Skip to main content

Biotechnological Strategies to Simultaneous Capture of CO2 and Conversion of H2S into Valuable Bioproducts in Oil Reservoirs

  • Chapter
  • First Online:
Trends and Innovations in Energetic Sources, Functional Compounds and Biotechnology

Abstract

The desulfurization of natural gas and effluents from the exploitation of fossil fuels represents an expensive challenge for the oil and gas industry. Additionally, there is a clear global convergence regarding environmental concerns and climate change mitigation, especially regarding actions for CO2 sequestration and sustainability. This chapter addresses possible microbiological means for the simultaneous detoxification of H2S and CO2 capture. Among the main actors carrying out these valuable functions are anoxygenic phototrophic bacteria, microorganisms capable of using H2S as electron acceptors to capture CO2 during photosynthesis. Finally, some approaches to the use of these organisms are presented, as well as the application of consortia to carry out these two functions. Although current efforts are focused on the use of microalgae for detoxification and pollutant removal processes, the biotechnology of anoxygenic phototrophic bacteria has the potential to solve some of the environmental problems that modern industry and societies face. There is a clear need for further studies and investments in this field in order to develop technologies for the treatment of large volumes of fluids containing H2S and the simultaneous capture of CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu, Y., Zhang, Y., Liu, Z., Yong, Z., Chaoming, W., Haijun, G.: Corrosion control in CO2/H2S-produced water of offshore oil fields. Anti-Corros. Methods Mater. 61, 166–171 (2014). https://doi.org/10.1108/ACMM-02-2013-1240

    Article  CAS  Google Scholar 

  2. Ghiat, I., Al-Ansari, T.: A review of carbon capture and utilisation as a CO2 abatement opportunity within the EWF nexus. J. CO2 Util. 45, 101432 (2021). https://doi.org/10.1016/j.jcou.2020.101432

  3. Lasocki, J., Kołodziejczyk, K., Matuszewska, A.: Laboratory-scale investigation of biogas treatment by removal of hydrogen sulfide and carbon dioxide. Polish J. Environ. Stud. 24, 1427–1434 (2015). https://doi.org/10.15244/pjoes/35283

  4. Kumar, M., Sundaram, S., Gnansounou, E., Larroche, C., Thakur, I.S.: Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria: a review. Bioresour. Technol. 247, 1059–1068 (2018). https://doi.org/10.1016/j.biortech.2017.09.050

    Article  CAS  Google Scholar 

  5. Daneshvar, E., Wicker, R.J., Show, P.-L., Bhatnagar, A.: Biologically-mediated carbon capture and utilization by microalgae towards sustainable CO2 biofixation and biomass valorization—a review. Chem. Eng. J. 427, 130884 (2022). https://doi.org/10.1016/j.cej.2021.130884

    Article  CAS  Google Scholar 

  6. Oliva, J.M.: Bactérias redutoras de sulfatos - Métodos de isolamento e verificação da atividade bactericida de produtos químicos. Rev. Bras. Farmácia 3, 163–167 (1970)

    Google Scholar 

  7. Ferreira, J.A., Almeida, P.F., dos Santos, J.N., Sampaio, I.C., Figueirêdo, L.F., Tereska, D., Chinalia, F.A.: Bioreactor for accurately assessing biocide effectiveness in controlling biogenic souring in mature oil wells. SPE J. 23, 1809–1816 (2018). https://doi.org/10.2118/191128-PA

    Article  CAS  Google Scholar 

  8. do Vale, T.O., de Magalhães, R.S., de Almeida, P.F., Matos, J.B.T.L., Chinalia, F.A.: The impact of alkyl polyglycoside surfactant on oil yields and its potential effect on the biogenic souring during enhanced oil recovery (EOR). Fuel 280, 118512 (2020). https://doi.org/10.1016/j.fuel.2020.118512

  9. dos Santos, E.S., de Azevedo Santos Ferreira, J., dos Santos, J.N., Chinalia, F.A., Matos, J.L., Coqueiro, G., Ramos-de-Souza, E., de Almeida, P.F.: Screening and testing potential inhibitors of sulphide gas production by sulphate-reducing bacteria. J. Mol. Model. 27, 189 (2021). https://doi.org/10.1007/s00894-021-04801-5

  10. Kirk, M.F.: Variation in energy available to populations of subsurface anaerobes in response to geological carbon storage. Environ. Sci. Technol. 45, 6676–6682 (2011). https://doi.org/10.1021/es201279e

    Article  CAS  Google Scholar 

  11. West, J.M., McKinley, I.G., Palumbo-Roe, B., Rochelle, C.A.: Potential impact of CO2 storage on subsurface microbial ecosystems and implications for groundwater quality. Energy Procedia 4, 3163–3170 (2011). https://doi.org/10.1016/j.egypro.2011.02.231

    Article  CAS  Google Scholar 

  12. Hügler, M., Gärtner, A., Imhoff, J.F.: Functional genes as markers for sulfur cycling and CO2 fixation in microbial communities of hydrothermal vents of the Logatchev field. FEMS Microbiol. Ecol. (2010). https://doi.org/10.1111/j.1574-6941.2010.00919.x

    Article  Google Scholar 

  13. Nikkanen, L., Solymosi, D., Jokel, M., Allahverdiyeva, Y.: Regulatory electron transport pathways of photosynthesis in cyanobacteria and microalgae: recent advances and biotechnological prospects. Physiol. Plant. 173, 514–525 (2021). https://doi.org/10.1111/ppl.13404

    Article  CAS  Google Scholar 

  14. Viswanaathan, S., Perumal, P.K., Sundaram, S.: Integrated approach for carbon sequestration and wastewater treatment using algal-bacterial consortia: opportunities and challenges. Sustainability 14, 1075 (2022). https://doi.org/10.3390/su14031075

    Article  CAS  Google Scholar 

  15. Cabanelas, I.T.D., Arbib, Z., Chinalia, F.A., Souza, C.O., Perales, J.A., Almeida, P.F., Druzian, J.I., Nascimento, I.A.: From waste to energy: microalgae production in wastewater and glycerol. Appl. Energy 109, 283–290 (2013). https://doi.org/10.1016/j.apenergy.2013.04.023

    Article  CAS  Google Scholar 

  16. Conceição, G.R., Xavier, L.M.B.D., Matos, J.B.T.L., Almeida, P.F., Moura-Costa, L.F., Chinalia, F.A.: Glucose and nitrogen amendments can mitigate wastewater-borne bacteria competition effect against algal growth in wastewater-based systems. J. Phycol. 55, 1050–1058 (2019). https://doi.org/10.1111/jpy.12902

    Article  CAS  Google Scholar 

  17. Marques, S.S.I., Nascimento, I.A., de Almeida, P.F., Chinalia, F.A.: Growth of Chlorella vulgaris on sugarcane vinasse: the effect of anaerobic digestion pretreatment. Appl. Biochem. Biotechnol. 171, 1933–1943 (2013). https://doi.org/10.1007/s12010-013-0481-y

    Article  CAS  Google Scholar 

  18. Silva, D.A., Cardoso, L.G., de Jesus Silva, J.S., de Souza, C.O., Lemos, P.V.F., de Almeida, P.F., Ferreira, E.S., Lombardi, A.T., Druzian, J.I.: Strategy for the cultivation of Chlorella vulgaris with high biomass production and biofuel potential in wastewater from the oil industry. Environ. Technol. Innov. 25, 102204 (2022). https://doi.org/10.1016/j.eti.2021.102204

    Article  CAS  Google Scholar 

  19. Kushkevych, I., Bosáková, V., Vítězová, M., Rittmann, S.K.M.R.: Anoxygenic photosynthesis in photolithotrophic sulfur bacteria and their role in detoxication of hydrogen sulfide. Antioxidants 10, 1–11 (2021). https://doi.org/10.3390/antiox10060829

    Article  CAS  Google Scholar 

  20. George, D.M., Vincent, A.S., Mackey, H.R.: An overview of anoxygenic phototrophic bacteria and their applications in environmental biotechnology for sustainable resource recovery. Biotechnol. Rep. 28, e00563 (2020). https://doi.org/10.1016/j.btre.2020.e00563

    Article  Google Scholar 

  21. Beller, H.R., Zhou, P., Jewell, T.N.M., Goh, E.B., Keasling, J.D.: Enhanced fatty acid production in engineered chemolithoautotrophic bacteria using reduced sulfur compounds as energy sources. Metab. Eng. Commun. 3, 211–215 (2016). https://doi.org/10.1016/j.meteno.2016.07.001

    Article  Google Scholar 

  22. Frigaard, N.U.: Biotechnology of anoxygenic phototrophic bacteria. Adv. Biochem. Eng. Biotechnol. 156, 139–154 (2016). https://doi.org/10.1007/10_2015_5006

    Article  CAS  Google Scholar 

  23. Thomas, A.: Photosynthetic Bacteria for Bioremediation of Hydrogen Sulphide in Aquatic Systems. Doctoral thesis, Cochin Univ of Sci and Technol (2017)

    Google Scholar 

  24. Hurse, T.J., Kappler, U., Keller, J.: Using anoxygenic photosynthetic bacteria for the removal of sulfide from wastewater. In: Sulfur Metabolism in Phototrophic Organisms. Advances in Photosynthesis and Respiration, pp. 437–460. Springer, Dordrecht (2008)

    Chapter  Google Scholar 

  25. Syed, M., Soreanu, G., Falletta, P., Béland, M.: Removal of hydrogen sulfide from gas streams using biological processes—a review. Can. Biosyst. Eng. 48, 2.1–2.14 (2006)

    Google Scholar 

  26. Bahr, M., Díaz, I., Dominguez, A., Sánchez, A.G., Muñoz, R.: Microalgal-biotechnology as a platform for an integral biogas upgrading and nutrient removal from anaerobic effluents. Environ. Sci. Technol. 48, 573–581 (2014). https://doi.org/10.1021/es403596m

    Article  CAS  Google Scholar 

  27. Andreides, M., Pokorná-Krayzelová, L., Bartáček, J., Jeníč, P.: Biological H2S removal from gases. In: Environmental Technologies to Treat Sulphur Pollution: Principles and Engineering. IWA Publishing, pp. 345–375 (2020)

    Google Scholar 

  28. del Rodero, M.R., Lebrero, R., Serrano, E., Lara, E., Arbib, Z., García-Encina, P.A., Muñoz, R.: Technology validation of photosynthetic biogas upgrading in a semi-industrial scale algal-bacterial photobioreactor. Bioresour. Technol. 279, 43–49 (2019). https://doi.org/10.1016/j.biortech.2019.01.110

    Article  CAS  Google Scholar 

  29. Ryu, H.W., Yoo, S.K., Choi, J.M., Cho, K.S., Cha, D.K.: Thermophilic biofiltration of H2S and isolation of a thermophilic and heterotrophic H2S-degrading bacterium, Bacillus sp. TSO3. J. Hazard. Mater. 168, 501–506 (2009). https://doi.org/10.1016/j.jhazmat.2009.02.046

    Article  CAS  Google Scholar 

  30. Puyol, D., Barry, E.M., Hülsen, T., Batstone, D.J.: A mechanistic model for anaerobic phototrophs in domestic wastewater applications: photo-anaerobic model (PAnM). Water Res. 116, 241–253 (2017). https://doi.org/10.1016/j.watres.2017.03.022

    Article  CAS  Google Scholar 

  31. Saejung, C., Chanthakhot, T.: Single-phase and two-phase cultivations using different light regimes to improve production of valuable substances in the anoxygenic photosynthetic bacterium Rhodopseudomonas faecalis PA2. Bioresour. Technol. 328, 124855 (2021). https://doi.org/10.1016/j.biortech.2021.124855

    Article  CAS  Google Scholar 

  32. Chen, J., Wei, J., Ma, C., Yang, Z., Li, Z., Yang, X., Wang, M., Zhang, H., Hu, J., Zhang, C.: Photosynthetic bacteria-based technology is a potential alternative to meet sustainable wastewater treatment requirement? Environ. Int. 137, 105417 (2020). https://doi.org/10.1016/j.envint.2019.105417

    Article  CAS  Google Scholar 

  33. Larimer, F.W., Chain, P., Hauser, L., Lamerdin, J., Malfatti, S., Do, L., Land, M.L., Pelletier, D.A., Beatty, J.T., Lang, A.S., Tabita, F.R., Gibson, J.L., Hanson, T.E., Bobst, C., Torres, J.L.T., Peres, C., Harrison, F.H., Gibson, J., Harwood, C.S.: Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat. Biotechnol. 22, 55–61 (2004). https://doi.org/10.1038/nbt923

    Article  CAS  Google Scholar 

  34. Basu, R., Clausen, E.C., Gaddy, J.L.: Biological conversion of hydrogen sulfide into elemental sulfur. Environ. Prog. 15, 234–238 (1996). https://doi.org/10.1002/ep.670150412

    Article  CAS  Google Scholar 

  35. Kim, Y.J., Kim, B.W., Chang, H.N.: Desulfurization in a plate-type gas-lift photobioreactor using light emitting diodes. Korean J. Chem. Eng. 13, 606–611 (1996). https://doi.org/10.1007/BF02706027

    Article  CAS  Google Scholar 

  36. Pfennig, N.: Photosynthetic Bacteria. Annu. Rev. Microbiol. 21, 285–324 (1967). https://doi.org/10.1146/annurev.mi.21.100167.001441

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author Paulo F. Almeida thanks to Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq to provided financial support and a research grant (CNPQ process number 302753/2020-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Fernando de Almeida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Almeida, P.F., Sampaio, I.C.F., Chinalia, F.A., Taft, C.A., de Moura, I.V.L., Jones, C.M. (2024). Biotechnological Strategies to Simultaneous Capture of CO2 and Conversion of H2S into Valuable Bioproducts in Oil Reservoirs. In: Taft, C.A., de Almeida, P.F. (eds) Trends and Innovations in Energetic Sources, Functional Compounds and Biotechnology. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-46545-1_8

Download citation

Publish with us

Policies and ethics