Skip to main content

Environmental Impact of Multi-component Fiber-Reinforced Composites: Challenges and Green Solutions

  • Conference paper
  • First Online:
TMS 2024 153rd Annual Meeting & Exhibition Supplemental Proceedings (TMS 2024)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

Abstract

Multi-component fiber-reinforced composites are vital in various industries, offering exceptional mechanical properties but also posing significant environmental challenges. This mini-review explores the complex relationship between these composites and the environment. It highlights issues like high carbon footprints, energy-intensive production, greenhouse gas emissions, and resource depletion, exacerbated by landfill disposal. However, the review also presents promising eco-friendly solutions. These include incorporating recycled and bio-based materials, applying design for sustainability principles, and promoting recycling and circular economy models. Life Cycle Assessment (LCA) plays a crucial role, illustrated through real-world case studies that inform sustainable decision-making. Existing environmental regulations guide responsible composite use. The review features case studies of pioneering industries, showcasing the benefits, challenges, and lessons learned from adopting green solutions. Looking ahead, it explores emerging trends and innovations in environmentally friendly composites, identifying research areas to explore. In summary, this mini-review provides a comprehensive view of the intricate connection between multi-component fiber-reinforced composites and environmental responsibility, emphasizing the need for collective commitment to sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hegde S, Shenoy BS, Chethan KN (2019) Review on carbon fiber reinforced polymer (CFRP) and their mechanical performance. Mater Today: Proc 19(Part 2):658–662. https://doi.org/10.1016/j.matpr.2019.07.749

  2. Maiti S, Islam MR, Uddin MA, Afroj S, Eichhorn SJ, Karim N (2022) Sustainable fiber-reinforced composites: a review. Adv Sustain Syst 6(11):2200258. https://doi.org/10.1002/adsu.202200258

    Article  Google Scholar 

  3. Azman MA, Asyraf MRM, Khalina A, Petrů M, Ruzaidi CM, Sapuan SM, Wan Nik WB, Ishak MR, Ilyas RA, Suriani MJ (2021) Natural fiber reinforced composite material for product design: a short review. Polymers (Basel) 13(12):1917. https://doi.org/10.3390/polym13121917

    Article  PubMed  Google Scholar 

  4. Song YS, Youn JR, Gutowski TG (2009) Life cycle energy analysis of fiber-reinforced composites. Compos A Appl Sci Manuf 40(8):1257–1265. https://doi.org/10.1016/j.compositesa.2009.05.020

    Article  Google Scholar 

  5. Miller SA, Srubar WV III, Billington SL, Lepech MD (2015) Integrating durability-based service-life predictions with environmental impact assessments of natural fiber–reinforced composite materials. Resour Conserv Recycl 99:72–83. https://doi.org/10.1016/j.resconrec.2015.04.004

    Article  Google Scholar 

  6. Sbahieh S, Rabie M, Ebead U, Al-Ghamdi SG (2022) The mechanical and environmental performance of fiber-reinforced polymers in concrete structures: opportunities: challenges and future directions. Buildings 12:1417. https://doi.org/10.3390/buildings12091417

    Article  Google Scholar 

  7. Feng T, Guo W, Li W, Meng Z, Zhu Y, Zhao F, Liang W (2023) Unveiling sustainable potential: a life cycle assessment of plant–fiber composite microcellular foam molded automotive components. Materials 16:4952. https://doi.org/10.3390/ma16144952

  8. Stanciu MD, Teodorescu Draghicescu H, Tamas F, Terciu OM (2020) Mechanical and rheological behaviour of composites reinforced with natural fibres. Polymers (Basel). 12(6):1402. https://doi.org/10.3390/polym12061402

    Article  PubMed  PubMed Central  Google Scholar 

  9. Todor MP, Bulei C, Heput T, Kiss I (2018) Research on the development of new composite materials complete/partially biodegradable using natural textile fibers of new vegetable origin and those recovered from textile waste. IOP Conf Ser Mater Sci Eng 294:012021

    Google Scholar 

  10. Boey JY, Lee CK, Tay GS (2022) Factors affecting mechanical properties of reinforced bioplastics: a review. Polymers (Basel) 14(18):3737. https://doi.org/10.3390/polym14183737

    Article  PubMed  Google Scholar 

  11. Bagherpour S (2012) Fibre reinforced polyester composites. In: Polyester. InTech. Retrieved from https://doi.org/10.5772/48697

  12. Muhammad A, Rahman MR, Baini R, Bakri MKB (2021) Applications of sustainable polymer composites in automobile and aerospace industry. In: Advances in sustainable polymer composites. Woodhead Publishing Series in Composites Science and Engineering, pp 185–207. https://doi.org/10.1016/B978-0-12-820338-5.00008-4

  13. Siengchin S (2023) A review on lightweight materials for defence applications: present and future developments. Defence Technol 24:1–17. https://doi.org/10.1016/j.dt.2023.02.025

    Article  Google Scholar 

  14. Sharma AK, Bhandari R, Aherwar A, Rimašauskienė R, Pinca-Bretotean C (2020) A study of advancement in application opportunities of aluminum metal matrix composites. Mater Today: Proc 26(Part 2):2419–2424. https://doi.org/10.1016/j.matpr.2020.02.516

  15. Khalid MY, Rashid AA, Arif ZU, Ahmed W, Arshad H, Zaidi AA (2021) Natural fiber reinforced composites: sustainable materials for emerging applications. Results Eng 11:100263. https://doi.org/10.1016/j.rineng.2021.100263

    Article  Google Scholar 

  16. Elfaleh I, Abbassi F, Habibi M, Ahmad F, Guedri M, Nasri M, Garnier C (2023) A comprehensive review of natural fibers and their composites: an eco-friendly alternative to conventional materials. Results Eng 19:101271. https://doi.org/10.1016/j.rineng.2023.101271

    Article  Google Scholar 

  17. Zhang J, Chevali VS, Wang H, Wang C-H (2020) Current status of carbon fibre and carbon fibre composites recycling. Compos B Eng 193:108053. https://doi.org/10.1016/j.compositesb.2020.108053

    Article  Google Scholar 

  18. Bianchi I, Forcellese A, Simoncini M, Vita A, Delledonne L, Castorani V (2023) Life cycle assessment of carbon ceramic matrix composite brake discs containing reclaimed prepreg scraps. J Clean Prod 413:137537. https://doi.org/10.1016/j.jclepro.2023.137537

    Article  Google Scholar 

  19. Collinson MG, Bower MP, Swait TJ, Atkins CP, Hayes SA, Nuhiji B (2022) Novel composite curing methods for sustainable manufacture: a review. Compos Part C: Open Access 9:100293. https://doi.org/10.1016/j.jcomc.2022.100293

    Article  Google Scholar 

  20. https://www.epa.gov/ghgemissions/overview-greenhouse-gases

  21. Moshood TD, Nawanir G, Mahmud F, Mohamad F, Ahmad MH, AbdulGhani A (2022) Sustainability of biodegradable plastics: new problem or solution to solve the global plastic pollution? Curr Res Green Sustain Chem 5:100273. https://doi.org/10.1016/j.crgsc.2022.100273

    Article  Google Scholar 

  22. Hopewell J, Dvorak R, Kosior E (2009) Plastics recycling: challenges and opportunities. Philos Trans Royal Soc B: Biol Sci 364(1526):2115–2126. https://doi.org/10.1098/rstb.2008.0311

    Article  Google Scholar 

  23. Kumar R, Verma A, Shome A, Sinha R, Sinha S, Jha PK, Kumar R, Kumar P, Shubham DS et al (2021) Impacts of plastic pollution on ecosystem services, sustainable development goals, and need to focus on circular economy and policy interventions. Sustainability 13:9963. https://doi.org/10.3390/su13179963

  24. Chatziparaskeva G, Papamichael I, Voukkali I, Loizia P, Sourkouni G, Argirusis C, Zorpas AA (2022) End-of-life of composite materials in the framework of the circular economy. Microplastics 1:377–392. https://doi.org/10.3390/microplastics1030028

    Article  Google Scholar 

  25. Kehinde O, Ramonu OJ, Babaremu KO, Justin LD (2020) Plastic wastes: Environmental hazard and instrument for wealth creation in Nigeria. Heliyon 6(10):e05131. https://doi.org/10.1016/j.heliyon.2020.e05131

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kamarudin SH, Mohd Basri MS, Rayung M, Abu F, Ahmad S, Norizan MN, Osman S, Sarifuddin N, Desa MSZM, Abdullah UH et al (2022) A review on natural fiber reinforced polymer composites (NFRPC) for sustainable industrial applications. Polymers 14:3698. https://doi.org/10.3390/polym14173698

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mohammed M, Mohamad Jawad AJ, Mohammed AM, Oleiwi JK, Adam T, Osman AF, Dahham OS, Betar BO, Gopinath SCB, Jaafar M (2023) Challenges and advancement in water absorption of natural fiber-reinforced polymer composites. Polym Testing 124:108083. https://doi.org/10.1016/j.polymertesting.2023.108083

    Article  Google Scholar 

  28. Andrew JJ, Dhakal HN (2022) Sustainable biobased composites for advanced applications: recent trends and future opportunities—a critical review. Compos Part C: Open Access 7:100220. https://doi.org/10.1016/j.jcomc.2021.100220

    Article  Google Scholar 

  29. Gowda YT, Girijappa T, Rangappa SM, Parameswaranpillai J, Siengchin S (2019) Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review. Front Mater 6:226. https://doi.org/10.3389/fmats.2019.00226

    Article  Google Scholar 

  30. Muralikrishna IV, Manickam V (2017) Chapter five - life cycle assessment. In: Environmental management: science and engineering for industry, pp 57–75. https://doi.org/10.1016/B978-0-12-811989-1.00005-1

  31. Curran MA (2016) Life-cycle assessment. In: Encyclopedia of ecology (2nd edn), vol 4. Reference module in earth systems and environmental sciences, pp 359–366. https://doi.org/10.1016/B978-0-12-409548-9.09700-1

  32. Tamoor M, Samak NA, Yang M, Xing J (2022) The cradle-to-cradle life cycle assessment of polyethylene terephthalate: environmental perspective. Molecules 27(5):1599. https://doi.org/10.3390/molecules27051599

    Article  PubMed  PubMed Central  Google Scholar 

  33. Khasreen MM, Banfill PFG, Menzies GF (2009) Life-cycle assessment and the environmental impact of buildings: a review. Sustainability 1:674–701. https://doi.org/10.3390/su1030674

    Article  Google Scholar 

  34. Duigou AL, Davies P, Baley C (2011) Environmental impact analysis of the production of flax fibers to be used as composite material reinforcement. J Biobased Mater Bioenergy 5:153–165

    Article  Google Scholar 

  35. Wotzel K, Wirth R, Flake M (1999) Life cycle studies on hemp fiber reinforced components and ABS for automotive parts. Angew Makromol Chem 272:121–127

    Article  Google Scholar 

  36. Schmehl M, Mussig J, Schonfeld U et al (2008) Life cycle assessment on a bus body component based on hemp fiber and PTP. J Polym Environ 16:51–60

    Article  Google Scholar 

  37. Shen L, Patel MK (2008) Life cycle assessment of polysaccharide materials: a review. J Polym Environ 16:154–167

    Article  Google Scholar 

  38. Pandita SD, Yuan X, Manan MA et al (2014) Evaluation of jute/glass hybrid composite sandwich: water resistance, impact properties and life cycle assessment. J Reinf Plast Compos 33:14–25

    Article  Google Scholar 

  39. Song YS, Youn JR, Gutowski TG (2009) Life cycle energy analysis of fibre reinforced composites. Compos A Appl Sci Manuf 40:1257–1265

    Article  Google Scholar 

  40. Navarro D, Wu J, Lin W et al (2020) Life cycle assessment and leather production. J Leather Sci Eng 2:26. https://doi.org/10.1186/s42825-020-00035-y

    Article  Google Scholar 

  41. Banerjee R, Sinha Ray S (2022) Sustainability and life cycle assessment of thermoplastic polymers for packaging: a review on fundamental principles and applications. Macromol Mater Eng. https://doi.org/10.1002/mame.202100794

    Article  Google Scholar 

  42. Müller LJ, Kätelhön A, Bachmann M, Zimmermann A, Sternberg A, Bardow A (2020) A guideline for life cycle assessment of carbon capture and utilization. Front Energy Res. https://doi.org/10.3389/fenrg.2020.00015

    Article  Google Scholar 

  43. Sethi S, Ray BC (2015) Environmental effects on fibre reinforced polymeric composites: evolving reasons and remarks on interfacial strength and stability. Adv Coll Interface Sci 217:43–67. https://doi.org/10.1016/j.cis.2014.12.005

    Article  Google Scholar 

  44. Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. JOM 58(11):80–86

    Article  Google Scholar 

  45. Mohammed L, Ansari MNM, Pua G, Jawaid M, Islam MS (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci 2015:243947. https://doi.org/10.1155/2015/243947

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikhazuagbe Hilary Ifijen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oyiborhoro, G., Anegbe, B., Odiachi, I.J., Atoe, B., Ifijen, I.H. (2024). Environmental Impact of Multi-component Fiber-Reinforced Composites: Challenges and Green Solutions. In: TMS 2024 153rd Annual Meeting & Exhibition Supplemental Proceedings. TMS 2024. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-50349-8_107

Download citation

Publish with us

Policies and ethics