile side-chains. FEBS Lett 164:21–24

    Article  CAS  PubMed  Google Scholar 

  • Ohgushi M, Wada A (1984) Liquid-like state of side chains at the intermediate stage of protein denaturation. Adv Biophys 18:75–90

    Article  CAS  PubMed  Google Scholar 

  • Oliva R, Bazett-Jones DP, Locklear L et al (1990) Histone hyperacetylation can induce unfolding of the nucleosome core particle. Nucleic Acids Res 18:2739–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostolaza H, Bakás L, Goñi FM (1997) Balance of electrostatic and hydrophobic interactions in the lysis of model membranes by E. coli alpha-haemolysin. J Membr Biol 158:137–145

    Article  CAS  PubMed  Google Scholar 

  • Ostolaza H, Soloaga A, Gon˜i FM (1995) The binding of divalent cations to Escherichia coli alpha-haemolysin. Eur J Biochem 228:39–44

    CAS  PubMed  Google Scholar 

  • Paoli P, Sbrana F, Tiribilli B et al (2010) Protein N-homocysteinylation induces the formation of toxic amyloid-like protofibrils. J Mol Biol 400:889–907

    Article  CAS  PubMed  Google Scholar 

  • Papini E, Schiavo G, Tomasi M et al (1987) Lipid interaction of diphtheria toxin and mutants with altered fragment B. 2. Hydrophobic photolabelling and cell intoxication. Eur J Biochem 169:637–644

    Article  CAS  PubMed  Google Scholar 

  • Parker MW, Pattus F, Tucker AD et al (1989) Structure of the membrane-pore-forming fragment of colicin A. Nature 337:93–96

    Article  CAS  PubMed  Google Scholar 

  • Pathak BK, Mondal S, Ghosh AN et al (2014) The ribosome can prevent aggregation of partially folded protein intermediates, studies using the Escherichia coli ribosome. PLoS One 9:e96425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Polverini E, Fasano A, Zito F et al (1999) Conformation of bovine myelin basic protein purified with bound lipids. Eur Biophys J 28:351–355

    Article  CAS  PubMed  Google Scholar 

  • Poon S, Easterbrook-Smith SB, Rybchyn MS et al (2000) Clusterin is an ATP-independent chaperone with very broad substrate specificity that stabilizes stressed proteins in a folding-competent state. Biochemistry 39:15953–15960

    Article  CAS  PubMed  Google Scholar 

  • Poon S, Rybchyn MS, Easterbrook-Smith SB et al (2002a) Mildly acidic pH activates the extracellular molecular chaperone clusterin. J Biol Chem 277:39532–39540

    Article  CAS  PubMed  Google Scholar 

  • Poon S, Treweek TM, Wilson MR et al (2002b) Clusterin is an extracellular chaperone that specifically interacts with slowly aggregating proteins on their off-folding pathway. FEBS Lett 513:259–266

    Article  CAS  PubMed  Google Scholar 

  • Ptitsyn OB (1992) The molten globule state. In: Creighton TE (ed) Protein folding. Freeman, New York, pp 243–299

    Google Scholar 

  • Ptitsyn OB (1995) Molten globule and protein folding. Adv Protein Chem 47:83–229

    Article  CAS  PubMed  Google Scholar 

  • Ptitsyn OB, Bychkova VE, Uversky VN (1995) Kinetic and equilibrium folding intermediates. Philos Trans R Soc Lond B Biol Sci 348:35–41

    Article  CAS  PubMed  Google Scholar 

  • Ptitsyn OB, Uversky VN (1994) The molten globule is a third thermodynamical state of protein molecules. FEBS Lett 341:15–18

    Article  CAS  PubMed  Google Scholar 

  • Ptitsyn OB, Dolgikh DA, Gil’manshin RI et al (1983) Fluctuating state of the protein globule. Mol Biol (Mosk) 17:569–576

    CAS  Google Scholar 

  • Ptitsyn OB, Pain RH, Semisotnov GV et al (1990) Evidence for a molten globule state as a general intermediate in protein folding. FEBS Lett 262:20–24

    Article  CAS  PubMed  Google Scholar 

  • Qin BY, Liu C, Srinath H, Lam SS et al (2005) Crystal structure of IRF-3 in complex with CBP. Structure 13:1269–1277

    Article  CAS  PubMed  Google Scholar 

  • Radford SE, Dobson CM, Evans PA (1992) The folding of hen lysozyme involves partially structured intermediates and multiple pathways. Nature 358:302–307

    Article  CAS  PubMed  Google Scholar 

  • Rahaman H, Alam Khan MK, Hassan MI et al (2015) Heterogeneity of equilibrium molten globule state of cytochrome c induced by weak salt denaturants under physiological condition. PLoS One 10:e0120465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajaraman K, Raman B, Ramakrishna T et al (1998) The chaperone-like alpha-crystallin forms a complex only with the aggregation-prone molten globule state of alpha-lactalbumin. Biochem Biophys Res Commun 249:917–921

    Article  CAS  PubMed  Google Scholar 

  • Rajaraman K, Raman B, Rao CM (1996) Molten-globule state of carbonic anhydrase binds to the chaperone-like alpha-crystallin. J Biol Chem 271:27595–27600

    Article  CAS  PubMed  Google Scholar 

  • Raman B, Ramakrishna T, Rao CM (1997) Effect of the chaperone-like alpha-crystallin on the refolding of lysozyme and ribonuclease A. FEBS Lett 416:369–372

    Article  CAS  PubMed  Google Scholar 

  • Ramsay G, Freire E (1990) Linked thermal and solute perturbation analysis of cooperative domain interactions in proteins. Structural stability of diphtheria toxin. Biochemistry 29:8677–8683

    Article  CAS  PubMed  Google Scholar 

  • Ramsay G, Montgomery D, Berger D et al (1989) Energetics of diphtheria toxin membrane insertion and translocation, calorimetric characterization of the acid pH induced transition. Biochemistry 28:529–533

    Article  CAS  PubMed  Google Scholar 

  • Randall LL, Hardy SJ (1989) Unity in function in the absence of consensus in sequence, role of leader peptides in export. Science 243:1156–1159

    Article  CAS  PubMed  Google Scholar 

  • Ren J, Kachel K, Kim H et al (1999) Interaction of diphtheria toxin T domain with molten globule-like proteins and its implications for translocation. Science 284:955–957

    Article  CAS  PubMed  Google Scholar 

  • Roberts LM, Dunker AK (1993) Structural changes accompanying chloroform-induced contraction of the filamentous phage fd. Biochemistry 32:10479–10488

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg ME, Girton R, Finkel D et al (2002) Apolipoprotein J/clusterin prevents a progressive glomerulopathy of aging. Mol Cell Biol 22:1893–1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Magraner L, Cortajarena AL, García-Pacios M et al (2010) Interdomain Ca2+ effects in Escherichia coli alpha-haemolysin, Ca2+ binding to the C-terminal domain stabilizes both C- and N-terminal domains. Biochim Biophys Acta 1798:1225–1233

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Magraner L, Viguera AR, García-Pacios M et al (2007) The calcium-binding C-terminal domain of Escherichia coli alpha-hemolysin is a major determinant in the surface-active properties of the protein. J Biol Chem 282:11827–11835

    Article  PubMed  CAS  Google Scholar 

  • Satchell KJ (2007) MARTX, multifunctional autoprocessing repeats-in-toxin toxins. Infect Immun 75:5079–5084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiavo G, Matteoli M, Montecucco C (2000) Neurotoxins affecting neuroexocytosis. Physiol Rev 80:717–766

    CAS  PubMed  Google Scholar 

  • Schindel C, Zitzer A, Schulte B et al (2001) Interaction of Escherichia coli hemolysin with biological membranes. A study using cysteine scanning mutagenesis. Eur J Biochem 268:800–808

    Article  CAS  PubMed  Google Scholar 

  • Schmidt MF, Robinson JP, DasGupta BR (1993) Direct visualization of botulinum neurotoxin-induced channels in phospholipid vesicles. Nature 364:827–830

    Article  Google Scholar 

  • Schreiber SL (1991) Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science 251:283–287

    Article  CAS  PubMed  Google Scholar 

  • Scoggin KES, Ulloa A, Nyborg JK (2001) The oncoprotein tax binds the SRC-1-interacting domain of CBP/p300 to mediate transcriptional activation. Mol Cell Biol 21:5520–5530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semisotnov GV, Rodionova NA, Kutyshenko VP et al (1987) Sequential mechanism of refolding of carbonic anhydrase B. FEBS Lett 224:9–13

    Article  CAS  PubMed  Google Scholar 

  • Sertoli E (1865) e lesistenza di particulari cellule remificate nei canalicoli seminiferi dell’testicolo umano. Morgangni 7:31–40

    Google Scholar 

  • Shojania S, O’Neil JD (2006) HIV-1 Tat Is a natively unfolded protein. The solution conformation and dynamics of reduced HIV-1 Tat-(1–72) by NMR spectroscopy. J Biol Chem 281:8347–8356

    Article  CAS  PubMed  Google Scholar 

  • Short EC, Kurtz HJ (1971) Properties of the hemolytic activities of Escherichia coli. Infect Immun 3:678–687

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh BR (2000) Intimate details of the most poisonous poison. Nat Struct Biol 7:617–619

    Article  CAS  PubMed  Google Scholar 

  • Skulachev VP (1988) Membrane bioenergetics. Springer, Berlin, Heidelberg, pp 19–25

    Book  Google Scholar 

  • Soloaga A, Ostolaza H, Gon˜i FM et al (1996) Purification of Escherichia coli pro-haemolysin, and a comparison with the properties of mature alpha-haemolysin. Eur J Biochem 238:418–422

    Article  CAS  PubMed  Google Scholar 

  • Soloaga A, Veiga MP, García-Segura LM et al (1999) Insertion of Escherichia coli alpha-haemolysin in lipid bilayers as a non-transmembrane integral protein, prediction and experiment. Mol Microbiol 31:1013–1024

    Article  CAS  PubMed  Google Scholar 

  • Sotomayor-Pérez A, Ladant D, Chenal A (2015) Disorder-to-order transition in the CyaA toxin RTX domain, implications for toxin secretion. Toxins (Basel) 7:1–20

    Article  CAS  Google Scholar 

  • Stroylova YY, Chobert JM, Muronetz VI et al (2012) N-homocysteinylation of ovine prion protein induces amyloid-like transformation. Arch Biochem Biophys 526:29–37

    Article  CAS  PubMed  Google Scholar 

  • Su L, Radek JT, Labeots LA et al (1997) An RNA enhancer in a phage transcriptional antitermination complex functions as a structural switch. Genes Dev 11:2214–2226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surendran R, Herman P, Ching LJ (2004) HIV Rev self-assembly is linked to a molten-globule to compact structural transition. Biophys Chem 108:101–119

    Article  CAS  PubMed  Google Scholar 

  • Thoren KL, Krantz BA (2011) The unfolding story of anthrax toxin translocation. Mol Microbiol 80:588–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thoren KL, Worden EJ, Yassif JM (2009) Lethal factor unfolding is the most force-dependent step of anthrax toxin translocation. Proc Natl Acad Sci U S A 106:21555–21560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomasi TB (1977) Structure and function of alpha-fetoprotein. Annu Rev Med 28:453–465

    Article  CAS  PubMed  Google Scholar 

  • Trougakos IP, Gonos ES (2006) Regulation of clusterin/apolipoprotein J, a functional homologue to the small heat shock proteins, by oxidative stress in ageing and age-related diseases. Free Radic Res 40:1324–1334

    Article  CAS  PubMed  Google Scholar 

  • Tsou CL (1995) Inactivation precedes overall molecular conformation changes during enzyme denaturation. Biochim Biophys Acta 1253:151–162

    Article  PubMed  Google Scholar 

  • Tsuruta JK, Wong K, Fritz IB et al (1990) Structural analysis of sulphated glycoprotein 2 from amino acid sequence. Relationship to clusterin and serum protein 40, 40. Biochem J 268:571–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Undas A, Perla J, Lacinski M et al (2004) Autoantibodies against N-homocysteinylated proteins in humans, implications for atherosclerosis. Stroke 35:1299–1304

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN (2003) A rigidifying union, the role of ligands in protein structure and stability. In: Pandalai SG (ed) Recent research developments in biophysics and biochemistry, vol 3. Transworld Research Network, Kerala, pp 711–745

    Google Scholar 

  • Uversky VN, Dunker AK (2010) Understanding protein non-folding. Biochim Biophys Acta 1804:1231–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uversky VN, Gillespie JR, Millett IS et al (2000b) Zn2+-mediated structure formation and compaction of the “natively unfolded” human prothymosin. Biochem Biophys Res Comunun 267:663–668

    Google Scholar 

  • Uversky VN, Kirkitadze MD, Narizhneva NV et al (1995) Structural properties of alphafeto protein from human cord serum, the protein molecule at low pH possesses all the properties of the molten globule. FEBS Lett 364:165–167

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Kutyshenko VP, Protasova NY et al (1996) Circularly permuted dihydrofolate reductase possesses all the properties of the molten globule state, but can resume functional tertiary structure by interaction with its ligands. Protein Sci 5:1844–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uversky VN, Li J, Fink AL (2001) Metal-triggered structural transformations, aggregation and fibril formation of human-synuclein. A possible molecular link between Parkinson’s disease and heavy metal exposure. J Biol Chem 276:44284–44296

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Narizhneva NV (1998) Effect of natural ligands on the structural properties and conformational stability of proteins. Biochemistry (Mosc) 63:420–433

    CAS  Google Scholar 

  • Uversky VN, Narizhneva NV, Ivanova TV et al (1997) Ligand-free form of human alpha-fetoprotein, evidence for the molten globule state. FEBS Lett 410:280–284

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Permyakov SE, Zagranichny VE et al (2002) Effect of zinc and temperature on the conformation of the γ subunit of retinal phosphodiesterase. A natively unfolded protein. J Proteome Res 1:149–159

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Semisotnov GV, Pain RH et al (1992) ‘All-or-none’ mechanism of the molten globule unfolding. FEBS Lett 314:89–92

    Article  CAS  PubMed  Google Scholar 

  • Vamvaca K, Vögeli B, Kast P et al (2004) An enzymatic molten globule, efficient coupling of folding and catalysis. Proc Natl Acad Sci U S A 101:12860–12864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Goot FG, Gonzalez-Manas JM, Lakey JH et al (1991) A ‘molten-globule’ membrane-insertion intermediate of the pore-forming domain of colicin A. Nature 354:408–410

    Article  PubMed  Google Scholar 

  • van der Goot FG, Lakey JH, Pattus F (1992) The molten globule intermediate for protein insertion or translocation through membranes. Trends Cell Biol 2:343–348

    Article  PubMed  Google Scholar 

  • van der Vies SM, Viitanen PV, Gatenby AA et al (1992) Conformational states of ribulosebisphosphate carboxylase their interaction with chaperonin 60. Biochemistry 31:3635–3644

    Article  PubMed  Google Scholar 

  • Vécsey-Semjén B, Möllby R, van der Goot FG (1996) Partial C-terminal unfolding is required for channel formation by staphylococcal a-toxin. J Biol Chem 271:8655–8660

    Article  PubMed  Google Scholar 

  • Wang C, Zhang Q, Cheng Y et al (2010) Refolding of denatured/reduced lysozyme at high concentrations by artificial molecular chaperone-ion exchange chromatography. Biotechnol Prog 26:1073–1079

    Article  CAS  PubMed  Google Scholar 

  • Waterborg JH, Matthews HR (1983) Intranuclear localization of histone acetylation in Physarum polycephalum and the structure of functionally active chromatin. Cell Biophys 5:265–279

    Article  CAS  PubMed  Google Scholar 

  • Waters L, Yue B, Veverka V et al (2006) Structural diversity in p160/CREB-binding protein coactivator complexes. J Biol Chem 281:14787–14795

    Article  CAS  PubMed  Google Scholar 

  • Weiss AA, Hewlett EL (1986) Virulence factors of Bordetella pertussis. Annu Rev Microbiol 40:661–686

    Article  CAS  PubMed  Google Scholar 

  • Weissman JS, Hohl CM, Kovalenko O et al (1995) Mechanism of GroEL action, productive release of polypeptide from a sequestered position under GroES. Cell 83:577–587

    Article  CAS  PubMed  Google Scholar 

  • Welch RA (1991) Pore-forming cytolysins of Gram-negative bacteria. Mol Microbiol 5:521–528

    Article  CAS  PubMed  Google Scholar 

  • Welch RA (2001) RTX toxin structure and function, a story of numerous anomalies and few analogies in toxin biology. Curr Top Microbiol Immunol 257:85–111

    CAS  PubMed  Google Scholar 

  • Wiles TJ, Mulvey MA (2013) The RTX pore-forming toxin α-hemolysin of uropathogenic Escherichia coli. Future Microbiol 8:73–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong KP, Tanford C (1973) Denaturation of bovine carbonic anhydrase B by guanidine hydrochloride. A process involving separable sequential conformational transitions. J Biol Chem 248:8518–8523

    CAS  PubMed  Google Scholar 

  • Yang J, Dunker AK, Powers JR et al (2001) Beta-lactoglobulin molten globule induced by high pressure. J Agric Food Chem 49:3236–3243

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Janich S, Cohn JA et al (1993) The common variant of cystic fibrosis transmembrane conductance regulator is recognized by hsp70 and degraded in a pre-Golgi nonlysosomal compartment. Proc Natl Acad Sci U S A 90:9480–9484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yonath A, Franceschi F (1997) New RNA recognition features revealed in ancient ribosomal proteins. Nat Struct Biol 4:3–5

    Article  CAS  PubMed  Google Scholar 

  • Zhao JM, London E (1986) Similarity of the conformation of diphtheria toxin at high temperature to that in the membrane-penetrating low-pH state. Proc Natl Acad Sci U S A 83:2002–2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao JM, London E (1988) Conformation and model membrane interactions of diphtheria toxin fragment A. J Biol Chem 263:15369–15377

    CAS  PubMed  Google Scholar 

  • Zheng R, Jenkins TM, Craigie R (1996) Zinc folds the N-terminal domain of HIV-1 integrase, promotes multimerization, and enhances catalytic activity. Proc Natl Acad Sci U S A 93:13659–13664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zurdo J, Sanz JM, Gonzalez C et al (1997) The exchangeable yeast ribosomal acidic protein YP2beta shows characteristics of a partly folded state under physiological conditions. Biochemistry 36:9625–9635

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Kumar Ph.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dhaliwal, H.P.K., Kumar, R., Singh, B.R. (2016). Implication of Molten Globule on the Function and Toxicity of a Protein. In: Protein Toxins in Modeling Biochemistry. SpringerBriefs in Biochemistry and Molecular Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-43540-4_4

Download citation

Publish with us

Policies and ethics