Skip to main content

A General Web-Based Platform for Automatic Delineation of Head and Neck Gross Tumor Volumes in PET/CT Images

  • Conference paper
  • First Online:
Head and Neck Tumor Segmentation and Outcome Prediction (HECKTOR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13626))

Included in the following conference series:

Abstract

Delineation of head and neck lesions are crucial for radiation treatment planning and follow-up studies. In this paper we developed an automated segmentation method for head and neck primary and nodal gross tumor volumes (GTVp and GTVn) segmentation in positron emission tomography/computed tomography (PET/CT) provided by the MICCAI 2022 Head and Neck Tumor Segmentation Challenge (HECKTOR 2022). Our segmentation algorithm takes nnU-Net as the backbone and uses dedicated pre- and post-processing to improve the auto-segmentation performance. The pipeline described achieved DSC results of 0.77212 (GTVp 0.77485 and GTVn 0.76938) in the testing dataset of HECTOR 2022. The developed auto-segmentation method is further extensively developed to a web-based platform to permit easy access and facilitate clinical workflow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xing, L., Giger, M.L., Min, J.K. (eds.): Artificial Intelligence in Medicine: Technical Basis and Clinical Applications. Elsevier Science, St. Louis (2020)

    Google Scholar 

  2. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Paper Presented at: Advances in Neural Information Processing Systems (2012)

    Google Scholar 

  3. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  4. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. Paper Presented at: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  5. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  6. Močnik, D., Ibragimov, B., Xing, L., et al.: Segmentation of parotid glands from registered CT and MR images. Phys. Med. 52, 33–41 (2018)

    Article  Google Scholar 

  7. Ren, X., Xiang, L., Nie, D., et al.: Interleaved 3D-CNNs for joint segmentation of small-volume structures in head and neck CT images. Med. Phys. 45(5), 2063–2075 (2018)

    Article  Google Scholar 

  8. Ibragimov, B., Xing, L.: Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks. Med. Phys. 44(2), 547–557 (2017)

    Article  Google Scholar 

  9. Zhong, T., Huang, X., Tang, F., Liang, S., Deng, X., Zhang, Y.: Boosting-based cascaded convolutional neural networks for the segmentation of CT organs-at-risk in nasopharyngeal carcinoma. Med. Phys. 46, 5602–5611 (2019)

    Google Scholar 

  10. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. arXiv e-prints (2015). https://ui.adsabs.harvard.edu/abs/2015arXiv150504597R. Accessed 01 May 2015

  11. De Fauw, J., Ledsam, J.R., Romera-Paredes, B., et al.: Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 24(9), 1342–1350 (2018)

    Google Scholar 

  12. Tong, N., Gou, S., Yang, S., Ruan, D., Sheng, K.: Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Med. Phys. 45(10), 4558–4567 (2018)

    Article  Google Scholar 

  13. Liang, S., et al.: Deep-learning-based detection and segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning. Eur. Radiol. 29(4), 1961–1967 (2018)

    Article  Google Scholar 

  14. Wang, Y., Zhao, L., Wang, M., Song, Z.: Organ at risk segmentation in head and neck CT images using a two-stage segmentation framework based on 3D U-Net. IEEE Access. 7, 144591–144602 (2019)

    Article  Google Scholar 

  15. Men, K., Geng, H., Cheng, C., et al.: Technical note: more accurate and efficient segmentation of organs-at-risk in radiotherapy with convolutional neural networks cascades. Med. Phys. 46(1), 286–292 (2019)

    Google Scholar 

  16. Tappeiner, E., et al.: Multi-organ segmentation of the head and neck area: an efficient hierarchical neural networks approach. Int. J. Comput. Assist. Radiol. Surg. 14(5), 745–754 (2019)

    Article  Google Scholar 

  17. Rhee, D.J., Cardenas, C.E., Elhalawani, H., et al.: Automatic detection of contouring errors using convolutional neural networks. Med. Phys. 46(11), 5086–5097 (2019)

    Article  Google Scholar 

  18. Tang, H., Chen, X., Liu, Y., et al.: Clinically applicable deep learning framework for organs at risk delineation in CT images. Nat. Mach. Intell. 1(10), 480–491 (2019)

    Article  Google Scholar 

  19. van Rooij, W., Dahele, M., Ribeiro Brandao, H., Delaney, A.R., Slotman, B.J., Verbakel, W.F.: Deep learning-based delineation of head and neck organs at risk: geometric and dosimetric evaluation. Int. J. Radiat. Oncol. Biol. Phys. 104(3), 677–684 (2019)

    Google Scholar 

  20. Guo, Z., Guo, N., Gong, K., Zhong, S., Li, Q.: Gross tumor volume segmentation for head and neck cancer radiotherapy using deep dense multi-modality network. Phys. Med. Biol. 64(20), 205015 (2019)

    Article  Google Scholar 

  21. Lin, L., Dou, Q., Jin, Y.M., et al.: Deep learning for automated contouring of primary tumor volumes by MRI for nasopharyngeal carcinoma. Radiology 291(3), 677–686 (2019)

    Article  Google Scholar 

  22. Men, K., Chen, X., Zhang, Y., et al.: Deep deconvolutional neural network for target segmentation of nasopharyngeal cancer in planning computed tomography images. Front Oncol. 7, 315 (2017)

    Article  Google Scholar 

  23. Jin, D., Guo, D., Ho, T.-Y., et al.: DeepTarget: Gross tumor and clinical target volume segmentation in esophageal cancer radiotherapy. Med. Image Anal. 68, 101909 (2021)

    Article  Google Scholar 

  24. Cardenas, C.E., Beadle, B.M., Garden, A.S., et al.: Generating high-quality lymph node clinical target volumes for head and neck cancer radiation therapy using a fully automated deep learning-based approach. Int. J. Radiat. Oncol. Biol. Phys. 109(3), 801–812 (2021)

    Article  Google Scholar 

  25. Yang, Z., Liu, H., Liu, Y., et al.: A web-based brain metastases segmentation and labeling platform for stereotactic radiosurgery. Med. Phys. 47(8), 3263–3276 (2020)

    Article  Google Scholar 

  26. Chen, H., Lu, W., Chen, M., et al.: A recursive ensemble organ segmentation (REOS) framework: application in brain radiotherapy. Phys. Med. Biol. 64(2), 025015 (2019)

    Article  MathSciNet  Google Scholar 

  27. Sprinz, C., Zanon, M., Altmayer, S., et al.: Effects of blood glucose level on 18F fluorodeoxyglucose (18F-FDG) uptake for PET/CT in normal organs: an analysis on 5623 patients. Sci. Rep. 8(1), 2126 (2018)

    Article  Google Scholar 

  28. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 203–211 (2021)

    Google Scholar 

  29. Andrearczyk, V., et al.: Overview of the HECKTOR challenge at MICCAI 2022: automatic head and neck tumor segmentation and outcome prediction in PET/CT. In: Andrearczyk, V., Oreiller, V., Hatt, M., Depeursinge, A. (eds.) HECKTOR 2022. LNCS, vol. 13626, pp. 1–30. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-27420-6_4

    Google Scholar 

  30. Oreiller, V., et al.: Head and neck tumor segmentation in PET/CT: the HECKTOR challenge. Med. Image Anal. 77, 102336 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, H., Haimerl, J., Gu, X., Lu, W. (2023). A General Web-Based Platform for Automatic Delineation of Head and Neck Gross Tumor Volumes in PET/CT Images. In: Andrearczyk, V., Oreiller, V., Hatt, M., Depeursinge, A. (eds) Head and Neck Tumor Segmentation and Outcome Prediction. HECKTOR 2022. Lecture Notes in Computer Science, vol 13626. Springer, Cham. https://doi.org/10.1007/978-3-031-27420-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27420-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27419-0

  • Online ISBN: 978-3-031-27420-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics