Skip to main content

Genetic Tools for the Conservation of Bats

  • Chapter
  • First Online:
Conservation Genetics in the Neotropics

Abstract

Genetic tools are essential for uncovering several ecological aspects of biodiversity, particularly for groups as taxonomically and ecologically diverse as bats. Bats provide vital ecosystem services, including habitat restoration, seed dispersal, pollination, and the regulation of arthropod populations. In this chapter, we conducted an overview of studies that included genetic data of bats to answer a variety of questions with focus on the megadiverse Neotropics. We summarized patterns found in the studies discussing their contributions for bat conservation. Globally five families of bats (Vespertilionidae, Phyllostomidae, Rhinolophidae, Pteropodidae, and Molossidae) were the focus of 95% of the studies. The most prevalent use of genetic data was for systematics including phylogeny, taxonomic revisions and high-level classification. Climate fluctuations and the formation of geographical barriers during the late Pleistocene appears to have significant impacts on the distribution of bats in the Americas, including the Caribbean region, with evidence for diversification since the Miocene. Although bats appear more mobile than other animal groups, ecomorphological constraints affect heterogeneously different species, and natural barriers and human-driven landscape alterations impact their genetic diversity to varying degrees. Genetic tools have contributed to bat management and conservation previous to the year of 2000, and more recent technological advances, such as DNA metabarcoding and genome sequencing have shown enormous potential for answering further questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams RA, Pedersen SC (2013) Bat evolution, ecology, and conservation. Springer, New York

    Google Scholar 

  • Aguiar L, Brito D, Machado RB (2010) Do current vampire bat (Desmodus rotundus) population control practices pose a threat to Dekeyser’s nectar bat’s (Lonchophylla dekeyseri) long-term persistence in the Cerrado? Acta Chiropterologica 12(2):275–282

    Google Scholar 

  • Aguiar L, Bernard E, Machado RB (2014) Habitat use and movements of Glossophaga soricina and Lonchophylla dekeyseri (Chiroptera: Phyllostomidae) in a Neotropical savannah. Zoologia, Curitiba 31:223–229

    Google Scholar 

  • Aguiar LM, Bueno-Rocha ID, Oliveira G, Pires ES, Vasconcelos S, Nunes GL, Frizzas MR, Togni PH (2021) Going out for dinner–the consumption of agriculture pests by bats in urban areas. PLoS One 16(10)

    Google Scholar 

  • Ahmad Z, Abbasi M, Sheikh N, Ahmad S (2019) Molecular identification of bats from Punjab-Pakistan. J Biol Regul Homeost Agents 33(1):151–155

    CAS  PubMed  Google Scholar 

  • Allendorf FW, Aitken SN, Luikart GH (2022) Conservation and the genomics of populations. Wiley-Blackwell, Malden

    Google Scholar 

  • Anderson AP, Light JE, Takano OM, Morrison ML (2018) Population structure of the Townsend’s big-eared bat (Corynorhinus townsendii townsendii) in California. J Mammal 99(3):646–658

    Google Scholar 

  • Andriollo T, Ashrafi S, Arlettaz R, Ruedi M (2018) Porous barriers? Assessment of gene flow within and among sympatric long-eared bat species. Ecol Evol 8(24):12841–12854

    PubMed  PubMed Central  Google Scholar 

  • Arnold BD, Wilkinson GS (2015) Female natal philopatry and gene flow between divergent clades of pallid bats (Antrozous pallidus). J Mammal 96(3):531–540

    Google Scholar 

  • Baker RJ (1984) A sympatric cryptic species of mammal: a new species of Rhogeessa (Chiroptera: Vespertilionidae). Syst Zool 33:178–183

    Google Scholar 

  • Baker RJ, Longmire JL, Maltbie M, Hamilton MJ, Van Den Bussche RA (1997) DNA synapomorphies for a variety of taxonomic levels from a cosmid library from the New World bat Macrotus waterhousii. Syst Biol 46(4):579–589

    CAS  PubMed  Google Scholar 

  • Barber BR, Klicka J (2010) Two pulses of diversification across the Isthmus of Tehuantepec in a montane Mexican bird fauna. Proc Royal Soc B Biol Sci 277(1694):2675–2681

    Google Scholar 

  • Barragán MJL, Martínez S, Marchal JA, Bullejos M, de La Guardia RD, Sánchez BA (2002) Highly repeated DNA sequences in three species of the genus Pteropus (Megachiroptera, Mammalia). Heredity 88(5):366–370

    PubMed  Google Scholar 

  • Barrat EM, Bruford MW, Burland GTM, Jones PAR, Wane RK (1995) Characterization of mitochondrial DNA variability within the microchiropteran genus Pipistrellus: approaches and applications. Symp Zool Soc Lond 67:377–386

    Google Scholar 

  • Basantes M, Tinoco N, Velazco PM, Hofmann MJ, Rodríguez-Posada ME, Camacho MA (2020) Systematics and taxonomy of tonatia saurophila Koopman and Williams, 1951 (Chiroptera, Phyllostomidae). ZooKeys 915:59

    PubMed  PubMed Central  Google Scholar 

  • Beaumont MA, Rannala B (2004) The Bayesian revolution in genetics. Nat Rev Genet 5:251–261

    CAS  PubMed  Google Scholar 

  • Bennett S, Alexander LJ, Crozier RH, Mackinlay AG (1988) Are megabats flying primates? Contrary evidence from a mitochondrial DNA sequence. Aust J Biol Sci 41(3):327–332

    CAS  PubMed  Google Scholar 

  • Berger-Tal O, Greggor AL, Macura B, Adams CA, Blumenthal A, Bouskila A et al (2019) Systematic reviews and maps as tools for applying behavioral ecology to management and policy. Behav Ecol 30:1–8

    Google Scholar 

  • Bernard E, Aguiar LMS, Machado RB (2011) Discovering the Brazilian bat fauna: a task for two centuries? Mammal Rev 41(1):23–39

    Google Scholar 

  • Bhak Y, Jeon Y, Jeon S, Chung O, Jho S, Jun J, Bhak J (2017) Myotis rufoniger genome sequence and analyses: M. rufoniger’s genomic feature and the decreasing effective population size of Myotis bats. PLoS One 12(7):e0180418

    PubMed  PubMed Central  Google Scholar 

  • Bohmann K, Gopalakrishnan S, Nielsen M, Nielsen LDSB, Jones G, Streicker DG, Gilbert MTP (2018) Using DNA metabarcoding for simultaneous inference of common vampire bat diet and population structure. Mol Ecol Resour 18(5):1050–1063

    PubMed  PubMed Central  Google Scholar 

  • Brasileiro LA, Machado RB, Aguiar LM (2022) Ecosystems services provided by bats are at risk in Brazil. Front Ecol Evol 10

    Google Scholar 

  • Brown VA, Brooke A, Fordyce JA, McCracken GF (2011) Genetic analysis of populations of the threatened bat Pteropus mariannus. Conserv Genet 12(4):933–941

    Google Scholar 

  • Burgin CJ, Collela JP, Kahn PL, Upham NS (2018) How many mammal species are there? J Mammal 99:1–14

    Google Scholar 

  • Carroll EL, Bruford MW, De Woody JA, Leroy G, Strand A, Waits L, Wang J (2018) Genetic and genomic monitoring with minimally invasive sampling methods. Evol Appl 11(7):1094–1119. https://doi.org/10.1111/eva.12600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carstens BC, Sullivan J, Davalos LM, Larsen PA, Pedersen SC (2004) Exploring population genetic structure in three species of lesser Antillean bats. Mol Ecol 13:2557–2566

    CAS  PubMed  Google Scholar 

  • Castella V, Ruedi M, Excoffier L, Ibáñez C, Arlettaz R, Hausser J (2000) Is the Gibraltar Strait a barrier to gene flow for the bat Myotis myotis (Chiroptera: Vespertilionidae)? Mol Ecol 9(11):1761–1772

    CAS  PubMed  Google Scholar 

  • Castoe TA et al (2009) Comparative phylogeography of pitvipers suggests a consensus of ancient Middle American highland biogeography. J Biogeogr 36(1):88–103

    Google Scholar 

  • Chattopadhyay B, Garg KM, Kumar AK, Doss D, Rheindt FE, Kandula S, Ramakrishnan U (2016) Genome-wide data reveal cryptic diversity and genetic introgression in an oriental cynopterine fruit bat radiation. BMC Evol Biol 16(1):1–15

    Google Scholar 

  • Chhay S (2012) Cambodian bats: a review of farming practices and economic value of lesser Asiatic yellow house bat Scotophilus kuhlii (Leach, 1821), in Kandal and Takeo provinces, Cambodia. J Nat Hist 164

    Google Scholar 

  • Chung CU, Kim SC, Jeon YS, Han SH, Yu JN (2018) The complete mitochondrial genome of long-tailed whiskered bat, Myotis frater (Myotis, Vespertilionidae). Mitochondrial DNA Part B 3(2):570–571

    PubMed  PubMed Central  Google Scholar 

  • Cleveland CJ, Betke M, Federico P et al (2006) Economic value of the pest control service provided by Brazilian free-tailed bats in south-Central Texas. Front Ecol Environ 4:238–243

    Google Scholar 

  • Davalos LM (2004) Phylogeny and biogeography of Caribbean mammals. Biol J Linn Soc 81(3):373–394

    Google Scholar 

  • Davies KT, Yohe LR, Almonte J, Sánchez MK, Rengifo EM, Dumont ER, Rossiter SJ (2020) Foraging shifts and visual preadaptation in ecologically diverse bats. Mol Ecol 29(10):1839–1859

    PubMed  Google Scholar 

  • Diniz UM, Fischer NLS, Aguiar LMS (2022) Changing the main course: strong bat visitation to the ornithophilous mistletoe Psittacanthus robustus (Loranthaceae) in a Neotropical savanna. Biotropica 54(2):478–489

    Google Scholar 

  • Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJ, Collen B (2014) Defaunation in the anthropocene. Science 345:401–406. https://doi.org/10.1126/science

    Article  CAS  PubMed  Google Scholar 

  • Donoso I, Sorensen MC, Blendinger PG, Kissling WD, Neuschulz EL, Mueller T et al (2020) Downsizing of animal communities triggers stronger functional than structural decay in seed-dispersal networks. Nat Commun 11:1582. https://doi.org/10.1038/s41467-020-15438-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dool SE (2020) Conservation genetic studies in bats. In: Ortega J, Maldonado J (eds) Conservation genetics in mammals. Springer, Cham. https://doi.org/10.1007/978-3-030-33334-8_3

    Chapter  Google Scholar 

  • Duckworth RA (2009) The role of behavior in evolution: a search for mechanism. Evol Ecol 23(4):513–531. https://doi.org/10.1007/s10682-008-9252-6

    Article  Google Scholar 

  • Eiting TP, Gunnell GF (2009) Global completeness of the bat fossil record. J Mamm Evol 16(3):151–173

    Google Scholar 

  • Eldridge MD, King JM, Loupis AK, Spencer PB, Taylor AC, Pope LC, Hall GP (1999) Unprecedented low levels of genetic variation and inbreeding depression in an Island population of the black-footed rock-wallaby. Conserv Biol 13(3):531–541

    Google Scholar 

  • Fauth JE et al (1996) Simplifying the jargon of community ecology: a conceptual approach. Am Nat 147(2):282–286

    Google Scholar 

  • Fenton MB (1969) Summer activity of Myotis lucifugus (Chiroptera: Vespertilionidae) at hibernacula in Ontario and Quebec. Can J Zool 47:597–602

    Google Scholar 

  • Fenton MB, Simmons NB (2015) Bats: a world of science and mystery. University of Chicago Press, Chicago

    Google Scholar 

  • Ferreira RL, Martins RP (1999) Trophic structure and natural history of bat guano invertebrate communities, with particular reference to Brazilian caves. Trop Zool 12(2):231–252

    Google Scholar 

  • Ferreira WAS, Borges BDN, Rodrigues-Antunes S, Andrade FAGD, Aguiar GFDS, Silva-Junior JDSE, Harada ML (2014) Phylogeography of the dark fruit-eating bat Artibeus obscurus in the Brazilian Amazon. J Hered 105(1):48–59

    PubMed  Google Scholar 

  • Fleming TH, Geiselman C, Kress WJ (2009) The evolution of bat pollination: a phylogenetic perspective. Ann Bot 104:1017–1043

    PubMed  PubMed Central  Google Scholar 

  • Floyd CH, Flores-Martínez JJ, Herrera MLG, Mejía O, May B (2010) Conserving the endangered Mexican fishing bat (Myotis vivesi): genetic variation indicates extensive gene flow among islands in the Gulf of California. Conserv Genet 11(3):813–822

    Google Scholar 

  • Fontanetti CS, Zefa E, Passetti F, Mesa A (2002) Morphological characterization and comparative analysis of the proventriculus from three species of Endecous Saussure, 1878 (Orthoptera: Gryllidae: Phalangopsinae). Entomotropica 17:15–23

    Google Scholar 

  • Frankham R, Briscoe DA, Ballou JD (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Fraser DJ, Lippé C, Bernatchez L (2004) Consequences of unequal population size, asymmetric gene flow and sex-biased dispersal on population structure in brook charr (Salvelinus fontinalis). Mol Ecol 13(1):67–80

    CAS  PubMed  Google Scholar 

  • Fujita MS, Tuttle MD (1991) Flying foxes (Chiroptera: Pteropodidae): threatened animals of key ecological and economic importance. Conserv Biol 5(4):455–463

    Google Scholar 

  • Galetti M, Bovendorp RS, Guevara R (2015) Defaunation of large mammals leads to an increase in seed predation in the Atlantic forests. Glob Evol 3:824–830. https://doi.org/10.1016/j.gecco.2015.04.008

    Article  Google Scholar 

  • Gao CW, Wang S, Gao LZ (2016) Mitochondrial genome of the black flying fox, Pteropus alecto (Chiroptera: Megachiroptera: Pteropodidae). Mitochondrial DNA Part A 27(1):52–53

    CAS  Google Scholar 

  • Garbino GST, Tavares VC (2018) Roosting ecology of Stenodermatinae bats (Phyllostomidae): evolution of foliage roosting and correlated phenotypes. Mammal Rev 48:75–89. https://doi.org/10.1111/mam.12114

    Article  Google Scholar 

  • Garbino GST, Lim BK, Tavares VC (2020) Systematics of big-eyed bats, genus Chiroderma Peters, 1860 (Chiroptera: Phyllostomidae). Zootaxa 4846(1):1–93

    Google Scholar 

  • García-Moreno J, Navarro-Sigüenza AG, Peterson AT, Sánchez-González LA (2004) Genetic variation coincides with geographic structure in the common bush-tanager (Chlorospingus ophthalmicus) complex from Mexico. Mol Phylogenet Evol 33(1):186–196

    Google Scholar 

  • García-Mudarra JL, Ibanez C, Juste J (2009) The straits of Gibraltar: barrier or bridge to Ibero-Moroccan bat diversity? Biol J Linn Soc 96(2):434–450

    Google Scholar 

  • Goldman-Huertas B, Mitchell RF, Lapoint RT, Faucher CP, Hildebrand JG, Whiteman NK (2015) Evolution of herbivory in Drosophilidae linked to loss of behaviors, antennal responses, odorant receptors, and ancestral diet. Proc Natl Acad Sci 112(10):3026–3031. https://doi.org/10.1073/pnas.1424656112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregorin R, Ditchfield AD (2005) New genus and species of nectar-feeding bat in the tribe Lonchophyllini (Phyllostomidae: Glossophaginae) from northeastern Brazil. J Mammal 86(2):403–414

    Google Scholar 

  • Gürün K, Furman A, Juste J, Pereira RMJ, Palmeirim JM, Puechmaille SJ, Bilgin R (2019) A continent-scale study of the social structure and phylogeography of the bent-wing bat, Miniopterus schreibersii (Mammalia: Chiroptera), using new microsatellite data. J Mammal 100(6):1865–1878

    Google Scholar 

  • Guevara-Chumacero LM, López-Wilchis R, Pedroche FF, Juste J, Ibáñez C, Barriga-Sosa ID (2010) Molecular phylogeography of Pteronotus davyi (Chiroptera: Mormoopidae) in Mexico. J Mammal 91(1):220–232

    Google Scholar 

  • Hassanin A, Khouider S, Gembu GC, Goodman SM, Kadjo B, Nesi N, Bonillo C (2015) The comparative phylogeography of fruit bats of the tribe Scotonycterini (Chiroptera, Pteropodidae) reveals cryptic species diversity related to African Pleistocene forest refugia. C R Biol 338(3):197–211

    PubMed  Google Scholar 

  • Hinten G, Harriss F, Rossetto M, Braverstock PR (2003) Genetic variation and Island biogreography: microsatellite and mitochondrial DNA variation in Island populations of the Australian bush rat, Rattus fuscipes greyii. Conserv Genet 4(6):759–778

    CAS  Google Scholar 

  • Hoffmann FG, Baker RJ (2003) Comparative phylogeography of short-tailed bats (Carollia: Phyllostomidae). Mol Ecol 12:3403–3414

    CAS  PubMed  Google Scholar 

  • Huang Z, Jebb D, Teeling EC (2016) Blood miRNomes and transcriptomes reveal novel longevity mechanisms in the long-lived bat, Myotis myotis. BMC Genom 17(1):1–15

    Google Scholar 

  • Huguin M, Arechiga-Ceballos N, Delaval M, Guidez A, de Castro IJ, Lacoste V, de Thoisy B (2018) How social structure drives the population dynamics of the common vampire bat (Desmodus rotundus, Phyllostomidae). J Hered 109(4):393–404

    PubMed  Google Scholar 

  • Hulva P, Cek PHI, Strelkov P, Benda P (2004) Molecular architecture of Pipistrellus pipistrellus/Pipistrellus pygmaeus complex (Chiroptera: Vespertilionidae): further cryptic species and Mediterranean origin of the divergence. Mol Phylogenet Evol 32:1023–1035

    CAS  PubMed  Google Scholar 

  • Hurtado N, D’Elía G (2022) Historical biogeography of a rapid and geographically wide diversification in Neotropical mammals. J Biogeogr 49(5):781–793

    Google Scholar 

  • Hutson AM, Mickleburgh SP, Racey PA, compilers (2001) Microchiropteran bats: global status survey and conservation action plan. IUCN/SSC Chiroptera Specialist Group, International Union for Conservation of Nature, Gland

    Google Scholar 

  • Ingala MR, Simmons NB, Wultsch C, Krampis K, Provost KL, Perkins SL (2021) Molecular diet analysis of neotropical bats based on fecal DNA metabarcoding. Ecol Evol 11(12):7474–7491

    PubMed  PubMed Central  Google Scholar 

  • Ito F, Lilley T, Twort VG, Bernard E (2022) High genetic connectivity among large populations of Pteronotus gymnonotus in bat caves in Brazil and its implications for conservation. Front Ecol Evol

    Google Scholar 

  • Jebb D, Foley NM, Whelan CV, Touzalin F, Puechmaille SJ, Teeling EC (2018) Population level mitogenomics of long-lived bats reveals dynamic heteroplasmy and challenges the free radical theory of ageing. Sci Rep 8(1):1–12

    CAS  Google Scholar 

  • Jiang JJ, Wang SQ, Li YJ, Zhang W, Yin AG, Hu M (2016) The complete mitochondrial genome of insect-eating brandt’s bat, Myotis brandtii (Myotis, Vespertilionidae). Mitochondrial DNA Part A 27(2):1403–1404

    CAS  Google Scholar 

  • Jones KE, Mickleburgh SP, Sechrest W, Walsh AL (2009) Global overview of the conservation of Island bats: importance, challenges and opportunities. In: Fleming R (ed) Island Bats: evolution, ecology, and conservation. University of Chicago Press, Chicago\London, pp 496–530

    Google Scholar 

  • Jones G, Jacobs DS, Kunz TH, Willig MR, Racey PA (2009a) Carpe noctem: the importance of bats as bioindicators. Endanger Species Res 8(1–2):93–115

    Google Scholar 

  • Kalko EK, Handley JR, Handley D (1996) Organization, diversity, and long-term dynamics of a Neotropical bat community. In: Long-term studies of vertebrate communities. Academic, pp 503–553

    Google Scholar 

  • Karageorgi M, Bräcker LB, Lebreton S, Minervino C, Cavey M, Siju KP, Prud’homme B (2017) Evolution of multiple sensory systems drives novel egg-laying behavior in the fruit pest Drosophila suzukii. Curr Biol 27(6):847–853. https://doi.org/10.1016/j.cub.2017.01.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerth G, Mayer F, Petit E (2002) Extreme sex-biased dispersal in the communally breeding, nonmigratory Bechstein’s bat (Myotis bechsteinii). Mol Ecol 11(8):1491–1498

    CAS  PubMed  Google Scholar 

  • Khan FAA, Phillips CD, Baker RJ (2014) Timeframes of speciation, reticulation, and hybridization in the bulldog bat explained through phylogenetic analyses of all genetic transmission elements. Syst Biol 63(1):96–110

    CAS  PubMed  Google Scholar 

  • Kim JY, Park YC (2015) Gene organization and characterization of the complete mitogenome of Hypsugo alaschanicus (Chiroptera: Vespertilionidae). Genet Mol Res 14(4):16325–16331

    CAS  PubMed  Google Scholar 

  • Koopman KF (1993) Order Chiroptera. In: Wilson DE, Reeder DM (eds) Mammal species of the world: taxonomic and geographic reference, 2nd edn. Smithsonian Institution Press, Washington, DC, pp 137–241

    Google Scholar 

  • Kundu S, Kumar V, Tyagi K, Rath S, Pakrashi A, Saren PC et al (2019) Mitochondrial DNA identified bat species in Northeast India: electrocution mortality and biodiversity loss. Mitochondrial DNA Part B 4(2):2454–2458

    PubMed  PubMed Central  Google Scholar 

  • Kunz TH, Lumsden LF (2003) Ecology of cavity and foliage roosting bats. In: Kunz TH, Fenton MB (eds) Bat ecology. University of Chicago Press, Chicago, pp 3–90

    Google Scholar 

  • Kunz TH, Braun ET, Bauer D, Lobova T, Fleming TH (2011) Ecosystem services provided by bats. Ann N Y Acad Sci 1223(1):1–38

    PubMed  Google Scholar 

  • Laine VN, Lilley TM, Norrdahl K, Primmer CR (2013) Population genetics of Daubenton’s bat (Myotis daubentonii) in the Archipelago Sea, SW Finland. Annales Zoologici Fennici 50(5):303–315. Finnish zoological and botanical publishing board

    Google Scholar 

  • Larsen PA, Hayes CE, Wilkins MA, Gomard Y, Sookhareea R, Yoder AD, Goodman SM (2014) Population genetics of the Mauritian flying fox, Pteropus niger. Acta Chiropterologica 16(2):293–300

    Google Scholar 

  • Lee AK, Kulcsar KA, Elliott O, Khiabanian H, Nagle ER, Jones ME, Rabadan R (2015) De novo transcriptome reconstruction and annotation of the Egyptian rousette bat. BMC Genomics 16(1):1–11

    PubMed  PubMed Central  Google Scholar 

  • Leelapaibul W, Bumrungsri S, Pattanawiboon A (2005) Diet of wrinkle-lipped free-tailed bat (Tadarida plicata Buchannan, 1800) in Central Thailand: insectivorous bats potentially act as biological pest control agents. Acta Chiropterologica 7:111–119

    Google Scholar 

  • Liem KF (1973) Evolutionary strategies and morphological innovations: cichlid pharyngeal jaws. Syst Biol 22:425–441

    Google Scholar 

  • Lobova TA, Geiselman CK, Mori SA (2009) Seed dispersal by bats in the Neotropics. Botanical Garden, New York

    Google Scholar 

  • López-Wilchis R, Río-Portilla D, Ángel M, Guevara-Chumacero LM (2017) Mitochondrial genome of Pteronotus personatus (Chiroptera: Mormoopidae): comparison with selected bats and phylogenetic considerations. Genetica 145(1):27–35

    PubMed  Google Scholar 

  • Loureiro LO, Gregorin R, Perini FA (2018) Diversity, morphological phylogeny, and distribution of bats of the genus Molossus E. Geoffroy, 1805 (Chiroptera, Molossidae) in Brazil. Zoosystema 40:425–452

    Google Scholar 

  • Loureiro LO, Engstrom MD, Lim BK (2019) Not all Molossus are created equal: genetic variation in the mastiff bat reveals diversity masked by conservative morphology. Acta Chiropt 21(1):51–64

    Google Scholar 

  • Loureiro LO, Engstrom MD, Lim BK (2020) Single nucleotide polymorphisms (SNPs) provide unprecedented resolution of species boundaries, phylogenetic relationships, and genetic diversity in the mastiff bats (Molossus). Mol Phylogenet Evol 143:106690

    CAS  PubMed  Google Scholar 

  • Lu J, Li XF, Yuan H (2016) The complete mitochondrial genome of large flying fox, Pteropus vampyrus (Pteropus, Pteropodidae). Mitochondrial DNA Part A 27(6):4166–4167

    CAS  Google Scholar 

  • Málaga BA, Diaz DR, Arias S, Medina CE (2020) A new species of Lasiurus (Chiroptera: Vespertilionidae) from southwestern Peru. Revista Mexicana de Biodiversidad 91

    Google Scholar 

  • Mammal Diversity Database (2022) Mammal diversity database (Version 1.10) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7394529

  • Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge, MA

    Google Scholar 

  • McCracken GF, Wilkinson GS (2000) Bat mating systems. In: Crichton EG, Krutzsch PH (eds) Reproductive biology of bats. Academic Press, San Diego, pp 321–362

    Google Scholar 

  • Meyer CF, Kalko EK (2008) Assemblage level responses of phyllostomid bats to tropical forest fragmentation: land bridge islands as a model system. J Biogeogr 35(9):1711–1726

    Google Scholar 

  • Meyer CF, Kalko EK, Kerth G (2009) Small-scale fragmentation effects on local genetic diversity in two Phyllostomid bats with different dispersal abilities in Panama. Biotropica 41(1):95–102

    Google Scholar 

  • Moras LM, Tavares VC, Pepato AR, Santos FR, Gregorin R (2016) Reassessment of the evolutionary relationships within the dog-faced bats, genus Cynomops (Chiroptera: Molossidae). Zool Scr 45(5):465–480

    Google Scholar 

  • Moratelli R, Calisher CH (2015) Bats and zoonotic viruses: can we confidently link bats with emerging deadly viruses? Mem Inst Oswaldo Cruz 110:1–22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naďo L, Chromá R, Kaňuch P (2017) Structural, temporal and genetic properties of social groups in the short-lived migratory bat Nyctalus leisleri. Behaviour 154(7–8):785–807

    Google Scholar 

  • Naidoo T, Schoeman MC, Goodman SM, Taylor PJ, Lamb JM (2016) Discordance between mitochondrial and nuclear genetic structure in the bat Chaerephon pumilus (Chiroptera: Molossidae) from southern Africa. Mamm Biol 81(2):115–122

    Google Scholar 

  • Nogueira MR, Lima IP, Peracchi AL, Simmons NB (2012) New genus and species of nectar-feeding bat from the Atlantic Forest of southeastern Brazil (Chiroptera: Phyllostomidae: Glossophaginae). Am Mus Novit 2012(3747):1–30

    Google Scholar 

  • Novaes RLM, Cláudio VC, Díaz MM, Wilson DE, Weksler M, Moratelli R (2022) Argentinean Myotis (Chiroptera, Vespertilionidae), including the description of a new species from the Yungas. Vertebr Zool 72:1187–1216

    Google Scholar 

  • O’Brien J, McCracken GF, Say L, Hayden TJ (2007) Rodrigues fruit bats (Pteropus rodricensis, Megachiroptera: Pteropodidae) retain genetic diversity despite population declines and founder events. Conserv Genet 8(5):1073–1082

    Google Scholar 

  • O’Donnell CF, Richter S, Dool S, Monks JM, Kerth G (2016) Genetic diversity is maintained in the endangered New Zealand long-tailed bat (Chalinolobus tuberculatus) despite a closed social structure and regular population crashes. Conserv Genet 17(1):91–102

    Google Scholar 

  • Ortega J, Arita HT (1999) Structure and social dynamics of harem groups in Artibeus jamaicensis (Chiroptera: Phyllostomidae). J Mammal 80(4):1173–1185

    Google Scholar 

  • Paetkau D, Strobeck C (1994) Microsatellite analysis of genetic variation in black bear populations. Mol Ecol 3(5):489–495

    CAS  PubMed  Google Scholar 

  • Palacios-Mosquera L, Cuadrado-Rios S, Murillo Leon M, Villegas-Rosas S, Zamora-Vélez OA, Pérez-Amaya NJ, Velazco PM (2020) Systematics and taxonomy of Platyrrhinus chocoensis (Chiroptera: Phyllostomidae) based on morphometric and genetic analyses: implications for biogeography and conservation. Mamm Biol 100(2):113–124

    Google Scholar 

  • Pavan AC, Marroig G (2016) Integrating multiple evidences in taxonomy: species diversity and phylogeny of mustached bats (Mormoopidae: Pteronotus). Mol Phylogenet Evol 103:184–198

    PubMed  Google Scholar 

  • Pavan AC, Martins FM, Morgante JS (2013) Evolutionary history of bulldog bats (genus: Noctilio): recent diversification and the role of the Caribbean in Neotropical biogeography. Biol J Linn Soc 108:210–224

    Google Scholar 

  • Pearse DE, Crandall KA (2004) BeyondFST: analysis of population genetic data for conservation. Conserv Genet 5:585–602

    CAS  Google Scholar 

  • Pettigrew JD (1986) Flying primates? Megabats have the advanced pathway from eye to midbrain. Science 231(4743):1304–1306

    Google Scholar 

  • Phillips CJ, Pumo DE, Genoways HH, Ray PE, Briskey CA (1991) Mitochondrial DNA evolution and phylogeography in two neotropical fruit bats, Artibeus jamaicensis and Artibeus lituratus. Latin American Mammalogy: History, Biodioversity, and Conservation (MA Mares and DJ Schmidley, eds.), University of Oklahoma Press, Norman, xviii, 97–123

    Google Scholar 

  • Pinto BJ, Colli GR, Higham TE, Russell AP, Scantlebury DP, Vitt LJ, Gamble T (2019) Population genetic structure and species delimitation of a widespread, Neotropical dwarf gecko. Mol Phylogenet Evol 133:54–66. https://doi.org/10.1016/j.ympev.2018.12.029

    Article  PubMed  Google Scholar 

  • Racey PA, Entwistle AC (2003) In: Ecology B, Kunz TH, Fenton MB (eds) Conservation ecology of bats. University of Chicago Press, Chicago, pp 680–743

    Google Scholar 

  • Ramírez-Fráncel LA, García-Herrera LV, Losada-Prado S, Reinoso-Flórez G, Sánchez-Hernández A, Estrada-Villegas S, Lim BK, Guevara G (2022) Bats and their vital ecosystem services: a global review. Integr Zool 17(1):2–23

    PubMed  Google Scholar 

  • Ratto F, Simmons BI, Spake R, Zamora-Gutierrez V, MacDonald MA, Merriman JC, Tremlett CJ, Poppy GM, Peh SH-K, Dicks LV (2018) Global importance of vertebrate pollinators for plant reproductive success: a meta-analysis. Front Ecol Environ 16(2):82–90

    Google Scholar 

  • Real-Monroy D, Ortega J (2017) Spatial distribution of microsatellite and MHC-DRB exon 2 gene variability in the Jamaican fruit bat (Artibeus jamaicensis) in Mexico. Mamm Biol 84(1):1–11

    Google Scholar 

  • Regolin AL, Muylaert RL, Crestani AC, Dáttilo W, Ribeiro MC (2020) Seed dispersal by Neotropical bats in human-disturbed landscapes. Wildl Res 48(1):1–6

    Google Scholar 

  • Ripperger SP, Tschapka M, Kalko EK, Rodríguez-Herrera B, Mayer F (2014) Resisting habitat fragmentation: high genetic connectivity among populations of the frugivorous bat Carollia castanea in an agricultural landscape. Agric Ecosyst Environ 185:9–15

    Google Scholar 

  • Rocha EA, Machado IC, Zappi DC (2007) Floral biology of Pilosocereus tuberculatus (Werderm.) Byles and Rowley: a bat pollinated cactus endemic from the “Caatinga” in northeastern Brazil1. Bradleya 25:129–144

    Google Scholar 

  • Rocha R, Aziz SA, Brook CE, Carvalho WD, Cooper-Bohannon R (2020) Bat conservation and zoonotic disease risk: a research agenda to prevent misguided persecution in the aftermath of COVID-19. Anim Conserv

    Google Scholar 

  • Rodrigues L, Pereira MJR, Rainho A, Palmeirim JM (2010) Behavioural determinants of gene flow in the bat Miniopterus schreibersii. Behav Ecol Sociobiol 64(5):835–843

    Google Scholar 

  • Rodríguez ME, Ortega J, Gutiérrez-Espeleta G, Arévalo JE, Rodríguez-Herrera B (2020) Genetic diversity and structure of Artibeus jamaicensis in the fragmented landscape of El Salvador. In: Ortega J, Maldonado J (eds) Conservation genetics in mammals. Springer, Cham. https://doi.org/10.1007/978-3-030-33334-8_12

    Chapter  Google Scholar 

  • Ruiz EA, Vargas-Miranda B, Zúñiga G (2013) Late-Pleistocene phylogeography and demographic history of two evolutionary lineages of Artibeus jamaicensis (Chiroptera: Phyllostomidae) in Mexico. Acta Chiropterologica 15(1):19–33

    Google Scholar 

  • Rull V (2011) Neotropical biodiversity: timing and potential drivers. Trends Ecol Evol 26(10):508–513

    PubMed  Google Scholar 

  • Safi K, Meiri S, Jones KE, Smith FA, Lyons K (2013) Evolution of body size in bats. Animal body size: linking pattern and process across space, time, and taxonomic group. University of Chicago Press, pp 95–151

    Google Scholar 

  • Salgueiro P, Palmeirim JM, Ruedi M et al (2008) Gene flow and population structure of the endemic Azorean bat (Nyctalus azoreum) based on microsatellites: implications for conservation. Conserv Genet 9(5):1163–1171

    CAS  Google Scholar 

  • Salgueiro P, Palmeirim JM, Coelho MM (2010) Lack of gene flow between the insular bat, Nyctalus azoreum and its mainland ancestor Nyctalus leisleri (Vespertilionidae, Chiroptera): evidence from microsatellites. Folia Zool 59(1):26–34

    Google Scholar 

  • Scrimgeour J, Beath A, Swanney M (2012) Cat predation of short-tailed bats (Mystacina tuberculata rhyocobia) in Rangataua Forest, mount Ruapehu, central North Island, New Zealand. N Z J Zool 39:257–260

    Google Scholar 

  • Simmons NB (2005a) Chiroptera. In: Rose KD, Archibald D (eds) The rise of placental mammals. Johns Hopkins University, Baltimore, pp 159–174

    Google Scholar 

  • Simmons NB (2005b) Order Chiroptera. In: Wilson DE, Reeder DM (eds) Mammal species of the world: a taxonomic and geographic reference, 3rd edn. Johns Hopkins University Press, Baltimore, pp 312–529

    Google Scholar 

  • Simmons NB, Seymour KL, Habersetzer J, Gun GF (2008) Primitive early Eocene bat from Wyoming and the evolution off light and echolocation. Nature 451:U818–U816

    Google Scholar 

  • Smirnov DG, Titov SV, Baishev FZ (2016) New microsatellite markers for Myotis daubentonii and Eptesicus nilssonii (Vespertilionidae, Chiroptera). Russ J Theriol 15(2):81–83

    Google Scholar 

  • Soulè ME (1983) What do we really know about extinction? Biol Conserv Ser:111–124

    Google Scholar 

  • Speer KA, Petronio BJ, Simmons NB, Richey R, Magrini K, Soto-Centeno JA, Reed DL (2017) Population structure of a widespread bat (Tadarida brasiliensis) in an Island system. Ecol Evol 7:7585–7598. https://doi.org/10.1002/ece3.3233

    Article  PubMed  PubMed Central  Google Scholar 

  • Szcześniak M, Yoneda M, Sato H, Makałowska I, Kyuwa S, Sugano S et al (2014) Characterization of the mitochondrial genome of Rousettus leschenaulti. Mitochondrial DNA:443–444

    Google Scholar 

  • Tavares VC, Gardner AL, Ramírez-Chaves HE, Velazco PM (2014) Systematics of Vampyressa melissa Thomas, 1926 (Chiroptera: Phyllostomidae), with descriptions of two new species of Vampyressa. Am Mus Novit 2014(3813):1–27

    Google Scholar 

  • Tavares VC, Warsi OM, Balseiro F, Mancina CA, Dávalos LM (2018) Out of the Antilles: fossil phylogenies support reverse colonization of bats to South America. J Biogeogr 45(4):859–873

    Google Scholar 

  • Tavares VC, Gardner AL, Mcdonough MM, Maldonado JE, Gutiérrez EE, Velazco PM, Garbino GS (2022) Historical DNA of rare yellow-eared bats Vampyressa Thomas, 1900 (Chiroptera, Phyllostomidae) clarifies phylogeny and species boundaries within the genus. Syst Biodivers 20(1):1–13

    Google Scholar 

  • Teeling EC, Vernes SC, Dávalos LM, Ray DA, MTP G, Myers E (2018) Bat biology, genomes, and the Bat1K project: to generate chromosome-level genomes for all living bat species. Ann Rev Anim Biosci 6:23–46

    Google Scholar 

  • Tejedor A, Tavares VC, Silva-Taboada G (2005) A revision of extant greater Antillean bats of the genus Natalus. Am Mus Novit 3493:1–22

    Google Scholar 

  • Thomas O (1901) VII.—Some new African Bats (including one from the Azores) and a new Galago. J Nat Hist 8(43):27–34

    Google Scholar 

  • Thomas DW, Fenton MB, Barclay RMR (1979) Social behavior of the little brown bat, Myotis lucifugus. I Mating behaviour. Behav Ecol Sociobiol 6:129–136

    Google Scholar 

  • Tidemann C, Nelson J (2004) Long-distance movements of the grey-headed flying fox (Pteropus poliocephalus). J Zool 263:141–146

    Google Scholar 

  • Torres-Morales L, Guillén A, Ruiz-Sanchez E (2019) Distinct patterns of genetic connectivity found for two frugivorous bat species in Mesoamerica. Acta Chiropterologica 21(1):35–49

    Google Scholar 

  • Tschapka M, Gonzalez-Terrazas TP, Knörnschild M (2015) Nectar uptake in bats using a pumping-tongue mechanism. Sci Adv 1(8):e1500525

    PubMed  PubMed Central  Google Scholar 

  • Tuttle MD, Moreno A (2005) Cave-Dwelling Bats of Northern Mexico: their value and conservation needs. In: Bat Conservation International, Austin, Texas, USA, pp 48.

    Google Scholar 

  • Vargas-Arboleda A, Cuadrado-Ríos S, Mantilla-Meluk H (2020) Systematic considerations on two species of nectarivorous bats (Anoura caudifer and A. geoffroyi) based on barcoding sequences. Acta Biológica Colombiana 25(2):194–201

    CAS  Google Scholar 

  • Vázquez-Domínguez E, Ceballos G, Cruzado J (2004) Extirpation of an insular subspecies by a single introduced cat: the case of the endemic deer mouse Peromyscus guardia on Estanque Island, Mexico. Oryx 38:347–350

    Google Scholar 

  • Vázquez-Domínguez E, Mendoza-Martínez A, Orozco-Lugo L, Cuarón AD (2013) High dispersal and generalist habits of the bat Artibeus jamaicensis on Cozumel Island, Mexico: an assessment using molecular genetics. Acta Chiropterologica 15(2):411–421

    Google Scholar 

  • Veith M, Beer N, Kiefer A, Johannesen J, Seitz A (2004) The role of swarming sites for maintaining gene flow in the brown long-eared bat (Plecotus auritus). Heredity 93(4):342–349

    CAS  PubMed  Google Scholar 

  • Virkar PS, Shrotriya S (2013) Threat to wildlife from carnivorous pets: a case of cat attacking Indian pipistrelle Pipistrellus coromandra (gray, 1838). Zoo’s Print 28:25–27

    Google Scholar 

  • von Helversen O (1989) Schutzrelevante Aspekte der O¨ kologie einheimischer Flederma¨use. Schriftenr Bay Landesamt Umweltsch 92:7–17

    Google Scholar 

  • Wagner CE, Keller I, Wittwer S, Selz OM, Mwaiko S, Greuter L, Sivasundar A, Seehausen O (2013) Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation. Mol Ecol 22:787–798

    CAS  PubMed  Google Scholar 

  • Walker FM, Williamson CHD, Sanchez DE, Sobek CJ, Chambers CL (2016) Species from feces: order-wide identification of Chiroptera from guano and other non-invasive genetic samples. PLoS One 11(9):e0162342

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Williams DA, Gaines MS (2005) Evidence for a recent genetic bottleneck in the endangered Florida keys silver rice rat (Oryzomys argentatus) revealed by microsatellite DNA analyses. Conserv Genet 6(4):575–585

    CAS  Google Scholar 

  • Wang SQ, Li YJ, Yin AG, Zhang W, Jiang JJ, Wang WL, Hu M (2016) The complete mitochondrial genome of David’s myotis, Myotis davidii (Myotis, Vespertilionidae). Mitochondrial DNA Part A 27(3):1587–1588

    CAS  Google Scholar 

  • Wanger TC, Darras K, Bumrungsri S, Tscharntke T, Klein AM (2014) Bat pest control contributes to food security in Thailand. Biol Conserv 171:220–223

    Google Scholar 

  • Welch JN, Leppanen C (2017) The threat of invasive species to bats: a review. Mammal Rev 47(4):277–290

    Google Scholar 

  • Wiles GJ, Johnson NC (2004) Population size and natural history of Mariana fruit bats (Chiroptera: Pteropodidae) on Sarigan, Mariana Islands. Pacific Sci 58(4):585–596

    Google Scholar 

  • Wiles GJ, Lemke TO, Payne NH (1989) Population estimates of fruit bats (Pteropus mariannus) in the Mariana Islands. Conserv Biol 3(1):66–76

    Google Scholar 

  • Wiles GJ, Brooke AP, Fleming TH, Racey PA (2010) Conservation threats to bats in the tropical Pacific islands and insular Southeast Asia. In: Fleming TH, Racey PA (eds) Island bats: evolution, ecology, and conservation. The University of Chicago Press, Chicago, pp 405–459

    Google Scholar 

  • Woods M, McDonald RA, Harris S (2003) Predation of wildlife by domestic cats Felis catus in Great Britain. Mammal Rev 33:174–188

    Google Scholar 

  • Xu L, He C, Shen C, Jiang T, Shi L, Sun K et al (2010) Phylogeography and population genetic structure of the great leaf-nosed bat (Hipposideros armiger) in China. J Hered 101(5):562–572

    CAS  PubMed  Google Scholar 

  • Xu H, Yuan Y, He Q, Wu Q, Yan Q, Wang Q (2012) Complete mitochondrial genome sequences of two Chiroptera species (Rhinolophus luctus and Hipposideros armiger). Mitochondrial DNA 23(4):327–328

    CAS  PubMed  Google Scholar 

  • Yoon KB, Park YC (2015a) Complete mitochondrial genome and codon usage of the Nepalese whiskered bat Myotis muricola (Vespertilionidae). Genet Mol Res 14:14637–14645

    CAS  PubMed  Google Scholar 

  • Yoon KB, Park YC (2015b) Secondary structure and feature of mitochondrial tRNA genes of the Ussurian tube-nosed bat Murina ussuriensis (Chiroptera: Vespertilionidae). Genomics Data 5:213–217

    PubMed  PubMed Central  Google Scholar 

  • Zamboni AB, Thommazo AD, Hernandes ECM, Fabbri SCPF (2010) StArt Uma Ferramenta Computacional de Apoio à Revisão Sistemática. Brazilian Conference on Software: Theory and Practice – Tools session, UFBA

    Google Scholar 

  • Zamora-Gutierrez V, Rivera-Villanueva AN, Balvanera SM, Castro-Castro A, Aguirre-Gutiérrez J (2021) Vulnerability of bat–plant pollination interactions due to environmental change. Glob Chang Biol 27(14):3367–3382

    CAS  PubMed  Google Scholar 

  • Zárate-Martínez DG, López-Wilchis R, Ruiz-Ortíz JD, Barriga-Sosa ID, Díaz AS, Ibáñez C, Guevara-Chumacero LM (2018) Intraspecific evolutionary relationships and diversification patterns of the Wagner’s mustached bat, Pteronotus personatus (Chiroptera: Mormoopidae). Acta Chiropterologica 20(1):51–58

    Google Scholar 

  • Zortéa M, Alho CJR (2008) Bat diversity of a Cerrado habitat in Central Brazil. Biodivers Conserv 17:791–805. https://doi.org/10.1007/s10531-008-9318-3

    Article  Google Scholar 

Download references

Acknowledgments

This research is part of the PhD thesis of C. F. Gonçalves at Programa de Pós-Graduação em Ecologia e Recursos Naturais PPGERN/UFSCar, and we thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior CAPES for the grant received (Financial Code 001, 2020/88887.498109). CFG, APC and PMGJ thank Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, 2017/23548-2). PMGJ thanks Conselho de Desenvolvimento Científico e Tecnológico (CNPq, 303524/2019-7) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, 2017/23548-2).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gonçalves, C.F., Carvalho, C.d.S., da Cunha Tavares, V., Aguiar, L.M.S., Carmignotto, A.P., Galetti, P.M. (2023). Genetic Tools for the Conservation of Bats. In: Galetti Jr., P.M. (eds) Conservation Genetics in the Neotropics. Springer, Cham. https://doi.org/10.1007/978-3-031-34854-9_3

Download citation

Publish with us

Policies and ethics