Skip to main content

Biotechnology of Anoxygenic Phototrophic Bacteria

  • Chapter
  • First Online:
Book cover Anaerobes in Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 156))

Abstract

Anoxygenic phototrophic bacteria are a diverse collection of organisms that are defined by their ability to grow using energy from light without evolving oxygen. The dominant groups are purple sulfur bacteria, purple nonsulfur bacteria, green sulfur bacteria, and green and red filamentous anoxygenic phototrophic bacteria. They represent several bacterial phyla but they all have bacteriochlorophylls and carotenoids and photochemical reaction centers which generate ATP and cellular reductants used for CO2 fixation. They typically have an anaerobic lifestyle in the light, although some grow aerobically in the dark. Some of them oxidize inorganic sulfur compounds for light-dependent CO2 fixation; this ability can be exploited for photobiological removal of hydrogen sulfide from wastewater and biogas. The anoxygenic phototrophic bacteria also perform bioremediation of recalcitrant dyes, pesticides, and heavy metals under anaerobic conditions. Finally, these organisms may be useful for overexpression of membrane proteins and photobiological production of H2 and other valuable compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BChl:

Bacteriochlorophyll

E 0′:

Standard reduction potential at pH 7 and 25 °C

EPS:

Extracellular polymeric substances

FAP:

Filamentous anoxygenic phototrophs

GSB:

Green sulfur bacteria

PBR:

Photobioreactor

PNSB:

Purple nonsulfur bacteria

PSB:

Purple sulfur bacteria

References

  1. Blankenship RE (2008) Molecular mechanisms of photosynthesis. Blackwell Science, Oxford, UK

    Google Scholar 

  2. Hohmann-Marriott MF, Blankenship RE (2011) Evolution of photosynthesis. Annu Rev Plant Biol 62:515–548

    Article  CAS  Google Scholar 

  3. Bryant DA, Frigaard N-U (2006) Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol 14(11):488–496

    Article  CAS  Google Scholar 

  4. Blankenship RE, Madigan MT, Bauer CE (1995) Anoxygenic photosynthetic bacteria. Springer, The Netherlands

    Book  Google Scholar 

  5. Idi A et al (2015) Photosynthetic bacteria: an eco-friendly and cheap tool for bioremediation. Rev Environ Sci Biotechnol 14(2):271–285

    Article  CAS  Google Scholar 

  6. Hunter CN et al (2009) The purple phototrophic bacteria, Advances in photosynthesis and respiration. Springer, London

    Book  Google Scholar 

  7. Zeng Y et al (2014) Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proc Natl Acad Sci U S A 111(21):7795–7800

    Article  CAS  Google Scholar 

  8. Cohen Y, Gurevitz M (2006) The cyanobacteria—ecology, physiology and molecular genetics. Prokaryotes 4:1074–1098

    Google Scholar 

  9. Frigaard N-U, Dahl C (2009) Sulfur metabolism in phototrophic sulfur bacteria. Adv Microb Physiol 54:103–200

    Article  CAS  Google Scholar 

  10. Hurse TJ, Kappler U, Keller J (2008) Using anoxygenic photosynthetic bacteria for the removal of sulfide from wastewater. In: Sulfur metabolism in phototrophic organisms. Springer, Dordrecht, pp 437–460

    Chapter  Google Scholar 

  11. Holkenbrink C et al (2011) Sulfur globule oxidation in green sulfur bacteria is dependent on the dissimilatory sulfite reductase system. Microbiology 157(Pt 4):1229–1239

    Article  CAS  Google Scholar 

  12. Henshaw PF, Zhu W (2001) Biological conversion of hydrogen sulphide to elemental sulphur in a fixed-film continuous flow photo-reactor. Water Res 35(15):3605–3610

    Article  CAS  Google Scholar 

  13. Garcia GP et al (2015) Biological sulphide removal from anaerobically treated domestic sewage: reactor performance and microbial community dynamics. Environ Technol 36(17):2177–2189

    Article  CAS  Google Scholar 

  14. Syed M et al (2006) Removal of hydrogen sulfide from gas streams using biological processes – a review. Can Biosyst Eng 48:2.1–2.14

    Google Scholar 

  15. An JY, Kim BW (2000) Biological desulfurization in an optical-fiber photobioreactor using an automatic sunlight collection system. J Biotechnol 80(1):35–44

    Article  CAS  Google Scholar 

  16. Kim YJ, Kim BW, Chang HN (1996) Desulfurization in a plate-type gas-lift photobioreactor using light emitting diodes. Korean J Chem Eng 13(6):606–611

    Article  CAS  Google Scholar 

  17. Basu R, Clausen EC, Gaddy JL (1996) Biological conversion of hydrogen sulfide into elemental sulfur. Environ Prog 15(4):234–238

    Article  CAS  Google Scholar 

  18. Pandey A, Singh P, Iyengar L (2007) Bacterial decolorization and degradation of azo dyes. Int Biodeter Biodegr 59(2):73–84

    Article  CAS  Google Scholar 

  19. Bin Y et al (2004) Expression and characteristics of the gene encoding azoreductase from Rhodobacter sphaeroides AS1.1737. FEMS Microbiol Lett 236(1):129–136

    Article  Google Scholar 

  20. Liu G-f et al (2006) Bacterial decolorization of azo dyes by Rhodopseudomonas palustris. World J Microbiol Biotechnol 22(10):1069–1074

    Article  CAS  Google Scholar 

  21. Wang X et al (2008) Biodecolorization and partial mineralization of Reactive Black 5 by a strain of Rhodopseudomonas palustris. J Environ Sci (China) 20(10):1218–1225

    Article  CAS  Google Scholar 

  22. Kim TTH et al (2003) Decolorization of azo dyes by purple non-sulfur bacteria. In: Annual Report of FY 2002, The Core University Program between Japan Society for the Promotion of Science (JSPS) and National Centre for Natural Science and Technology (NCST). pp 112–118

    Google Scholar 

  23. Wang X et al (2015) Formation characteristics of an anoxygenic photosynthetic bacterial biofilm in a photorotating biological contactor for azo dye wastewater treatment. J Chem Technol Biotechnol 90(1):176–184

    Article  CAS  Google Scholar 

  24. Mutharasaiah K, Govindareddy V, Karigar C (2010) Photobiodegradation of halogenated aromatic pollutants. Adv Biosci Biotechnol 01(03):238–240

    Article  CAS  Google Scholar 

  25. Dixit R et al (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212

    Article  CAS  Google Scholar 

  26. Seki H, Suzuki A, Mitsueda S-I (1998) Biosorption of heavy metal ions on Rhodobacter sphaeroides and Alcaligenes eutrophus H16. J Colloid Interface Sci 197(2):185–190

    Article  CAS  Google Scholar 

  27. Watanabe M et al (2003) Biosorption of cadmium ions using a photosynthetic bacterium, Rhodobacter sphaeroides S and a marine photosynthetic bacterium, Rhodovulum sp. and their biosorption kinetics. J Biosci Bioeng 95(4):374–378

    Article  CAS  Google Scholar 

  28. Buccolieri A et al (2006) Testing the photosynthetic bacterium Rhodobacter sphaeroides as heavy metal removal tool. Ann Chim 96(3–4):195–203

    Article  CAS  Google Scholar 

  29. Sasaki K et al (2013) Simultaneous removal of cesium and strontium using a photosynthetic bacterium, Rhodobacter sphaeroides SSI immobilized on porous ceramic made from waste glass. Adv Biosci Biotechnol 04(01):6–13

    Article  CAS  Google Scholar 

  30. Panwichian S et al (2011) Removal of heavy metals by exopolymeric substances produced by resistant purple nonsulfur bacteria isolated from contaminated shrimp ponds. Electron J Biotechnol 14(4). http://dx.doi.org/10.2225/vol14-issue4-fulltext-2

  31. Magnin JP, Gondrexon N, Willison JC (2014) Zinc biosorption by the purple non-sulfur bacterium Rhodobacter capsulatus. Can J Microbiol 60(12):829–837

    Article  CAS  Google Scholar 

  32. Sakurai H et al (2013) Photobiological hydrogen production: bioenergetics and challenges for its practical application. J Photochem Photobiol C 17:1–25

    Article  CAS  Google Scholar 

  33. Lazaro CZ, Varesche MBA, Silva EL (2015) Sequential fermentative and phototrophic system for hydrogen production: an approach for Brazilian alcohol distillery wastewater. Int J Hydrogen Energy 40(31):9642–9655

    Google Scholar 

  34. Zürrer H, Bachofen R (1979) Hydrogen production by the photosynthetic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 37(5):789–793

    Google Scholar 

  35. Najafpour GD, Younesi H (2007) Bioconversion of synthesis gas to hydrogen using a light-dependent photosynthetic bacterium, Rhodospirillum rubrum. World J Microbiol Biotechnol 23(2):275–284

    Article  CAS  Google Scholar 

  36. Warthmann R, Cypionka H, Pfennig N (1992) Photoproduction of H2 from acetate by syntrophic cocultures of green sulfur bacteria and sulfur-reducing bacteria. Arch Microbiol 157(4):343–348

    Article  CAS  Google Scholar 

  37. Kirti K et al (2014) Colorful world of microbes: carotenoids and their applications. Adv Biol 2014:1–13

    Article  Google Scholar 

  38. Sun Z et al (2014) Microalgae as the production platform for carotenoids. Recent advances in microalgal biotechnology. OMICS Group eBooks, Foster City, CA, USA, pp 1–17

    Google Scholar 

  39. Takaichi S (1999) Carotenoids and carotenogenesis in anoxygenic photosynthetic bacteria. In: The photochemistry of carotenoids. Kluwer, Dordrecht, pp 39–69

    Google Scholar 

  40. Fraser NJ, Hashimoto H, Cogdell RJ (2001) Carotenoids and bacterial photosynthesis: the story so far. Photosynth Res 70(3):249–256

    Article  CAS  Google Scholar 

  41. Wang GS et al (2012) High-level production of the industrial product lycopene by the photosynthetic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 78(20):7205–7215

    Article  CAS  Google Scholar 

  42. Chen YY et al (2013) Chromosomal evolution of Escherichia coli for the efficient production of lycopene. BMC Biotechnol 13:6

    Article  CAS  Google Scholar 

  43. Frigaard NU et al (2004) Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum. J Bacteriol 186(16):5210–5220

    Article  CAS  Google Scholar 

  44. Englund E et al (2015) Metabolic engineering of Synechocystis sp. PCC 6803 for production of the plant diterpenoid manoyl oxide. ACS Synth Biol 4(12):1270–1278

    Google Scholar 

  45. Laible PD, Mielke DL, Hanson DK (2009) Foreign gene expression in photosynthetic bacteria. In: The purple phototrophic bacteria. Springer, Dordrecht, pp 839–860

    Chapter  Google Scholar 

  46. Erbakan M et al (2015) Advancing Rhodobacter sphaeroides as a platform for expression of functional membrane proteins. Protein Expr Purif 115:109–117

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels-Ulrik Frigaard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Frigaard, NU. (2016). Biotechnology of Anoxygenic Phototrophic Bacteria. In: Hatti-Kaul, R., Mamo, G., Mattiasson, B. (eds) Anaerobes in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 156. Springer, Cham. https://doi.org/10.1007/10_2015_5006

Download citation

Publish with us

Policies and ethics