Skip to main content

Removal of Fe and Mn from Groundwater

  • Chapter
  • First Online:
Industrial Waste Engineering

Abstract

The increasing population has resulted in an insufficient supply of drinking water from surface water, and groundwater is an alternative drinking water supply. However, the groundwater may be polluted by various factors such usage of nitrate fertiliser, acid rain, and weathering process. The high concentration of Fe and Mn can be found in the groundwater mainly due to the soil and rock weathering process. The groundwater with a high level of Fe and Mn is not suitable for consumption directly because it may cause serious health risks to humans. Thus, further treatment is required to treat the Fe and Mn in the groundwater. Various researchers have reported various treatment technologies to treat the Fe and Mn in the groundwater. However, not all techniques can remove the Fe and Mn effectively. Among the treatment methods, the adsorption mechanism is the ideal treatment technique to remove the Fe and Mn in the groundwater. The adsorption not only eliminates the Fe and Mn, but it also has low operational costs due to low-cost adsorbents being applied to adsorb the heavy metals in the groundwater. Hybrid treatment is recommended to treat the groundwater because the treatment method can treat the Fe and Mn in the groundwater effectively. The treatment method not only improves the removal efficiency of Fe and Mn, but it also can lower the operational cost and have a longer service life. Therefore, the ideal groundwater treatment method needs to be determined to ensure the heavy metals can be removed effectively and the groundwater that serves humans is safe to consume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 05 March 2024

    A correction has been published.

Abbreviations

BOD:

Biochemical oxygen demand

Ca:

Calcium

Cd:

Cadmium

Cl2:

Chlorine

COD:

Chemical oxygen demand

E.coli:

Escherichia coli

EC:

Electrocoagulation

Fl:

Fluoride

Fe:

Iron

Fe(II):

Ferrous iron

Fe(III):

Ferric iron

IOB:

Iron-oxidising bacteria

Mg:

Magnesium

Mn:

Manganese

Mn(OH)4:

Manganese (IV) hydroxide

MPN:

Most probable number

NO2:

Nitrite

NO3:

Nitrate

Pb:

Lead

PCBs:

Polychlorinated biphenyl

PO4:

Phosphate

SO4:

Sulphate

USM:

Universiti Sains Malaysia

WHO:

World Health Organization

μg/L:

Microgram per litre

%:

Percent

Cfu:

Colony forming unit

m3/d:

Cubic meter per day

mg/L:

Milligram per litre

mL:

Millilitre

MLD:

Millions of litre per day

oC:

Degree Celsius

oF:

Degree Fahrenheit

References

  1. Sharma, S. K. (2001). Adsorptive iron removal from groundwater. Wageningen University.

    Google Scholar 

  2. Dou, X., Wang, G. C., Zhu, M., Liu, F., Li, W., Mohan, D., & Pittman, C. U. (2018). Identification of Fe and Zr oxide phases in an iron-zirconium binary oxide and arsenate complexes adsorbed onto their surfaces. Journal of Hazardous Materials, 353, 340–347. https://doi.org/10.1016/j.jhazmat.2018.04.004

    Article  CAS  Google Scholar 

  3. El Araby, R., Hawash, S., & El Diwani, G. (2009). Treatment of iron and manganese in simulated groundwater via ozone technology. Desalination, 249, 1345–1349. https://doi.org/10.1016/j.desal.2009.05.006

    Article  CAS  Google Scholar 

  4. Hu, J., Dong, H., Xu, Q., Ling, W., Qu, J., & Qiang, Z. (2018). Impacts of water quality on the corrosion of cast iron pipes for water distribution and proposed source water switch strategy. Water Research, 129, 428–435. https://doi.org/10.1016/j.watres.2017.10.065

    Article  CAS  Google Scholar 

  5. Scherer, T. Iron and manganese removal; 2019;

    Google Scholar 

  6. Akbar, N. A., Aziz, H. A., & Adlan, M. N. (2016). Potential of high quality limestone as adsorbent for iron and manganese removal in groundwater. Jurnal Teknologi, 78, 77–82.

    Article  Google Scholar 

  7. Akbar, N. A., Aziz, H. A., & Alazaiza, M. Y. D. (2021). Effectiveness of Fe, Mn, UV254 and colour removal from pre-ozonated groundwater using anthracite coal. International Journal of Environmental Research, 15, 245–249. https://doi.org/10.1007/s41742-020-00306-w

    Article  CAS  Google Scholar 

  8. Aziz, H. A., Shakr, S. N. M., Akbar, N. A., & Alazaiza, M. Y. D. (2020). The removal efficiency of iron and manganese from pre-ozonated groundwater using limestone filter. Water Quality Research Journal, 55, 167–183. https://doi.org/10.2166/wqrj.2020.014

    Article  Google Scholar 

  9. Lee, W. S., Aziz, H. A., & Tajarudin, H. A. (2022). A recent development on Iron-Oxidising Bacteria (IOB) applications in water and wastewater treatment. Journal of Water Process Engineering, 49, 103109. https://doi.org/10.1016/j.jwpe.2022.103109

    Article  Google Scholar 

  10. Shrestha, S., Semkuyu, D. J., & Pandey, V. P. (2016). Assessment of groundwater vulnerability and risk to pollution in Kathmandu Valley, Nepal. Science of the Total Environment, 556, 23–35. https://doi.org/10.1016/j.scitotenv.2016.03.021

    Article  CAS  Google Scholar 

  11. Todd, D. K., & Mays, L. W. (2005). Groundwater hydrology (3rd ed.).

    Google Scholar 

  12. Burnett, K., Wada, C., Endo, A., & Taniguchi, M. (2017). The economic value of groundwater in Obama. Journal of Hydrology Regional studies, 11, 44–52. https://doi.org/10.1016/j.ejrh.2015.10.002

    Article  Google Scholar 

  13. Foster, S., Garduno, H., Evans, R., Olson, D., Tian, Y., Zhang, W., & Han, Z. (2004). Quaternary aquifer of the North China plain - Assessing and achieving groundwater resource sustainability. Hydrogeology Journal, 12, 81–93. https://doi.org/10.1007/s10040-003-0300-6

    Article  Google Scholar 

  14. Nofal, E. R., Fekry, A. M., Ahmed, M. H., & El-Kharakany, M. M. (2018). Groundwater: Extraction versus recharge; Vulnerability assessment. Water Science, 32, 287–300. https://doi.org/10.1016/j.wsj.2018.07.002

    Article  Google Scholar 

  15. Sefie, A., Aris, A. Z., Shamsuddin, M. K. N., Tawnie, I., Suratman, S., Idris, A. N., Saadudin, S. B., & Wan Ahmad, W. K. (2015). Hydrogeochemistry of groundwater from different aquifer in lower Kelantan Basin, Kelantan, Malaysia. Procedia Environmental Sciences, 30, 151–156. https://doi.org/10.1016/j.proenv.2015.10.027

    Article  CAS  Google Scholar 

  16. Heng, T. E., & Singh, M. (1989). Groundwater supply studies in Northern Kelantan. Bulletin. Geological Society of Malaysia, 24, 13–26. https://doi.org/10.7186/bgsm24198902

    Article  Google Scholar 

  17. Sheikhy Narany, T., Sefie, A., & Aris, A. Z. (2018). The long-term impacts of anthropogenic and natural processes on groundwater deterioration in a multilayered aquifer. Science of the Total Environment, 630, 931–942. https://doi.org/10.1016/j.scitotenv.2018.02.190

    Article  CAS  Google Scholar 

  18. Jamaludin, N., Sham, S. M., & Ismail, S. N. S. (2013). Health risk assessment of nitrate exposure in well water of residents in intensive agriculture area. American Journal of Applied Sciences, 10, 442–448. https://doi.org/10.3844/ajassp.2013.442.448

    Article  CAS  Google Scholar 

  19. Belkhiri, L., Mouni, L., Sheikhy Narany, T., & Tiri, A. (2017). Evaluation of potential health risk of heavy metals in groundwater using the integration of indicator kriging and multivariate statistical methods. Groundwater for Sustainable Development, 4, 12–22. https://doi.org/10.1016/j.gsd.2016.10.003

    Article  Google Scholar 

  20. Chaturvedi, S., & Dave, P. N. (2012). Removal of iron for safe drinking water. Desalination, 303, 1–11. https://doi.org/10.1016/j.desal.2012.07.003

    Article  CAS  Google Scholar 

  21. Wang, Y., Sikora, S., Kim, H., Boyer, T. H., Bonzongo, J. C., & Townsend, T. G. (2013). Effects of solution chemistry on the removal reaction between calcium carbonate-based materials and Fe(II). Science of the Total Environment, 443, 717–724. https://doi.org/10.1016/j.scitotenv.2012.11.009

    Article  CAS  Google Scholar 

  22. Hashim, M. A., Mukhopadhyay, S., Sahu, J. N., & Sengupta, B. (2011). Remediation technologies for heavy metal contaminated groundwater. Journal of Environmental Management, 92, 2355–2388. https://doi.org/10.1016/j.jenvman.2011.06.009

    Article  CAS  Google Scholar 

  23. Idrus, A. S., Fauziah, M. N., Hani, M. H., Rohaila, W. A. W., & Mansor, H. W. (2014). Status of Groundwater Contamination in Rural Area, Kelantan. IOSR Journal of Environmental Science Toxicology and Food Technology, 8, 72–80. https://doi.org/10.9790/2402-08127280

    Article  CAS  Google Scholar 

  24. Harun, H. H., Roslan, M., Kasim, M., Nurhidayu, S., & Ashaari, Z. H. (2019). Nutrients contaminant on monitoring wells in agricultural areas of Kuala Langat. Selangor Mineral Sequestration of Mining Waste in Reducing Carbon Dioxide Emission View Project, 6, 1–13. https://doi.org/10.46886/IJAREG/v6-i1/5428

    Article  Google Scholar 

  25. Mathialagan, K. R. O. A., Mansor, H. E., Mardhiya, A., Kamal, Z. A., & Khan, M. M. A. (2018). Groundwater quality assessment of domestic shallow dug wells in parts of Tanah Merah District, Malaysia. Journal of Tropical Resources and Sustainable Science, 6, 62–67.

    Google Scholar 

  26. Hussin, N. H., Yusoff, I., Alias, Y., Mohamad, S., Rahim, N. Y., & Ashraf, M. A. (2014). Ionic liquid as a medium to remove iron and other metal ions: A case study of the North Kelantan Aquifer, Malaysia. Environmental Earth Sciences, 71, 2105–2113. https://doi.org/10.1007/s12665-013-2615-5

    Article  CAS  Google Scholar 

  27. Dashtban Kenari, S. L., & Barbeau, B. (2014). Pyrolucite Fluidized-Bed Reactor (PFBR): A robust and compact process for removing manganese from groundwater. Water Research, 49, 475–483. https://doi.org/10.1016/j.watres.2013.10.033

    Article  CAS  Google Scholar 

  28. Shirazi, S. M., Adham, M. I., Zardari, N. H., Ismail, Z., Imran, H. M. D., & Mangrio, M. A. (2015). Groundwater quality and hydrogeological characteristics of Malacca State in Malaysia. The Journal of Water and Land Development, 24, 11–19. https://doi.org/10.1515/jwld-2015-0002

    Article  CAS  Google Scholar 

  29. Agency, U. S. E. P. Estimated nitrate concentrations in groundwater used for drinking. Available online: https://www.epa.gov/nutrient-policy-data/estimated-nitrate-concentrations-groundwater-used-drinking. Accessed on 8 Oct 2022.

  30. Yusoff, I., Alias, Y., Yusof, M., & Ashraf, M. A. (2013). Assessment of pollutants migration at Ampar Tenang Landfill Site, Selangor, Malaysia. ScienceAsia, 39, 392–409. https://doi.org/10.2306/scienceasia1513-1874.2013.39.392

    Article  CAS  Google Scholar 

  31. Al Sabahi, E., Rahim, A. S., Zuhairi, W. W. Y., Alshaebi, F., & Al Nozaily, F. (2009). Assessment of groundwater and surface water pollution at Mitm area, Ibb City, Yemen. American Journal of Applied Sciences, 6, 772–783. https://doi.org/10.3844/ajas.2009.772.783

    Article  Google Scholar 

  32. Rahim, B., Eldin, E. A., Yusoff, I., Samsudin, A. R., Yaacob, W. Z. W., & Rafek, A. G. M. (2010). Deterioration of groundwater quality in the vicinity of an active open-tipping site in West Malaysia. Hydrogeology Journal, 18, 997–1006. https://doi.org/10.1007/s10040-009-0567-3

    Article  CAS  Google Scholar 

  33. Kong, L., Kadokami, K., Duong, H. T., & Chau, H. T. C. (2016). Screening of 1300 organic micro-pollutants in groundwater from Beijing and Tianjin, North China. Chemosphere, 165, 221–230. https://doi.org/10.1016/j.chemosphere.2016.08.084

    Article  CAS  Google Scholar 

  34. Atherholt, T. B., Procopio, N. A., & Goodrow, S. M. (2017). Seasonality of coliform bacteria detection rates in New Jersey domestic wells. Groundwater, 55, 346–361. https://doi.org/10.1111/gwat.12482

    Article  CAS  Google Scholar 

  35. Palamuleni, L., & Akoth, M. (2015). Physico-chemical and microbial analysis of selected borehole water in mahikeng, South Africa. International Journal of Environmental Research and Public Health, 12, 8619–8630. https://doi.org/10.3390/ijerph120808619

    Article  CAS  Google Scholar 

  36. Hynds, P. D., Misstear, B. D., & Gill, L. W. (2012). Development of a microbial contamination susceptibility model for private domestic groundwater sources. Water Resources Research, 48.

    Google Scholar 

  37. O’Dwyer, J., Hynds, P. D., Byrne, K. A., Ryan, M. P., & Adley, C. C. (2018). Development of a hierarchical model for predicting microbiological contamination of private groundwater supplies in a geologically heterogeneous region. Environmental Pollution, 237, 329–338. https://doi.org/10.1016/j.envpol.2018.02.052

    Article  CAS  Google Scholar 

  38. Jusoh, H., Sapari, N., & Azie, R. Z. R. (2011). Removal of iron from groundwater by sulfide precipitation. International Journal of Environmental Engineering, 5, 811–817. https://doi.org/10.5281/zenodo.1084378

    Article  Google Scholar 

  39. Iron in Groundwater. Available online: https://www.lenntech.com/groundwater/iron.htm. Accessed on 8 Oct 2021.

  40. Rauner, B. Iron in drinking water. Available online: www.idph.state.il.us/envhealth/factsheets/ironFS.htm. Accessed on 8 Oct 2021.

  41. Fernández-Real, J. M., & Manco, M. (2014). Effects of iron overload on chronic metabolic diseases. The Lancet Diabetes and Endocrinology, 2, 513–526. https://doi.org/10.1016/S2213-8587(13)70174-8

    Article  CAS  Google Scholar 

  42. Ibrahim, N., Aziz, H. A., & Yusoff, M. S. (2015). Heavy metals concentration in river and pumping well water for River Bank Filtration (RBF) system: Case study in Sungai Kerian. Jurnal Teknologi, 74, 59–67. https://doi.org/10.11113/jt.v74.4861

    Article  Google Scholar 

  43. Singh, C. K., Rina, K., Singh, R. P., & Mukherjee, S. (2014). Geochemical characterization and heavy metal contamination of groundwater in Satluj River Basin. Environment and Earth Science, 71, 201–216. https://doi.org/10.1007/s12665-013-2424-x

    Article  CAS  Google Scholar 

  44. Samantara, M. K., Padhi, R. K., Sowmya, M., Kumaran, P., & Satpathy, K. K. (2017). Heavy metal contamination, major ion chemistry and appraisal of the groundwater Status in Coastal Aquifer, Kalpakkam, Tamil Nadu, India (Vol. 5). Elsevier. ISBN 4427480500.

    Google Scholar 

  45. Le Luu, T. (2019). Remarks on the current quality of groundwater in Vietnam. Environmental Science and Pollution Research, 26, 1163–1169. https://doi.org/10.1007/s11356-017-9631-z

    Article  CAS  Google Scholar 

  46. Shamsuddin, M. K. N., Sulaiman, W. N. A., Suratman, S., Zakaria, M. P., & Samuding, K. (2014). Groundwater and surface-water utilisation using a bank infiltration technique in Malaysia. Hydrogeology Journal, 22, 543–564. https://doi.org/10.1007/s10040-014-1122-4

    Article  CAS  Google Scholar 

  47. Hamzah, Z., Aris, A. Z., Ramli, M. F., Juahir, H., & Sheikhy Narany, T. (2017). Groundwater quality assessment using integrated geochemical methods, multivariate statistical analysis, and geostatistical technique in shallow coastal aquifer of Terengganu, Malaysia. Arabian Journal of Geosciences, 10. https://doi.org/10.1007/s12517-016-2828-5

  48. Saana, S. B. B. M., Fosu, S. A., Sebiawu, G. E., Jackson, N., & Karikari, T. (2016). Assessment of the quality of groundwater for drinking purposes in the upper west and northern regions of Ghana. Springerplus, 5, 1–15. https://doi.org/10.1186/s40064-016-3676-1

    Article  CAS  Google Scholar 

  49. Lawson, M., Polya, D. A., Boyce, A. J., Bryant, C., & Ballentine, C. J. (2016). Tracing organic matter composition and distribution and its role on arsenic release in shallow Cambodian groundwaters. Geochimica et Cosmochimica Acta, 178, 160–177. https://doi.org/10.1016/j.gca.2016.01.010

    Article  CAS  Google Scholar 

  50. Okoya, A. A., Elufowoju, M. A., Adepoju, K. A., & Akinyele, A. B. (2020). Seasonal assessment of the physico-chemical properties of surface water and sediments in the vicinity of a scrap metal recycling industry in Southwestern Nigeria. Journal of Environmental Chemistry and Ecotoxicology, 12, 24–31. https://doi.org/10.5897/jece2019.0458

    Article  CAS  Google Scholar 

  51. Barloková, D., & Ilavský, J. (2010). Removal of iron and manganese from water using filtration by natural materials. Polish Journal of Environmental Studies, 19, 1117–1122.

    Google Scholar 

  52. Esfandiar, N., Nasernejad, B., & Ebadi, T. (2014). Removal of Mn(II) from groundwater by sugarcane bagasse and activated carbon (a comparative study): Application of Response Surface Methodology (RSM). Journal of Industrial and Engineering Chemistry, 20, 3726–3736. https://doi.org/10.1016/j.jiec.2013.12.072

    Article  CAS  Google Scholar 

  53. Sorlini, S., Palazzini, D., Sieliechi, J. M., & Ngassoum, M. B. (2013). Assessment of physical-chemical drinking water quality in the Logone Valley (Chad-Cameroon). Sustain, 5, 3060–3076. https://doi.org/10.3390/su5073060

    Article  CAS  Google Scholar 

  54. Fletcher, J. (2019, July). Medical News Today.

    Google Scholar 

  55. Kassim Shaari, N. Z., & Sajali, A. Q. A. (2021). Manganese in the source of groundwater in Malaysia and the method for the removal process: A review on the adsorption and membrane separation processes. Malaysian Journal of Chemical Engineering & Technology, 4, 1. https://doi.org/10.24191/mjcet.v4i1.12811

    Article  Google Scholar 

  56. Manganese. Available online: https://www.wqa.org/learn-about-water/water-q-a/manganese. Accessed 9 Oct 2021.

  57. Olumuyiwa, I. (2012). Ojo, groundwater: Characteristics, qualities, pollutions and treatments: An overview. International Journal of Water Resources and Environmental Engineering, 4, 162–170. https://doi.org/10.5897/ijwree12.038

    Article  Google Scholar 

  58. Li, X., Wang, Q., Liu, L., & Liu, S. (2022). The performance of calcined serpentine to simultaneously remove fluoride, iron and manganese. Water Supply, 22, 2750–2766. https://doi.org/10.2166/WS.2021.439

    Article  CAS  Google Scholar 

  59. Li, X., Yu, X., Liu, L., Yang, J., Liu, S., & Zhang, T. (2021). Preparation, characterization serpentine-loaded hydroxyapatite and its simultaneous removal performance for fluoride, iron and manganese. RSC Advances, 11, 16201–16215. https://doi.org/10.1039/d1ra02028e

    Article  CAS  Google Scholar 

  60. Lyu, C., Yang, X., Zhang, S., Zhang, Q., & Su, X. (2017). Preparation and performance of manganese-oxide-coated zeolite for the removal of manganese-contamination in groundwater. Environmental Technology. https://doi.org/10.1080/09593330.2017.1410579

  61. Ahamed, A. J., & Loganathan, K. (2021). Reduced graphene oxide as effective adsorbent for removal of heavy metals in groundwater of Amaravathi river basin, Tamil Nadu. Geology, Ecology, and Landscapes. https://doi.org/10.1080/24749508.2021.1923273

  62. Baharudin, F., Hamzah, N., Wahab, M. A., & Kang, C. W. (2021). Effectiveness of Powdered Activated Carbon from Fruit Waste in Removing Heavy Metals in Groundwater. In Proceedings of the IOP Conference Series: Earth and Environmental Science (Vol. 646, p. 012024).

    Google Scholar 

  63. Liu, L., Zhang, T., Yu, X., Mkandawire, V., Ma, J., & Li, X. (2022). Removal of Fe2+ and Mn2+ from polluted groundwater by insoluble humic acid/tourmaline composite particles. Materials (Basel), 15. https://doi.org/10.3390/ma15093130

  64. Yang, H., Tang, X., Luo, X., Li, G., Liang, H., & Snyder, S. (2021). Oxidants-assisted sand filter to enhance the simultaneous removals of manganese, iron and ammonia from groundwater: Formation of active MnOx and involved mechanisms. Journal of Hazardous Materials, 415, 125707. https://doi.org/10.1016/j.jhazmat.2021.125707

    Article  CAS  Google Scholar 

  65. Akbari Zadeh, M., Daghbandan, A., & Abbasi Souraki, B. (2022). Removal of iron and manganese from groundwater sources using nano-biosorbents. Chemical and Biological Technologies in Agriculture, 9, 1–14. https://doi.org/10.1186/s40538-021-00268-x

    Article  CAS  Google Scholar 

  66. Shaban, M., Hassouna, M. E. M., Nasief, F. M., & AbuKhadra, M. R. (2017). Adsorption properties of kaolinite-based nanocomposites for Fe and Mn pollutants from aqueous solutions and raw ground water: Kinetics and equilibrium studies. Environmental Science and Pollution Research, 24, 22954–22966. https://doi.org/10.1007/s11356-017-9942-0

    Article  CAS  Google Scholar 

  67. Zevi, Y., Dewita, S., Aghasa, A., & Dwinandha, D. (2018). Removal of iron and manganese from natural groundwater by continuous reactor using activated and natural mordenite mineral adsorption. In Proceedings of the IOP Conference Series: Earth and Environmental Science (Vol. 111, p. 012016).

    Google Scholar 

  68. Baharudin, F., Hamzah, N., Wahab, M. A., & Kang, C. W. (2021). Effectiveness of powdered activated carbon from fruit waste in removing heavy metals in groundwater. IOP Conference Series: Earth and Environmental Science, 646. https://doi.org/10.1088/1755-1315/646/1/012024

  69. Thinojah, T., & Ketheesan, B. (2022). Iron removal from groundwater using granular activated carbon filters by oxidation coupled with the adsorption process. Journal of Water and Climate Change, 13, 1985–1994. https://doi.org/10.2166/wcc.2022.126

    Article  Google Scholar 

  70. Sylvia, N., Hakim, L., Fardian, N., & Yunardi, Y. (2018). Adsorption performance of fixed-bed column for the removal of Fe (II) in groundwater using activated carbon made from palm kernel shells. IOP Conference Series: Materials Science and Engineering, 334. https://doi.org/10.1088/1757-899X/334/1/012030

  71. Sukmilin, A., & Sangsirimongkolying, R. (2021). Treatment of iron from groundwater by ozonation: Influence of hardness as a scavenger. Applied Environmental Research, 43, 106–115. https://doi.org/10.35762/AER.2021.43.2.8

    Article  Google Scholar 

  72. Sukmilin, A., & Sangsirimongkolying, R. (2021). Removal of iron from groundwater by ozonation: The response surface methodology for parameter optimization. Environment and Natural Resources Journal, 19, 330–336. https://doi.org/10.32526/ennrj/19/2020286

    Article  Google Scholar 

  73. Elsheikh, M. A., Guirguis, H. S., & Fathy, A. (2016). A comparative study of methods used for Fe and Mn oxidation and removal from groundwater. Journal of Engineering and Applied Science, 63, 277–292.

    Google Scholar 

  74. Coufal, M., Vaclavik, V., Dvorský, T., & Bendová, M. (2015). Application of ozonation in pretreatment of naturally aggressive groundwater with high content of iron and manganese. In Proceedings of the international SGEM geoconference on water resources, forest, marine and ocean ecosystems (Vol. 1).

    Google Scholar 

  75. Putri, R. A., Oktiawan, W., & Syakur, A. (2020). Decreasing iron (Fe) contaminant from ground water for water treatment processed by dielectric barrier discharge ozone generator. IOP Conference Series: Earth and Environmental Science, 448. https://doi.org/10.1088/1755-1315/448/1/012041

  76. Ngan, D. K., Khoi, T. T., Phuc, H. G., & Thuan, N. T. (2022). Effect of controlled parameters in lab-scale system of iron treatment from simulated groundwater with ozone. Advances in Environmental Technology, 8, 47–57. https://doi.org/10.22104/AET.2022.5241.1418

    Article  Google Scholar 

  77. Phatai, P., Wittayakun, J., Chen, W. H., Futalan, C. M., Grisdanurak, N., & Kan, C. C. (2014). Removal of manganese(II) and iron(II) from synthetic groundwater using potassium permanganate. Desalination and Water Treatment, 52, 5942–5951. https://doi.org/10.1080/19443994.2013.819150

    Article  CAS  Google Scholar 

  78. Krupinska, I. (2020). Impact of the oxidant type on the efficiency of the oxidation and removal of iron compounds from groundwater containing humic substances. Molecules, 25. https://doi.org/10.3390/molecules25153380

  79. Popescu, E. M., Pantea, O., Gologan, D., & Doukeh, R. (2019). Hydrogen peroxide and peracetic acid oxidizing potential in the treatment of water. Revista de Chimie, 70, 2036–2039. https://doi.org/10.37358/rc.19.6.7270

    Article  CAS  Google Scholar 

  80. Sallanko, J., Lakso, E., & Röpelinen, J. (2006). Iron behavior in the ozonation and filtration of groundwater. Ozone Science and Engineering, 28, 269–273. https://doi.org/10.1080/01919510600721795

    Article  CAS  Google Scholar 

  81. Outram, J. G., Couperthwaite, S. J., & Millar, G. J. (2018). Investigation of manganese greensand activation by various oxidants. Journal of Environmental Chemical Engineering, 6, 4130–4143. https://doi.org/10.1016/j.jece.2018.05.060

    Article  CAS  Google Scholar 

  82. Thinojah, T., Ketheesan, B., & Herath, G. B. B. (2020). Design of up-flow aerated filters for the removal of iron from groundwater. Water Science and Technology: Water Supply, 20, 3233–3241. https://doi.org/10.2166/ws.2020.229

    Article  CAS  Google Scholar 

  83. Ronny, R., Bun, B. Y., Jasmana, J., Rusli, R., & Notobroto, H. B. (2020). The combination of aeration and filtration system in reducing water pollution: An experimental study. International Journal on Advanced Science, Engineering and Information Technology, 10, 2103–2110. https://doi.org/10.18517/ijaseit.10.5.12381

    Article  Google Scholar 

  84. Che Harun, M. H., Ahmad, M. I., Jusoh, A., Ali, A., & Hamzah, S. (2022). Rapid-slow sand filtration for groundwater treatment: Effect of filtration velocity and initial head loss. International Journal of Integrated Engineering, 14, 276–286. https://doi.org/10.30880/ijie.2022.14.01.026

    Article  Google Scholar 

  85. Shafiquzzaman, M. (2021). Effect of Pre-Aeration on the Removal of Arsenic and Iron from Natural Groundwater in Household Based Ceramic Filters. Journal of Environmental Management, 291, 112681. https://doi.org/10.1016/j.jenvman.2021.112681

    Article  CAS  Google Scholar 

  86. Jez-Walkowiak, J., Dymaczewski, Z., Szuster-Janiaczyk, A., Nowicka, A. B., & Szybowicz, M. (2017). Efficiency of Mn removal of different filtration materials for groundwater treatment linking chemical and physical properties. Water (Switzerland), 9. https://doi.org/10.3390/w9070498

  87. Syazwan, M. F., Mohd Remy Rozainy, M. A. Z., & Jamil, R. (2020). Removing iron and manganese by using cascade aerator and limestone horizontal roughing filters. IOP Conference Series: Materials Science and Engineering, 864. https://doi.org/10.1088/1757-899X/864/1/012006

  88. Naggar, A. H., & Bakr, A. S. A. (2022). Efficient removal of iron from groundwater by dual-media filter. Desalination and Water Treatment, 266, 70–77. https://doi.org/10.5004/dwt.2022.28574

    Article  CAS  Google Scholar 

  89. Cydzik-Kwiatkowka, A., Kozicki, P., & Nosek, D. (2021). Efficient manganese removal in fast contact filters with continuous bed rinsing. Journal of Ecological Engineering, 22, 50–54. https://doi.org/10.12911/22998993/137674

    Article  Google Scholar 

  90. Acar, T. O., Durak, S. G., & Tüfekci, N. (2017). Effects of fulvic acid and ferric hydroxide on removal of Fe2þ and Mn2þ by oxidation and aerated/submerged ultrafiltration membrane system. Water Supply, 17, 1712–1721. https://doi.org/10.2166/WS.2017.033

    Article  CAS  Google Scholar 

  91. Kasim, N., Muhammad, A. W., & Abdullah, S. R. S. (2017). Iron and manganese removal by nanofiltration and ultrafiltration membranes. Malaysian Journal of Analytical Sciences, 21, 149–158.

    Article  Google Scholar 

  92. Du, X., Yang, W., Liu, Y., Zhang, W., Wang, Z., Nie, J., Li, G., & Liang, H. (2020). Removal of manganese, ferrous and antibiotics from groundwater simultaneously using peroxymonosulfate-assisted in-situ oxidation/coagulation integrated with ceramic membrane process. Separation and Purification Technology, 252, 117492. https://doi.org/10.1016/j.seppur.2020.117492

    Article  CAS  Google Scholar 

  93. Haddad, M., Ohkame, T., Bérubé, P. R., & Barbeau, B. (2018). Performance of thin-film composite hollow fiber nanofiltration for the removal of dissolved Mn, Fe and NOM from domestic groundwater supplies. Water Research, 145, 408–417. https://doi.org/10.1016/j.watres.2018.08.032

    Article  CAS  Google Scholar 

  94. Cheng, L. H., Xiong, Z. Z., Cai, S., Li, D. W., & Xu, X. H. (2020). Aeration-manganese sand filter-ultrafiltration to remove iron and manganese from water: Oxidation effect and fouling behavior of manganese sand coated film. Journal of Water Process Engineering, 38, 101621. https://doi.org/10.1016/j.jwpe.2020.101621

    Article  Google Scholar 

  95. Tang, X., Qiao, J., Wang, J., Huang, K., Guo, Y., Xu, D., Li, G., & Liang, H. (2021). Bio-cake layer based ultrafiltration in treating iron-and manganese-containing groundwater: Fast ripening and shock loading. Chemosphere, 268, 128842. https://doi.org/10.1016/j.chemosphere.2020.128842

    Article  CAS  Google Scholar 

  96. Tang, X., Zhu, X., Huang, K., Wang, J., Guo, Y., Xie, B., Li, G., & Liang, H. (2021). Can ultrafiltration singly treat the iron- and manganese-containing groundwater? Journal of Hazardous Materials, 409, 124983. https://doi.org/10.1016/j.jhazmat.2020.124983

    Article  CAS  Google Scholar 

  97. Meng, L., Zuo, R., Brusseau, M. L., Wang, J. S., Liu, X., Du, C., Zhai, Y., & Teng, Y. (2020). Groundwater pollution containing ammonium, iron and manganese in a riverbank filtration system: Effects of dynamic geochemical conditions and microbial responses. Hydrological Processes, 34, 4175–4189. https://doi.org/10.1002/hyp.13856

    Article  CAS  Google Scholar 

  98. Li, C., Wang, S., Du, X., Cheng, X., Fu, M., Hou, N., & Li, D. (2016). Immobilization of iron- and manganese-oxidizing bacteria with a biofilm-forming bacterium for the effective removal of iron and manganese from groundwater. Bioresource Technology, 220, 76–84. https://doi.org/10.1016/j.biortech.2016.08.020

    Article  CAS  Google Scholar 

  99. Govorova, Z., Muraveva, E., Govorov, V., & Semenovykh, V. (2018). Technology of groundwater biological deferrization. In Proceedings of the MATEC Web of Conferences (Vol. 251).

    Google Scholar 

  100. Araya-Obando, J. A., Pacini, V., Fernández, R. G., & Romero-Esquivel, L. G. (2022). Long-term monitoring of Mn and Fe removal in biofilters from a converted plant. Water Supply, 22, 6059–6069. https://doi.org/10.2166/ws.2022.209

    Article  CAS  Google Scholar 

  101. Cheng, Q., Huang, Y., Nengzi, L., & Zhang, J. (2019). Performance and microbial community profiles in pilot-scale biofilter for the simultaneous removal of ammonia, iron and manganese at different manganese concentrations. Bioprocess and Biosystems Engineering, 42, 741–752. https://doi.org/10.1007/s00449-019-02077-x

    Article  CAS  Google Scholar 

  102. Dangeti, S., McBeth, J. M., Roshani, B., Vyskocil, J. M., Rindall, B., & Chang, W. (2020). Microbial communities and biogenic Mn-oxides in an on-site biofiltration system for cold Fe-(II)- and Mn(II)-rich groundwater treatment. Science of the Total Environment, 710, 136386. https://doi.org/10.1016/j.scitotenv.2019.136386

    Article  CAS  Google Scholar 

  103. Zeng, H., Yu, Y., Qiao, T., Zhang, J., & Li, D. (2020). Simultaneous removal of iron, manganese and ammonia from groundwater: Upgrading of waterworks in Northeast China. Desalination and Water Treatment, 175, 196–204. https://doi.org/10.5004/dwt.2020.24746

    Article  CAS  Google Scholar 

  104. Van Le, A., Straub, D., Planer-Friedrich, B., Hug, S. J., Kleindienst, S., & Kappler, A. (2022). Microbial communities contribute to the elimination of As, Fe, Mn, and NH4+ from groundwater in household sand filters. Science of the Total Environment, 838, 156496. https://doi.org/10.1016/j.scitotenv.2022.156496

    Article  CAS  Google Scholar 

  105. You, K., Gao, Y., Qian, W., Fua, J., Wang, J., & Zhou, W. (2021). Simultaneous removal of fluoride, manganese and iron by manganese oxide supported activated alumina: Characterization and optimization via response surface methodology. Water Science and Technology, 84, 3799–3816. https://doi.org/10.2166/wst.2021.461

    Article  CAS  Google Scholar 

  106. Guo, Y., Zhang, J., Chen, X., Yang, J., Huang, J., & Huang, T. (2019). Kinetics and mechanism of Mn2þ removal from groundwater using iron–manganese co-oxide filter film. Water Science and Technology: Water Supply, 19, 1711–1717. https://doi.org/10.2166/ws.2019.045

    Article  CAS  Google Scholar 

  107. Cheng, Y., Xiong, W., & Huang, T. (2020). Catalytic oxidation removal of manganese from groundwater by iron–manganese co-oxide filter films under anaerobic conditions. Science of the Total Environment, 737, 139525. https://doi.org/10.1016/j.scitotenv.2020.139525

    Article  CAS  Google Scholar 

  108. Akbar, N. A., Aziz, H. A., & Adlan, M. N. (2017). A hybrid treatment of ozonation with limestone adsorption processes for the removal of Fe2+ in groundwater: Fixed bed column study. AIP Conf. Proc., 1892, 2–8. https://doi.org/10.1063/1.5005685

    Article  CAS  Google Scholar 

  109. Aziz, H. A., Tajarudin, H. A., Wei, T. H. L., & Alazaiza, M. Y. D. (2020). Iron and manganese removal from groundwater using limestone filter with iron-oxidized bacteria. International journal of Environmental Science and Technology, 17, 2667–2680. https://doi.org/10.1007/s13762-020-02681-5

    Article  CAS  Google Scholar 

  110. Arafat, M., Marzouk, S. Y., & El Monayeri, O. D. (2021). Hybrid system for iron and manganese reduction from polluted water using adsorption and filtration. Ain Shams Engineering Journal, 12, 2465–2470. https://doi.org/10.1016/j.asej.2021.02.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidi Abdul Aziz .

Editor information

Editors and Affiliations

Glossary

Biochemical oxygen demand

The amount of oxygen consumed by bacteria and other microorganisms while decomposing organic matter under aerobic conditions at a specified temperature

Chemical oxygen demand

Measures the capacity of water to consume oxygen during the decomposition of organic matter in the water

Electrocoagulation

Broad spectrum treatment technology that removes total suspended solids, heavy metals, emulsified oils, bacteria, and other contaminants from water

Iron-oxidising bacteria

Chemotrophic bacteria that derive energy by oxidising dissolved ferrous iron

Membrane filtration

A pressure-driven separation process that employs a membrane for both mechanical and chemical sieving of particles and macromolecules

World Health Organization (WHO)

A specialised agency of the United Nations responsible for international public health

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, W.S., Aziz, H.A., Akbar, N.A., Wang, MH.S., Wang, L.K. (2023). Removal of Fe and Mn from Groundwater. In: Wang, L.K., Wang, MH.S., Hung, YT. (eds) Industrial Waste Engineering. Handbook of Environmental Engineering, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-031-46747-9_4

Download citation

Publish with us

Policies and ethics