Skip to main content

Development of Abiotic Stress Resistant Grapevine Varieties

  • Chapter
  • First Online:
Genomic Designing for Abiotic Stress Resistant Fruit Crops

Abstract

Grapevine (Vitis vinifera L.) is one of the most extensively grown fruit crops in the world owing to its versatile uses. Traditional breeding in grapevine is highly challenging owing to its long juvenile phase, higher heterozygosity, linkage drag, stenospermocarpic or parthenocarpic fruits etc. However, ever growing demand owing to its versatile uses and nutritional properties accompanied by emerging challenges due to climate change necessitates the breeding of newer genotypes. Development of newer and better rootstock is also of equal importance. Genome designing using the emerging biotechnological tools offers several ways to solve the problem of traditional grape breeding with greater extent. Designing the grape genome to confer resistance or tolerance to an array of abiotic stresses along with higher berry qualities for both table and processing purpose can make the grape breeders achieve the target within a short time period. This chapter entails the current understanding, applications, achievements and future prospects of various biotechnological tools like marker-assisted gene introgression, molecular mapping, association mapping, map-based cloning, quantitative trait loci (QTLs), genetic engineering, gene editing nanotechnology etc. to design the grape genome particularly for abiotic stress tolerance or resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Hameed UK, Abdelaziz K, El-Sherif N (2020) Genetic diversity of grapevine (Vitis vinifera L.) cultivars in Al-Madinah Al-Munawara based on molecular markers and morphological traits. Bangladesh. J Plant Taxon 27(1):113–127. https://doi.org/10.3329/bjpt.v27i1.47573.

  • Abdel Aziz HF (2018) Salinity stress responses in some grape rootstocks. Ann Agr Sci 56(4th ICBAA):137–144

    Google Scholar 

  • Adam-Blondon AF, Bernole A, Faes G, Lamoureux D, Pateyron S et al (2005) Construction and characterization of BAC libraries from major grapevine cultivars. Theor Appl Genet 110(8):1363–1371

    Article  CAS  PubMed  Google Scholar 

  • Adam-Blondon AF, Roux C, Claux D, Butterlin G, Merdinoglu D et al (2004) Mapping 245 SSR markers on the Vitis vinifera genome: a tool for grape genetics. Theor Appl Genet 109(5):1017–1027

    Article  CAS  PubMed  Google Scholar 

  • Aghaei MJ, Mozafari J, Taleei AR, Naghavi MR, Omidi M (2008) Distribution and diversity of Aegilops tauschii in Iran. Genet Resour Crop Evol 55:341–349. https://doi.org/10.1007/s10722-007-9239-0

    Article  Google Scholar 

  • Agurto M, Schlechter RO, Armijo G, Solano E, Serrano C et al (2017) RUN1 and REN1 pyramiding in grapevine (Vitis vinifera cv. Crimson Seedless) displays an improved defense response leading to enhanced resistance to powdery mildew (Erysiphe necator). Front Plant Sci 8:758

    Google Scholar 

  • Akumo DN, Riedel H, Semtanska I (2013) Social and economic issues – genetically modified food. INTECH, pp 221–229. https://doi.org/10.5772/54478

  • Alba V, Anaclerio A, Gasparro M, Caputo AR, Montemurro C et al (2011) Ampelographic and molecular characterization of Aglianico accessions (Vitis vinifera L.) collected in Southern Italy. S Afr J Enol Vitic 32:164–173. https://doi.org/10.21548/32-2-1376

    Article  CAS  Google Scholar 

  • Alizadeh M, Singh SK (2009) Molecular assessment of clonal fidelity in micropropagated grape (Vitis spp.) rootstock genotypes using RAPD and ISSR markers. Iranian J Biotechnol 7:37–44

    Google Scholar 

  • Alleweldt G, Dettweiler E (1994) The genetic resources of Vitis – world list of grapevine collections. Geilweilerhof, Germany

    Google Scholar 

  • Al–Mousa RN, Hassan NA, Stino RG, Gomaa, AH (2016) In vitro mutagenesis for increasing drought tolerance and molecular characterization in grape (Vitis vinifera L.) cv. “Black Matrouh”. Syrian J Agril Res 3(2):259–275

    Google Scholar 

  • Anonymous (2011) Seeds and farmers’ rights. Dossier for a debate, p 83

    Google Scholar 

  • Anonymous (2012) Cultivation of genetically modified food crops–prospects and effects. 37th reports. Lok Sabha Secretariat, India, pp 198

    Google Scholar 

  • Anonymous (2017) Focus OIV 2017-distribution of the world’s grapevine varieties. OIV - international organization of vine and wine, 18 rue d’Aguesseau, F-75008 Paris – France. www.oiv.int. ISBN: 979–10–91799–89–8

  • Aradhya MK, Dangl GS, Prins BH, Boursiquot JM, Walker MA (2003) Genetic structure and differentiation in cultivated grape, Vitis vinifera L. Genet Res 81:179–182

    Article  CAS  PubMed  Google Scholar 

  • Arrigo N, Arnold C (2007) Naturalised Vitis rootstocks in Europe and consequences to native wild grapevine. PLoS One 2:e521. https://doi.org/10.1371/journal.pone.0000521

    Article  PubMed  PubMed Central  Google Scholar 

  • Arrizabalaga-Arriazu M, Morales F, Irigoyen JJ, Hilbert G, Pascual I (2020) Growth performance and carbon partitioning of grapevine Tempranillo clones under simulated climate change scenarios: elevated CO2 and temperature. J Plant Physiol 252:153226. https://doi.org/10.3389/fpls.2020.603687

    Article  CAS  PubMed  Google Scholar 

  • Arroyo-García R, Ruiz-García L, Bolling L, Ocete R, Lopez MA (2006) Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphims. Mol Ecol 15:3707–3714. https://doi.org/10.1111/j.1365-294X.2006.03049.x

    Article  CAS  PubMed  Google Scholar 

  • Ates F, Coban H, Kara Z, Sabir A (2011) Ampelographic characterization of some grape cultivars (Vitis vinifera L.) grown in south-western region of Turkey. Bulg J Agric Sci 17:314–324

    Google Scholar 

  • Awale M, Anne F, Wright D (2016) Quantitative trait loci analysis of low temperature responses in grapevine F2 population. Thesis dissertation, South Dakota State University

    Google Scholar 

  • Aydemir BC, Özmen CY, Kibar U, Mutaf F, Büyük PB et al (2020) Salt stress induces endoplasmic reticulum stress-responsive genes in a grapevine rootstock. https://doi.org/10.1371/journal.pone.0236424

    Article  Google Scholar 

  • Babellahi F, Jafari A (2016) Ampleography be means of machine vision. Conference article, CIGR-AgEng. Denmark

    Google Scholar 

  • Bacilieri R, Lacombe T, Le Cunff L, Di Vecchi-Staraz M, Laucou V et al (2013) Genetic structure in cultivated grapevines is linked to geography and human selection. BMC Plant Biol. https://doi.org/10.1186/1471-2229-13-25.

  • Badouin H, Velt A, Gindraud F, Flutre T, Dumas V et al (2020) The wild grape genome sequence provides insights into the transition from dioecy to hermaphroditism during grape domestication. Genome Biol 21:223. https://doi.org/10.1186/s13059-020-02131-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai X, Purcell-Milton F, Gun’ko YK (2019) Optical properties, synthesis, and potential applications of Cu–based ternary or quaternary anisotropic quantum dots, polytypic nanocrystals, and core/shell heterostructures. Nanomaterials 9(1):85

    Google Scholar 

  • Balda P, Ibáñez J, Sancha JC, de Toda FM (2014) Characterization and identification of minority red grape varieties recovered in Rioja, Spain. Amer J Enol Vitic 65:148–152

    Article  Google Scholar 

  • Ban Y, Mitani N, Sato A, Kono A, Hayashi T (2016) Genetic dissection of quantitative trait loci for berry traits in interspecific hybrid grape (Vitis labruscana × Vitis vinifera). Euphytica 211(3):295–310

    Article  Google Scholar 

  • Barba P, Cadle-Davidson L, Harriman J, Glaubitz JC, Brooks S et al (2014) Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map. Theor Appl Genet 127(1):73–84. https://doi.org/10.1007/s00122-013-2202-x

    Article  CAS  PubMed  Google Scholar 

  • Barnaud A, Lacombe T, Doligez A (2006) Linkage disequilibrium in cultivated grapevine. Vitis Vinifera l. Theor Appl Genet 112(4):708–716

    Article  CAS  PubMed  Google Scholar 

  • Barnaud A, Laucou V, This P, Lacombe T, Doligez A (2010) Linkage disequilibrium in wild French grapevine. Vitis Vinifera l. Subsp. Silvestris. Heredity 104(5):431–437

    CAS  PubMed  Google Scholar 

  • Basheer-Salimia R, Mujahed A (2019) Genetic diversity of grapevine (Vitis vinifera L.) as revealed by ISSR markers. J Plant Biotechnol 46:1–8

    Article  Google Scholar 

  • Battilana J, Lorenzi S, Moreira FM, Moreno-Sanz P, Failla O et al (2013) Linkage mapping and molecular diversity at the flower sex locus in wild and cultivated grapevine reveal a prominent SSR haplotype in hermaphrodite plants. Mol Biotechnol 54(3):1031–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bavaresco L, Fraschini P, Perino A (1993) Effect of the rootstock on the occurrence of lime-induced chlorosis of potted Vitis vinifera L. cv. “Pinot Blanc.” Plant Soil 157:305–311. https://doi.org/10.1007/BF00011058

    Article  Google Scholar 

  • Bavaresco L, Lovisolo C (2000) Effect of grafting on grapevine chlorosis and hydraulic conductivity. Vitis 39:89–92

    Google Scholar 

  • Bayo-Canha A, Costantini L, Fernández-Fernández JI, Martínez-Cutillas A, Ruiz-García L (2019) QTLs related to berry acidity identified in a wine grapevine population grown in warm weather. Plant Mol Biol Rep 37(3):157–169

    Article  CAS  Google Scholar 

  • Bendich AJ (1987) Why do chloroplasts and mitochondria contain so many copies of their genome? BioEssays 6(6):279–282. https://doi.org/10.1002/bies.950060608

    Article  CAS  PubMed  Google Scholar 

  • Berli F, Bottini R (2013) UV-B and abscisic acid effects on grape berry maturation and quality. J Berry Res 3(1):1–14. https://doi.org/10.3233/JBR-130047

    Article  CAS  Google Scholar 

  • Berli FJ, Fanzone M, Piccoli P, Bottini R (2011) Solar UV-B and ABA are involved in phenol metabolism of Vitis vinifera L. increasing biosynthesis of berry skin polyphenols. J Agric Food Chem 59(9):4874–4884. https://doi.org/10.1021/jf200040z

  • Bernardo S, Dinis LT, Machado N, Moutinho-Pereira J (2018) Grapevine abiotic stress assessment and search for sustainable adaptation strategies in Mediterranean–like climates: a review. Agron Sustain Develop 38(6):1–20

    Article  CAS  Google Scholar 

  • Berrie LC (2011) Genetically modified organisms in the wine industry. A dissertation submitted in partial requirement for the Diploma of Cape Wine Master, Johannesburg, p 88

    Google Scholar 

  • Bert PF, Bordenave L, Donnart M, Hévin C, Ollat N et al (2013) Mapping genetic loci for tolerance to lime-induced iron deficiency chlorosis in grapevine rootstocks (Vitis sp.). Theor Appl Genet 126(2):451–73

    Google Scholar 

  • Biniari K, Stavrakaki M (2019) Genetic study of native grapevine varieties of northern, western and central Greece with the use of ampelographic and molecular methods. Not Bot Horti Agrobot Cluj-Napoca 47:46–53

    Article  CAS  Google Scholar 

  • Blanc S, Wiedemann-Merdinoglu S, Dumas V, Mestre P, Merdinoglu D (2012) A reference genetic map of Muscadinia rotundifolia and identification of Ren5, a new major locus for resistance to grapevine powdery mildew. Theor Appl Genet 125(8):1663–1675

    Article  CAS  PubMed  Google Scholar 

  • Blasi P, Blanc S, Wiedemann-Merdinoglu S, Prado E, Rühl EH et al (2011) Construction of a reference linkage map of Vitis amurensis and genetic mapping of Rpv8, a locus conferring resistance to grapevine downy mildew. Theor Appl Genet 123(1):43–53

    Article  PubMed  Google Scholar 

  • Bock R (2015) Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. Annu Rev Plant Biol 66:211–241. https://doi.org/10.1146/annurev-arplant-050213-040212

    Article  CAS  PubMed  Google Scholar 

  • Bogs J, Jaffe FW, Takos AM, Walker AR, Robinson SP (2007) The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol 143(3):1347–1361

    Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2003) Developing salt tolerant plants in a new century: a molecular biology approach. Plant Cell Tissue Organ Cult 73(2):101–115. https://doi.org/10.1023/A:1022849200433

    Article  CAS  Google Scholar 

  • Bose TK, Mitra SK, Sanyal D (2001) Fruits: tropical and subtropical vol 1, 3rd edn. Naya Udyog

    Google Scholar 

  • Bouquet A, Danglot Y (1996) Inheritance of seedlessness in grapevine (Vitis vinifera L.). Vitis 35(1):35–42

    Google Scholar 

  • Bourquin JC, Tournier P, Ütten L, Walter B (1992) Identification of sixteen grapevine rootstocks by RFLP and RFLP analysis of nuclear DNA extracted from the wood. Vitis 31:157–162

    CAS  Google Scholar 

  • Bowers JE, Meredith CP (1997) The parentage of a classic wine grape, Cabernet Sauvignon. Nat Genet 16:84–87

    Article  CAS  PubMed  Google Scholar 

  • Boynton J, Gillham N, Harris E, Hosler J, Johnson A et al (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240(4858):1534–1538. https://doi.org/10.1126/science.2897716

    Article  CAS  PubMed  Google Scholar 

  • Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ et al (2009) The genetic architecture of maize flowering time. Science 325(5941):714–718

    Article  CAS  PubMed  Google Scholar 

  • Buonassisi D, Colombo M, Migliaro D, Dolzani C, Peressotti E et al (2017) Breeding for grapevine downy mildew resistance: a review of “omics” approaches. Euphytica 213:103

    Article  Google Scholar 

  • Burke DT, Carle GF, Olson MV (1987) Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236:806–812

    Article  CAS  PubMed  Google Scholar 

  • Cadle-Davidson L, Londo J, Martinez D, Sapkota S, Gutierrez B (2019) From phenotyping to phenomics: present and future approaches in grape trait analysis to inform azWsa’ grape gene function. In: Cantu D, Walker MA (eds) The grape genome, compendium of plant genomes. Springer Nature Switzerland, pp 199–222. https://doi.org/10.1007/978-3-030-18601-2_10

  • Cai B, Li CH, Xiong AS, Peng RH, Zhou J et al (2008) DGTF: a database of grape transcription factors. J Amer Soc Hortic Sci 133(3):459–461

    Article  Google Scholar 

  • Caldwell MM, Ballaré CL, Bornman JF (2003) Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climatic change factors. Photochem Photobiol Sci 2:29–38. https://doi.org/10.1039/b700019g

    Article  CAS  PubMed  Google Scholar 

  • Canaguier A, Grimplet J, Di Gaspero G, Scalabrin S, Duchene E et al (2017) A new version of the grapevine reference genome assembly (12X.v2) and of its annotation (VCost.v3). Genom Data 14(Supplement C):56–62. https://doi.org/10.1016/j.gdata.2017.09.002

  • Canoura C, Kelly MT, Ojeda H (2018) Effect of irrigation and timing and type of nitrogen application on the biochemical composition of Vitis vinifera L. cv. Chardonnay and Syrah Grapeberries. Food Chem 241:171–181

    Article  CAS  PubMed  Google Scholar 

  • Carbonneau A (1985) The early selection of grapevine rootstocks for resistance to drought conditions. Am J Enol Vitic 36(3):195–198

    Google Scholar 

  • Carvalho LC, Vidigal P, Amancio S (2015) Oxidative stress homeostasis in grapevine (Vitis vinifera L.). Front Environ Sci 3:20. https://doi.org/10.3389/fenvs.2015.00020

  • Castro AJ, Carapito C, Zorn N (2005) Proteomic analysis of grapevine (Vitis vinifera L.) tissues subjected to herbicide stress. J Exp Bot 56:2783–2795

    Article  CAS  PubMed  Google Scholar 

  • Celik H, Kose B, Cangi R (2008) Determination of fox grape genotypes (Vitis labrusca L.) grown in Northeastern Anatolia. Hort Sci 35:162–170

    Google Scholar 

  • Cervera MT, Cabezas JA, Sancha JC, Martinez de Toda F, Martinez-Zapater JM (1998) Application of AFLPs to the characterization of grapevine Vitis vinifera L. genetic resources. A case study with accessions from Rioja (Spain). Theor Appl Genet 97:51–59

    Article  CAS  Google Scholar 

  • Charlotte S (2010) Genetic diversity.Avaialable from http://www.coastalwiki.org/wiki/Genetic_diversity. Accessed on 4-03-2021

    Google Scholar 

  • Chauvet M, Reynier AA (1979) Manuel de Viticulture. Bailiere, Paris

    Google Scholar 

  • Chaves MM, Zarrouk O, Francisco R (2010) Grapevine under deficit irrigation: hints from physiological and molecular data. Ann Bot 105:661–676. https://doi.org/10.1093/aob/mcq030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JF, Cui L, Malik AA, Mbira KG (2011) In vitro haploid and dihaploid production via unfertilized ovule culture. Plant Cell Tiss Org Cult 104(3):311–319

    Article  Google Scholar 

  • Chin CS, Alexander DH, Marks P, Klammer AA, Drake J et al (2013) Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10(6):563–569. https://doi.org/10.1038/nmeth.2474

  • Chitwood DH (2021) The shapes of wine and table grape leaves: an ampelometric study inspired by the methods of Pierre Galet. Plants People Planet. 3:155–170. https://doi.org/10.1002/ppp3.10157

    Article  Google Scholar 

  • Chitwood DH, Ranjan A, Martinez CC, Headland LR, Thiem T et al (2014) A modern ampelography: a genetic basis for leaf shape and venation patterning in grape. Plant Physiol 164:259–272. https://doi.org/10.1104/pp.113.229708

    Article  CAS  PubMed  Google Scholar 

  • Chlueter SD, Wilkerson MD, Dong Q, Brendel V (2006) xGDB: open-source computational infrastructure for the integrated evaluation and analysis of genome features. Genome Biol 7(11):R111. https://doi.org/10.1186/gb-2006-7-11-r111

    Article  CAS  Google Scholar 

  • Cho KH, Bae KM, Noh JH, Shin IS, Kim SH et al (2011) Genetic diversity and identification of Korean, grapevine cultivars using SSR markers. Korean J Breed Sci 43:422–429

    Google Scholar 

  • Choi SD, Creelman R, Mullet J, Wing RA (1995) Construction and characterization of a bacterial artificial chromosome library from Arabidopsisthaliana. Weed World 2:17–20

    CAS  Google Scholar 

  • Cipriani G, Gaspero GD, Canaguier A, Jusseaume J, Tassin J et al (2011) Molecular linkage maps: strategies, resources and achievements. In: Adam-Blondon A-F, Martinez-Zapater JM, Kole C (eds) Genetics, genomics and breeding of grapes. Science Publishers and CRC Press, pp 111–136

    Google Scholar 

  • Cipriani G, Spadotto A, Jurman I, Di Gaspero G, Crespan M et al (2010) The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymys and parentages, and reveals a large admixture amongst varieties of different geographic origin. Theor Appl Genet 121:1569–1585

    Article  PubMed  Google Scholar 

  • Clark MD, Teh SL, Burkness E, Moreira L, Watson G et al (2018) Quantitative trait loci identified for foliar phylloxera resistance in a hybrid grape population. Austral J Grape Wine Res 24(3):292–300

    Article  CAS  Google Scholar 

  • Cochetel N, Escudie F, Cookson SJ, Dai Z, Vivin P et al (2017) Root transcriptomic responses of grafted grapevines to heterogeneous nitrogen availability depend on rootstock genotype. J Expl Bot 68(15):4339–4355

    Article  CAS  Google Scholar 

  • Cochetel N, Ghan R, Toups HS (2020) Drought tolerance of the grapevine, Vitis champinii cv. Ramsey, is associated with higher photosynthesis and greater transcriptomic responsiveness of abscisic acid biosynthesis and signaling. BMC Plant Biol 20:55. https://doi.org/10.1186/s12870-019-2012-7

  • Cochetel N, Météier E, Merlin I, Hévin C, Pouvreau JB et al (2018) Potential contribution of strigolactones in regulating scion growth and branching in grafted grapevine in response to nitrogen availability. J Exp Bot 69(16):4099–4112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coelho I, Cunha J, Cunha JP, Carneiro LC, Castro R et al (2004) Ampelometric comparison of wild vine Vitis vinifera L. populations and old grapevine cultivars of the south of Portugal. Ciência Téc Vitiv 19:1–12

    Google Scholar 

  • Cohen SD, Tarara JM, Kennedy JA (2008) Assessing the impact of temperature on grape phenolic metabolism. Anal Chim Acta 621(1):57–67. https://doi.org/10.1016/j.aca.2007.11.029

  • Conesa MR, de la Rosa JM, F, Artés-Hernandez (2015) Long-term impact of deficit irrigation on the physical quality of berries in ‘“Crimson Seedless”’ table grapes. J Sci Food Agric 95:2510–2520. https://doi.org/10.1002/jsfa.6983

  • Cooper HD (2002) The international treaty on plant genetic resources for food and agriculture. Reciel 11(1):1–16

    Google Scholar 

  • Corso M, Bonghi C (2014) Grapevine rootstock effects on abiotic stress tolerance. Plant Sci Today 1(3):108–113

    Google Scholar 

  • Costantini E, Landi L, Silvestroni O, Pandolfini T, Spena A et al (2007) Auxin synthesis-encoding transgene enhances grape fecundity. Plant Physiol 143(4):1689–1694. https://doi.org/10.1104/pp.106.095232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coupel-Ledru A, Lebon É, Christophe A, Doligez A, Cabrera-Bosquet L et al (2014) Genetic variation in a grapevine progeny (Vitis vinifera L. cvs Grenache × Syrah) reveals inconsistencies between maintenance of daytime leaf water potential and response of transpiration rate under drought. J Exp Bot 65(21):6205–6218

    Google Scholar 

  • Coupel-Ledru A, Lebon E, Christophe A, Gallo A, Gago P et al (2016) Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine. Proc Natl Acad Sci 113:8963–8968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cousins P (2005) Evolution, genetics, and breeding: viticultural applications of the origins of our rootstocks. In: Proceedings of the 2005 rootstocks symposium–grapevine rootstocks: current use, research, and application, pp 1–7

    Google Scholar 

  • Covarrubias J, Rombola A (2013) Physiological and biochemical responses of the iron chlorosis tolerant grapevine rootstock 140 Ruggeri to iron deficiency and bicarbonate. Plant Soil 370:305–315. https://doi.org/10.1007/s11104-013-1623-2

    Article  CAS  Google Scholar 

  • Cramer G, Ergul A, Grimplet J, Tillett R, Tattersall ER et al (2007a) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Func Integ Genom 7:111–134. https://doi.org/10.1007/s10142-006-0039-y

    Article  CAS  Google Scholar 

  • Cramer GR, Ergül A, Grimplet J (2007b) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genom 7:111–134

    Article  CAS  Google Scholar 

  • Cramer GR (2010) Abiotic stress and plant responses from the whole vine to the genes. Austral J Grape Wine Res 16:86–93

    Article  CAS  Google Scholar 

  • Crespan M (2003) The parentage of Muscat of Hamburg. Vitis 42:193–197

    CAS  Google Scholar 

  • Cunha J, Baleiras Couto M, Cunha JP, Banza J, Soveral A et al (2007) Characterization of Portuguese populations of Vitis vinifera L. ssp. sylvestris (Gmelin) Hegi. Genet Resour Crop Evol 54:981–988

    Article  Google Scholar 

  • Cunha J, Ibáñez J, Teixeira-Santos M, Brazão J, Fevereiro P et al (2020) Genetic relationships among Portuguese cultivated and Wild Vitis vinifera L. Germplasm. Front Plant Sci 11:127

    Article  PubMed  Google Scholar 

  • Cunha J, Teixeira-Santos M, Carneiro LC, Fevereiro P, Eiras-Dias JE (2009) Portuguese traditional grapevine cultivars and wild vines (Vitis vinifera L.) share morphological and genetic traits. Genet Resour Crop Evol 56:975–989

    Article  Google Scholar 

  • D’Onofrio C (2020) Introgression among cultivated and wild grapevine in Tuscany. Front Plant Sci 11:202

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalbo MA, Ye G-N, Weeden NF, Steinkellner H, Sefc KM et al (2000) A gene controlling sex in grapevines placed on a molecular marker-based genetic map. Genome 43:333–340

    Article  CAS  PubMed  Google Scholar 

  • Daniell H, Lin CS, Yu M, Chang WJ (2016) Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 17(1):1–19. https://doi.org/10.1186/s13059-016-1004-2

    Article  CAS  Google Scholar 

  • Darriet P, Thibon C, Rauhut D, Schuttler A, Allamy L et al (2017) What is the expected impact of climate change on wine aroma compounds and their precursors in grape? OENO One 51(2):141–146. https://doi.org/10.20870/oeno-one.2017.51.2.1868

  • Das P, Majumdar AL (2019) Transcriptome analysis of grapevine under salinity and identification of key genes responsible for salt tolerance. Funct Integr Genom 19(1):61–73. https://doi.org/10.1007/s10142-018-0628-6

    Article  CAS  Google Scholar 

  • Davey MW, Montagu M, Inze D, Sanmartin M, Kanellis A et al (2000) Plant L-ascorbic acid: Chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric 80:825–860

    Article  CAS  Google Scholar 

  • de Herralde F, Savé R, Biel C (2005) Ecophysiological response to flood of seven grapevine cultivars. Acta Hortic 689:137–144. https://doi.org/10.17660/ActaHortic.2005.689.13

    Article  Google Scholar 

  • Decroocq V, Favé MG, Hagen L, Bordenave L, Decroocq S (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet 106:912–922

    Article  CAS  PubMed  Google Scholar 

  • Deluc LG, Quilici DR, Decendit A, Grimplet J, Wheatley MD et al (2009) Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genom 10:212. https://doi.org/10.1186/1471-2164-10-212

    Article  CAS  Google Scholar 

  • Dettweiler E, Jung A, Zyprian E, Topfer R (2000) Grapevine cultivar Müller-Thurgau and its true to type descent. Vitis 2:63–65

    Google Scholar 

  • Dev R, Singh SK, Singh R, Singh AK, Patel VB et al (2021) Assessment of genetic diversity of grape mutants based on RAPD and SSR markers. Indian J Hort 78(1):17–24

    Article  Google Scholar 

  • Dhekney SA, Li ZT, Gray DJ (2011) Grapevines engineered to express cisgenic Vitis vinifera thaumatin-like protein exhibit fungal disease resistance. In Vitro Cell Dev Biol Plant 47:458–466. https://doi.org/10.1007/s11627-011-9358-3

    Article  CAS  Google Scholar 

  • Di Genova A, Almeida AM, Muñoz-Espinoza C (2014) Whole genome comparison between table and wine grapes reveals a comprehensive catalog of structural variants. BMC Plant Biol 14:7. https://doi.org/10.1186/1471-2229-14-7

  • Divilov K, Barba P, Cadle-Davidson L, Reisch BI (2018) Single and multiple phenotype QTL analyses of downy mildew resistance in interspecific grapevines. Theor Appl Genet 131(5):1133–1143

    Article  PubMed  PubMed Central  Google Scholar 

  • Dodd IC, Theobald JC, Bacon MA, Davies WJ (2006) Alternation of wet and dry sides during partial rootzone drying irrigation alters root-to-shoot signalling of abscisic acid. Funct Plant Biol 33:1081. https://doi.org/10.1071/FP06203

    Article  CAS  PubMed  Google Scholar 

  • Doddapaneni H, Lin H, Walker MA, Yao J, Civerolo EL (2008) VitisExpDB: a database resource for grape functional genomics. BMC Plant Biol 8(1):1–10

    Article  Google Scholar 

  • Doligez A, Audiot E, Baumes R, This P (2006) QTLs for muscat flavor and monoterpenic odorant content in grapevine (Vitis vinifera L.). Mol Breed 18(2):109–125

    Google Scholar 

  • Doligez A, Bouquet A, Danglot Y, Lahogue F, Riaz S et al (2002) Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theor Appl Genet 105:780–795

    Article  CAS  PubMed  Google Scholar 

  • Doucleff M, Jin Y, Gao F, Riaz S, Krivanek AF et al (2004) A genetic linkage map of grape, utilizing Vitis rupestris and Vitis arizonica. Theor Appl Genet 109(6):1178–1187

    Article  CAS  PubMed  Google Scholar 

  • Doulati Baneh H, Mohammadi SA, Labra M, Shafaie F (2015) Genetic diversity of wild grape (Vitis vinifera ssp. sylvestris) populations in Zagros forests as revealed by SSR markers. Acta Hortic 1082:189–194. https://doi.org/10.17660/ActaHortic.2015.1082.25

    Article  Google Scholar 

  • Downey MO, Dokoozlian NK, Krstic M (2006) Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: a review of recent research. Amer J Enol Vitic 57:257–268

    Article  CAS  Google Scholar 

  • Du T, Kang S, Zhang J (2008) Water use efficiency and fruit quality of table grape under alternate partial root-zone drip irrigation. Agric Water Manag 95:659–668. https://doi.org/10.1016/j.agwat.2008.01.017

    Article  Google Scholar 

  • Duchene E, Huard F, Dumas V, Schneider C, Merdinoglu D (2010) The challenge of adapting grapevine varieties to climate change. Clim Res 41:193–204

    Article  Google Scholar 

  • Dunlevy JD, Dennis EG, Soole KL, Perkins MV, Davies C et al (2013) A methyltransferase essential for the methoxypyrazine derived flavour of wine. Plant J 75(4):606–617

    Article  CAS  PubMed  Google Scholar 

  • Ekhvaia J, Akhalkatsi M (2010) Morphological variation and relationships of Georgian populations of Vitis vinifera L. subsp. sylvestris (C.C. Gmel.) Hegi. Flora 205:608–617

    Article  Google Scholar 

  • El-Ansary D, Okamoto G (2008) Improving table grape quality with less irrigation water in Japan: partial root-zone drying versus regulated deficit irrigation. Acta Hortic 792:265–271. https://doi.org/10.17660/ActaHortic.2008.792.30

    Article  CAS  Google Scholar 

  • Emanuelli F, Battilana J, Costantini L, Le Cunff L, This P et al (2010) A candidate gene association study for Muscat flavor in grapevine Vitis vinifera L. BMC Plant Biol 10:241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Emanuelli F, Lorenzi S, Grzeskowiak L, Catalano V, Stefanini M et al (2013) Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol 13:1–17

    Article  CAS  Google Scholar 

  • English M (1990) Deficit irrigation. I: analytical framework. J Irrig Drain Eng 116:399–412. https://doi.org/10.1061/(ASCE)0733-9437(1990)116:3(399)

    Article  Google Scholar 

  • Ewens WJ (2013) Genetic variation. In: Maloy S, Hughes K (eds) Brenner's encyclopedia of genetics, 2nd edn. Academic Press, pp 290–291. ISBN 9780080961569

    Google Scholar 

  • FAO (2019). http://www.fao.org/faostat/en/#data/QC/visualize

  • FAO, IFAD, UNICEF, WFP and WHO (2018) The state of food security and nutrition in the World 2018. Building climate resilience for food security and nutrition. FAO, Rome

    Google Scholar 

  • Fasoula DA, Ioannides IM, Omirou M (2020) Phenotyping and plant breeding: overcoming the barriers. Front Plant Sci 10:1713. https://doi.org/10.3389/fpls.2019.01713

    Article  PubMed  PubMed Central  Google Scholar 

  • Fatahi R, Ebadi A, Bassil N, Mehlenbacher SA, Zamani Z (2003) Characterization of Iranian grapevine cultivars using microsatellite markers. Vitis 42:185–192. https://doi.org/10.5073/vitis.2003.42.185-192

    Article  CAS  Google Scholar 

  • Fatahi R, Ebadi A, Vezvaei A, Ghannadha MR, Zamani Z (2004) Relationship among quantitative and qualitative characters in 90 grapevine (Vitis vinifera) cultivars. Acta Hortic 640:275–282. https://doi.org/10.17660/ActaHortic.2004.640.33

    Article  Google Scholar 

  • Feechan A, Anderson C, Torregrosa L, Jermakow A, Mestre P, Wiedemann-Merdinoglu S, Dry IB (2013) Genetic dissection of a TIR-NB-LRR locus from the wild North American grapevine species Muscadinia rotundifolia identifies paralogous genes conferring resistance to major fungal and oomycete pathogens in cultivated grapevine. The Plant J 76(4):661–674. https://doi.org/10.1111/tpj.12327

    Article  CAS  PubMed  Google Scholar 

  • Feechan A, Kocsis M, Riaz S, Zhang W, Gadoury DM, Walker MA, Cadle-Davidson L (2015) Strategies for RUN1 deployment using RUN2 and REN2 to manage grapevine powdery mildew informed by studies of race specificity. Phytopatho 105(8):1104–1113. https://doi.org/10.1094/PHYTO-09-14-0244-R

    Article  CAS  Google Scholar 

  • Fereres E, Soriano MA (2007) Deficit irrigation for reducing agricultural water use. J Exp Bot 58:147–159. https://doi.org/10.1093/jxb/erl165

    Article  CAS  PubMed  Google Scholar 

  • Ferrandino A, Lovisolo C (2014) Abiotic stress effects on grapevine (Vitis vinifera L.): focus on abscisic acid–mediated consequences on secondary metabolism and berry quality. Environ Exp Bot 103:138–147. https://doi.org/10.1016/j.envexpbot.2013.10.012

    Article  CAS  Google Scholar 

  • Figueroa-Balderas R, Minio A, Morales-Cruz A, Vondras AM, Cantu D (2019) Strategies for sequencing and assembling grapevine genomes. In: Cantu D, Walker MA (eds) The grape genome, compendium of plant genomes. Springer Nature Switzerland, pp 77–88. https://doi.org/10.1007/978-3-030-18601-2_5

  • Fisarakis I, Chartzoulakis K, Stavrakas D (2001) Response of Sultana vines (V. vinifera L.) on six rootstocks to NaCl salinity exposure and recovery. Agric Water Manag 51:13–27. https://doi.org/10.1016/S0378-3774(01)00115-9

    Article  Google Scholar 

  • Flexas J, Barón M, Bota J, Ducruet JM, Galle A, Galmés J, Medrano H (2009) Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri × V. rupestris). J Exp Bot 60:2361–2377. https://doi.org/10.1093/jxb/erp069PMid:19351904

    Article  CAS  PubMed  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Article  CAS  PubMed  Google Scholar 

  • Fodor A, Segura V, Denis M, Neuenschwander S, Fournier-Level A et al (2014) Genome-wide prediction methods in highly diverse and heterozygous species: proof-of-concept through simulation in grapevine. PLoS One 9(11):e110436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fournier-Level A, Lacombe T, Le Cunff L, Boursiquot JM, This P (2010) Evolution of the VvMYbA gene family, the major determinant of berry colour in cultivated grapevine (Vitis vinifera L.). Heredity 104:351–362

    Article  CAS  PubMed  Google Scholar 

  • Fraga H, Malheiro AC, Moutinho-Pereira J, Santos JA (2012a) An overview of climate change impacts on European viticulture. Food Energy Sec 1(2):94–110. https://doi.org/10.1002/fes3.14

    Article  Google Scholar 

  • Fraga H, Malheiro AC, Moutinho-Pereira J, Santos JA (2012b) Future scenarios for viticultural zoning in Europe: ensemble projections and uncertainties. Int J Biometeorol 57:909–925

    Article  Google Scholar 

  • Franco J, Crossa J, Taba S, Shands H (2005) A sampling strategy for conserving genetic diversity when forming core subsets. Crop Sci 45:1035–1044

    Article  Google Scholar 

  • Franco Mora O, Morales Rosales EJ, Gonzalez-Huerta A (2008) Vegetative characterization of wild grapevines (Vitis ssp.) native to Puebla, Mexico. Hort Sci 43(7):1991–1995

    Google Scholar 

  • Fu P, Tian Q, Lai G, Li R, Song S, Lu J (2019) Cgr1, a ripe rot resistance QTL in Vitis amurensis ‘Shuang Hong’grapevine. Hortic Res 6(1):1–9

    Article  CAS  Google Scholar 

  • Fuentes S, Hernández-Montes E, Escalona JM, Bota J, Gonzalez Viejo C et al (2018) Automated grapevine cultivar classification based on machine learning using leaf morpho-colorimetry, fractal dimension and near-infrared spectroscopy parameters. Comp Electron Agric 151:311–318. https://doi.org/10.1016/j.compag.2018.06.035

    Article  Google Scholar 

  • Furbank RT, Tester M (2011) Phenomics-technologies to relieve the phenotyping bottleneck. Trend Plant Sci 16(12):635–644. https://doi.org/10.1016/j.tplants.2011.09.005

    Article  CAS  Google Scholar 

  • Galmes J, Pou A, Alsina M, Tomàs M, Medrano H et al (2007) Aquaporin expression in response to different water stress intensities and recovery in Richter-110 (Vitis sp.): relationship with ecophysiological status. Planta 226:671–681. https://doi.org/10.1007/s00425-007-0515-1

    Article  CAS  PubMed  Google Scholar 

  • Gambetta GA, Manuck CM, Drucker ST, Shaghasi T, Fort K et al (2012) The relationship between root hydraulics and scion vigour across Vitis rootstocks: what role do root aquaporins play ? J Exp Bot 63:64456455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia de Cortazar-Atauri I, Duchêne E, Destrac A, Barbeau G, de Resseguier L et al (2017) Grapevine phenology in France: from past observations to future evolutions in the context of climate change. OENO One 51:115

    Article  Google Scholar 

  • Garcia-Muñoz S, Muñoz-Organero G, de Andres MT, Cabello F (2011) Ampelography an old technique with future uses: the case of minor varieties of Vitis vinifera L. from the Balearic Islands. J Int Sci Vigne Vin 45(3):125–137

    Google Scholar 

  • García-Tejero IF, Durán-Zuazo VH, Muriel-Fernández JL (2014) Towards sustainable irrigated Mediterranean agriculture: implications for water conservation in semi-arid environments. Water Int 39:635–648. https://doi.org/10.1080/02508060.2014.931753

  • Garris A, Clark L, Owens C, McKay S, Luby J, Mathiason K, Fennell A (2009) Mapping of photoperiod-induced growth cessation in the wild grape Vitis riparia. J Amer Soc Hortic Sci 134(2):261–272

    Article  Google Scholar 

  • Gascuel Q, Diretto G, Monforte AJ, Fortes AM, Granell A (2017) Use of natural diversity and biotechnology to increase the quality and nutritional content of tomato and grape. Frontiers Plant Sci 8:652. https://doi.org/10.3389/fpls.2017.00652

    Article  Google Scholar 

  • Gautier A, Cookson SJ, Hevin C, Vivin P, Lauvergeat V, Mollier A (2018) Phosphorus acquisition efficiency and phosphorus remobilization mediate genotype-specific differences in shoot phosphorus content in grapevine. Tree Physiol 38(11):1742–1751

    CAS  PubMed  Google Scholar 

  • Geier T, Eimert K, Scherer R, Nickel C (2008) Production and rooting behaviour of rolB-transgenic plants of grape rootstock ‘Richter 110’ (Vitis berlandieri × V. rupestris). Plant Cell Tissue Organ Cult 94(3):269–280. https://doi.org/10.1007/s11240-008-9352-6

  • George IS, Fennell AY, Haynes PA (2018) Shotgun proteomic analysis of photoperiod regulated dormancy induction in grapevine. J Proteom 187:13–24

    Article  CAS  Google Scholar 

  • Ghadakchi AA, Mozafari AA, Ghaderi N (2019) Iron nanoparticles and potassium silicate interaction effect on salt–stressed grape cuttings under in vitro conditions: a morphophysiological and biochemical evaluation. In Vitro Cell Develop Biol Plant 55(5):510–518

    Article  CAS  Google Scholar 

  • Gil M, Pontin M, Berli F, Bottini R, Piccoli P (2012) Metabolism of terpenes in the response of grape (Vitis vinifera L.) leaf tissues to UV-B radiation. Phytochem 77:89–98. https://doi.org/10.1016/j.phytochem.2011.12.011

    Article  CAS  Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Chang 63(2–3):90–104. https://doi.org/10.1016/j.gloplacha.2007.09.005

  • Gohari G, Panahirad S, Sadeghi M, Akbari A, Zareei E et al (2021) Putrescine–functionalized carbon quantum dot (put–CQD) nanoparticles effectively prime grapevine (Vitis vinifera cv.‘Sultana’) against salt stress. BMC Plant Biol 21(1):1–15

    Google Scholar 

  • Grando MS, Bellin D, Edwards KJ, Pozzi C, Stefanini M et al (2003) Molecular linkage maps of Vitis vinifera L. and Vitis riparia Mchx. Theor Appl Genet 106(7):1213–1224

    Google Scholar 

  • Grimplet J, Wheatley MD, Jouira HB et al (2009) Proteomic and selected metabolite analysis of grape berry tissues under well-watered and water-deficit stress conditions. Proteomics 9:2503–2528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gualberto JM, Newton KJ (2017) Plant Mitochondrial genomes: dynamics and mechanisms of mutation. Annu Rev Plant Biol 68:225–252. https://doi.org/10.1146/annurev-arplant-043015-112232

    Article  CAS  PubMed  Google Scholar 

  • Guillaumie S, Decroocq S, Ollat N, Delrot S, Gomès E et al (2020) Dissecting the control of shoot development in grapevine: genetics and genomics identify potential regulators. BMC Plant Biol 20(1):1–5

    Article  CAS  Google Scholar 

  • Guo D, Zhao HL, Li Q, Zhang GH, Jiang JF et al (2019) Genome-wide association study of berry- related traits in grape [Vitis vinifera L.] based on genotyping-by-sequencing markers. Hortic Res 6:11

    Google Scholar 

  • Guo DL, Zhang JY, Liu CH (2012) Genetic diversity in some grape varieties revealed by SCoT analyses. Mol Biol Rep 39(5):5307–5313. https://doi.org/10.1007/s11033-011-1329-6

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez-Gamboa G, Zheng W, Martínez de Toda F (2021) Current viticultural techniques to mitigate the effects of global warming on grape and wine quality: a comprehensive review. Food Res Int 139:109946. https://doi.org/10.1016/j.foodres.2020.109946

    Article  CAS  PubMed  Google Scholar 

  • Haider MS, Zhang C, Kurjogi MM, Pervaiz T, Zheng T et al (2017) Insights into grapevine defense response against drought as revealed by biochemical, physiological and RNA-Seq analysis. Sci Rep 7(1):1–15

    Article  CAS  Google Scholar 

  • Hamblin MT, Warburton ML, Buckler ES (2007) Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness. PLoS One 2:e1367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han Y, Korban S (2016) Strategies for map-based cloning in apple. Crit Rev Plant Sci 29:265–284

    Article  CAS  Google Scholar 

  • Hannah L, Roehrdanz PR, Ikegami M, Shepard AV, Shaw MR et al (2013) Climate change, wine, and conservation. Proc Natl Acad Sci 110(17):6907–6912. https://doi.org/10.1073/pnas.1210127110

  • Harbi-Ben Slimane M, Snoussi H, Bouhlal R, Nahdi H (2010) Ampelometry to test for genetic diversity in Tunisian Vitis sylvestris. Afr J Plant Sci Biotechnol 4:17–22

    Google Scholar 

  • Harris ZN, Kovacs LG, Londo JP (2017) RNA-seq-based genome annotation and identification of long-noncoding RNAs in the grapevine cultivar ‘Riesling.’ BMC Genomics 18(1):1–2

    Article  CAS  Google Scholar 

  • Harrison MA (2013) Cross-talk between phytohormone signaling pathways under both optimal and stressful environmental conditions. In: Phytohormones and abiotic stress tolerance in plants. Springer, Berlin, Heidelberg, pp 49–76

    Google Scholar 

  • Hasan M, Abdullah HM (2015) Plant genetic resources and traditional knowledge: emerging needs for conservation. In: Salgotra RK, Gupta BB (eds) Plant genetic resources

    Google Scholar 

  • Hasan S (2015) A review on nanoparticles: their synthesis and types. Res J Recent Sci 2277:1–3

    Google Scholar 

  • Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Henderson SW, Dunlevy JD, Wu Y, Blackmore DH, Walker RR et al (2018) Functional differences in transport properties of natural HKT 1; 1 variants influence shoot Na+ exclusion in grapevine rootstocks. New Phytol 217(3):1113–1127

    Article  CAS  PubMed  Google Scholar 

  • Hofäcker W (2004) Ergebnisse und Überlegungen zum Einfluss der Unterlage auf Ertrag und Qualität der Rebe. Deutsches Weinbau-Jahrbuch Ulmer Verlag Stuttgart, pp 175–183

    Google Scholar 

  • Hou L, Zhang G, Zhao F et al (2018) VvBAP1 is involved in cold tolerance in Vitis vinifera L. Front Plant Sci 9:726

    Article  PubMed  PubMed Central  Google Scholar 

  • Hvarleva T, Bakalova A, Rusanov K, Diakova G, Ilieva I et al (2009a) Toward marker assisted selection for fungal disease resistance in grapevine. Biotech Biotech Equip 23(4):1431–1435. https://doi.org/10.2478/V10133-009-0008-4

    Article  CAS  Google Scholar 

  • Hvarleva TD, Russanov KE, Bakalova AT, Zhiponova MK, Djakova GJ et al (2009b) Microsatellite linkage map based on F2 population from Bulgarian grapevine cultivar Storgozia. Biotechnol Biotechnol Equip 23(1):1126–1130

    Article  CAS  Google Scholar 

  • Hwang CF, Xu K, Hu R, Zhou R, Riaz S et al (2010) Cloning and characterization of XiR1, a locus responsible for dagger nematode resistance in grape. Theor Appl Genet 121(4):789–799. https://doi.org/10.1007/s00122-010-1349-y

  • Ibrahim AK, Zhang L, Niyitanga S, Afzal MZ, Xu Y et al (2020) Principles and approaches of association mapping in plant breeding. Tropical Plant Biol 13:212–224

    Article  Google Scholar 

  • Ibrahim SD, Adawy SS, Atia MAM, Alsamman AM, Mokhtar MM (2016) Genetic diversity, variety identification and gene detection in some Egyptian grape varieties by SSR and SCoT markers. Plant Omics 9:311–318

    Article  CAS  Google Scholar 

  • Ichinose M, Sugita M (2017) RNA editing and its molecular mechanism in plant organelles. Genes (Basel) 8(1):5. https://doi.org/10.3390/genes8010005

  • Iglesias A, Avis K, Benzie M, Fisher P, Harley M et al (2007) Adaptation to climate change in the agricultural sector. AEA Ener Environ ED05334(1):137

    Google Scholar 

  • Imazio S, Labra M, Grassi F, Winfield M, Bardini M et al (2002) Molecular tools for clone identification: the case of the grapevine cultivar Traminer. Plant Breed 121:531–535

    Article  CAS  Google Scholar 

  • Imazio S, Maghradze D, De Lorenzis G (2013) From the cradle of grapevine domestication: molecular overview and description of Georgian grapevine (Vitis vinifera L.) germplasm. Tree Genet Genom 9:641–658. https://doi.org/10.1007/s11295-013-0597-9

  • Ioannou PA, Amemiya CT, Garnes J, Kroisel PM, Shizuya H et al (1994) A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nat Genet 6:84–89

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2007) Climate change 2007: fourth assessment report of the intergovernmental panel on climate change (IPCC), WMO, UNEP

    Google Scholar 

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Summaries, frequently asked questions, and cross–chapter boxes. A contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change, p 190

    Google Scholar 

  • IPGRI, UPOV, OIV (1997) Descriptors for grapevine (Vitis spp.). international union for the protection of new varieties of plants, geneva, switzerland/office international de la Vigne et du Vin, Paris, France. International Plant Genetic Resources Institute, Rome, Italy

    Google Scholar 

  • Iqbal Z, Sarkhosh A, Balal RM, Gomez C, Zubair M, Ilyas N, Shahid MA (2020) Silicon alleviate hypoxia stress by improving enzymatic and non–enzymatic antioxidants and regulating nutrient uptake in muscadine grape (Muscadinia rotundifolia Michx.). Front Plant Sci 11:1–16. https://doi.org/10.3389/fpls.2020.618873

    Article  Google Scholar 

  • Isah T (2019) Stress and defence responses in plant secondary metabolites production. Biol Res 52:39. https://doi.org/10.1186/s40659-019-0246-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ismail A, Riemann M, Nick P (2012) The jasmonate pathway mediates salt tolerance in grapevines. J Exp Bot 63:2127–2139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ismail A, Seo M, Takebayashi Y, Kamiya Y, Eiche E et al (2013) Salt adaptation requires efficient fine-tuning of jasmonate signalling. Protop, pp 1–18.

    Google Scholar 

  • Jaillon O, Aury J-M, Noel B et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467. https://doi.org/10.1038/nature06148

    Article  CAS  PubMed  Google Scholar 

  • Jayasankar S, Li Z, Gray DJ (2000) In-vitro selection of Vitis vinifera Chardonnay with Elsinoe ampelina culture filtrate is accompanied by fungal resistance and enhanced secretion of chitinase. Planta 211(2):200–208. https://doi.org/10.1007/s004250000285

    Article  CAS  PubMed  Google Scholar 

  • Jellouli N, Ben Jouira H, Skouri H (2008) Proteomic analysis of Tunisian grapevine cultivar Razegui under salt stress. J Plant Physiol 165:471–481

    Article  CAS  PubMed  Google Scholar 

  • Jie Y, Yang H, Zhao H, Zhang W, Li D (2008) Promotion of proline accumulation in apple leaves by bioregulators. Acta Hortic 774:237–242

    CAS  Google Scholar 

  • Jiménez S, Gogorcena Y, Hévin C, Rombolà AD, Ollat N (2007) Nitrogen nutrition influences some biochemical responses to iron deficiency in tolerant and sensitive genotypes of Vitis. Plant Soil 290:343–355.

    Google Scholar 

  • Jiménez-Cantizano A, Muñoz-Martín A, Amores-Arrocha A, Sancho-Galán P, Palacios V (2020) Identification of red grapevine cultivars (Vitis vinifera L.) preserved in ancient vineyards in Axarquia (Andalusia, Spain). Plant 9 (11):1572

    Google Scholar 

  • Jin WM, Dong J, Hu YL, Lin ZP, Xu XF et al (2009) Improved cold–resistant performance in transgenic grape (Vitis vinifera L.) overexpressing cold–inducible transcription factors AtDREB1b. Hortic Sci 44:35–39

    Google Scholar 

  • Jin S, Daniell H (2015) The engineered chloroplast genome just got smarter. Trends in Plant Sci 20(10):622–640. https://doi.org/10.1016/j.tplants.2015.07.004

  • Johnston IG (2019) Tension and resolution: dynamic, evolving populations of organelle genomes within plant cells. Mol Plant 12(6):764–783

    Google Scholar 

  • Jones GV, White MA, Cooper OR, Storchmann K (2005) Climate change and global wine quality. Clim Chang 73(3):319–343. https://doi.org/10.1007/s10584-005-4704-2

    Google Scholar 

  • Ju YL, Yue XF, Min Z, Wang XH, Fang YL et al (2020) VvNAC17, a novel stress–responsive grapevine (Vitis vinifera L.) NAC transcription factor, increases sensitivity to abscisic acid and enhances salinity, freezing, and drought tolerance in transgenic Arabidopsis. Plant Physiol Biochem 146:98–111

    Article  CAS  PubMed  Google Scholar 

  • Kara Z (1990) Determination of the ampelographic characters of grape varieties grown in Tokat. PhD thesis, Ankara University, Ankara, Turkey

    Google Scholar 

  • Karaagac E, Vargas AM, de Andrés MT, Carreño I, Ibáñez J, Carreño J, Martínez-Zapater JM, Cabezas JA (2012) Marker assisted selection for seedlessness in table grape breeding. Tree Genet Genom 8(5):1003–1015

    Article  Google Scholar 

  • Karataş DD, Karataş H, Garcia-Muñoz S (2014a) Morphological characterization of endangered wild grapevine Vitis vinifera ssp. sylvestris in Eastern Turkey. J Amer Pomol Soc 68(1):14–23

    Google Scholar 

  • Karataş DD, Karataş H, Laucou V, Sarikamiş G, Riahi L et al (2014b) Genetic diversity of wild and cultivated grapevine accessions from southeast Turkey. Hereditas 151(4–5):73–80. https://doi.org/10.1111/hrd2.00039

    Google Scholar 

  • Karatas H, Agaoglu YS (2008) Genetic diversity among Turkish local grape accessions (Vitis vinifera L) using RAPD markers. Hereditas, 145(2):58–63

    Google Scholar 

  • Karataş H, Agaoglu YS (2010) RAPD analysis of selected local Turkish grape cultivars (Vitis vinifera). Genet Mol Res 9(4):1980–1986

    Article  PubMed  CAS  Google Scholar 

  • Kayesh E, Zhang YY, Liu GS, Bilkish N, Sun X et al (2013) Development of highly polymorphic EST-SSR markers and segregation in F1 hybrid population of Vitis vinifera L. Genet Mol Res 12:3871–3878

    Article  CAS  PubMed  Google Scholar 

  • Khadivi A, Gismondi A, Canini A (2019) Genetic characterization of Iranian grapes (Vitis vinifera L.) and their relationships with Italian ecotypes. Agroforest Sys 93(3):1–13. https://doi.org/10.1007/s10457-017-0134-1.

  • Khan MA, Korban SS (2012) Association mapping in forest trees and fruit crops. J Exp Bot 63(11):4045–4060

    Article  CAS  PubMed  Google Scholar 

  • Kiselev KV, Dubrovina AS, Shumakova OA, Karetin YA, Manyakhin AY (2012) Structure and expression profiling of a novel calcium-dependent protein kinase gene, CDPK3a, in leaves, stems, grapes, and cell cultures of wild-growing grapevine Vitis amurensis Rupr. Plant Cell Rep 32(3):431–442. https://doi.org/10.1007/s00299-012-1375-0

  • Kliewer WM (1971) Effect of day temperature and light intensity on concentration of malic and tartaric acids in V. vinifera grapes. J Am Soc Hortic Sci 96:372–377

    Article  CAS  Google Scholar 

  • Kocsis M, Jaromi L, Putnoky P, Kozma P, Borhidi A (2005) Genetic diversity among twelve grape cultivars indigenous to the Carpathian Basin revealed by RAPD markers. Vitis 44(2):87–91

    CAS  Google Scholar 

  • Kolb CA, MA Kaser, Kopecký J, Zotz G, Riederer M, Pfundel EE (2001) Effects of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet screening and photosynthesis in grape leaves. Plant Physiol 127(3):863–875. https://doi.org/10.1104/pp.010373

  • Kole C (Ed) (2019) Genomic designing of climate-smart oilseed crops. Springer Nature Switzerland. https://doi.org/10.1007/978-3-319-93536-2

  • Koyama K, Sadamatsu K, Goto-Yamamoto N (2010) Abscisic acid stimulated ripening and gene expression in berry skins of the Cabernet Sauvignon grape. Fun Int Genom 10(3):367–381

    Article  CAS  Google Scholar 

  • Koyro H W, Ahmad P, Geissler N (2012) Abiotic stress responses in plants: an overview. In: Ahmad P, Prasad M NV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change Springer science and business media, pp 1–28

    Google Scholar 

  • Knezović Z, Mandić A, Perić N, Beljo J, Mihaljević MZ (2017) Morphological and genetic characterization of vine grape cultivars of Herzegovina. Croatian review of economics, business and social statistics (CREBSS) 3(2):1–9. https://doi.org/10.1515/crebss-2017-0005

  • Ksouri R, M’rah S, Gharsalli M, Lachaal M (2006) Biochemical responses to true and bicarbonate-induced iron deficiency in grapevine genotypes. J Plant Nut 29:305–315. https://doi.org/10.1080/01904160500476897

    Article  CAS  Google Scholar 

  • Lamine M, Zemni H, Ziadi S, Chabaane A, Melki I et al (2014) Multivariate analysis and clustering reveal high morphological diversity in Tunisian autochthonous grapes (vitis vinifera): insights into characterization, conservation and commercialization. J Int Sci Vigne Vin 48:111–122. https://doi.org/10.20870/oeno-one.2014.48.2.1565

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ et al (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomic 1(2):174–181

    Article  CAS  Google Scholar 

  • Laucou V, Launay A, Bacilieri R, Lacombe T, Adam-Blondon AF et al (2018) Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wide SNPs. PLoS One 13(2):e0192540. https://doi.org/10.1371/journal.pone.0192540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laware SL, Raskar S (2014) Effect of titanium dioxide nanoparticles on hydrolytic and antioxidant enzymes during seed germination in onion. Int J Curr Microbiol Appl Sci 3(7):749–760

    CAS  Google Scholar 

  • Le Paslier M-C, Choisne N, Bacilieri R, Bounon R, Boursiquot J-MB et al (2013). The GrapeReSeq 18 k Vitis genotyping chip. In: IX international symposium on grapevine physiology and biotechnology. International society for horticultural science, abstract book, pp 123

    Google Scholar 

  • Leão PCS, Cruz CD, Motoike SY (2011) Genetic diversity of table grape based on morphoagronomic traits. Sci Agric 68:42–49

    Article  Google Scholar 

  • Lecourieux F, Kappel C, Pieri P, Charon J, Pillet J et al (2017) Dissecting the biochemical and transcriptomic effects of a locally applied heat treatment on developing Cabernet Sauvignon grape berries. Front Plant Sci 8:53. https://doi.org/10.3389/fpls.2017.00053

    Article  PubMed  PubMed Central  Google Scholar 

  • Leko M, Žulj Mihaljević M, Beljo J, Šimon S, Sabljo A et al (2012) Genetic relationship among autochthonous grapevine cultivars in Bosnia and Herzegovina. J Edge Univer Faculty Agricul 2:479–482

    Google Scholar 

  • Lewter J, Worthington ML, Clark JR, Varanasi AV, Nelson L et al (2019) High-density linkage maps and loci for berry colour and flower sex in muscadine grape (Vitis rotundifolia). Theor Appl Genet 132(5):1571–1585

    Article  CAS  PubMed  Google Scholar 

  • Li G, Quan R, Cheng S, Hou X, Hu H (2021a) An HD–Zip transcription factor, VvHDZ4, in grapes (Vitis vinifera L.) confers enhanced drought tolerance in transgenic tomato. J Berry Res 11:217–229. https://doi.org/10.3233/JBR-200632

    Article  CAS  Google Scholar 

  • Li S, Chang L, Zhang J (2021b) Advancing organelle genome transformation and editing for crop improvement. Plant Commun 100141. https://doi.org/10.1016/j.xplc.2021.100141

  • Li WM, Ruf S, Bock R (2011) Chloramphenicol acetyltransferase as selectable marker for plastid transformation. Plant Mol Biol 76(3):443–451. https://doi.org/10.1007/s11103-010-9678-4

    Article  CAS  PubMed  Google Scholar 

  • Liang X, Zhang L, Natarajan SK, Becker DF (2013) Proline mechanisms of stress survival. Antiox Redox Sig 19(9):998–1011

    Article  CAS  Google Scholar 

  • Liang Z, Duan S, Sheng J (2019) Whole-genome resequencing of 472 Vitis accessions for grapevine diversity and demographic history analyses. Nat Comm 10:1190. https://doi.org/10.1038/s41467-019-09135-8

    Article  CAS  Google Scholar 

  • Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44(1):362–381

    Article  CAS  PubMed  Google Scholar 

  • Limera C, Sabbadini S, Sweet JB, Mezzetti B (2017) New biotechnological tools for the genetic improvement of major woody fruit species. Front Plant Sci 8:1418. https://doi.org/10.3389/fpls.2017.01418

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin H, Leng H, Guo Y, Kondo S, Zhao Y et al (2019) QTLs and candidate genes for downy mildew resistance conferred by interspecific grape (V. vinifera L. × V. amurensis Rupr.) crossing. Scientia Hortic 244:200–207

    Article  CAS  Google Scholar 

  • Liu GT, Wang JF, Cramer G, Dai ZW, Duan W et al (2012) Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress. BMC Plant Biol 12:174

    Google Scholar 

  • Liu L, Gregan S, Winefield C, Jordan B (2015) From UVR8 to flavonol synthase: UVB- induced gene expression in Sauvignon blanc grape berry. Plant Cell Environ 38(5):905–919. https://doi.org/10.1111/pce.12349

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Zhang J, Wang Y, Yu D, Xia H (2016) Breeding for cold–resistant, seedless grapes from Chinese wild Vitis amurensis using embryo rescue. New Zealand J Crop Hortic Sci 44(2):136–151

    Article  CAS  Google Scholar 

  • Liu Y, Shirano Y, Fukaki H, Yanai Y, Takasa M et al (1999) Complementation of plant mutants with large DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proc Natl Acad Sci USA 96:6535–6540

    Google Scholar 

  • Lodhi MA, Daly MJ, Ye G-N, Weeden NF, Reisch BI (1995) A molecular marker based linkage map of Vitis. Genome 38:786–794

    Article  CAS  PubMed  Google Scholar 

  • Lopes MS, dos Santos MR, Dias JEE, Mendonca D, da Camara MA (2006) Discrimination of Portuguese grapevines based on microsatellite markers. J Biotech 127:34–44

    Article  CAS  Google Scholar 

  • Lopes MS, Sefc KM, Eiras Dias E, Steinkellner H, da Camara L, Machado M (1999) The use of microsatellites for germplasm management in a Portuguese germplasm grapevine collection. Theor Appl Genet 99:733–739

    Article  CAS  PubMed  Google Scholar 

  • Loreti E, van Veen H, Perata P (2016) Plant responses to flooding stress. Curr Opin Plant Biol 33:64–71. https://doi.org/10.1016/j.pbi.2016.06.005

    Article  CAS  PubMed  Google Scholar 

  • Louarn G, Lecoeur J, Lebon E (2008) A three-dimensional statistical reconstruction model of grapevine (Vitis vinifera) simulating canopy structure variability within and between cultivar/training system pairs. Ann Bot 101(8):1167–1184

    Article  PubMed  PubMed Central  Google Scholar 

  • Louime C, Vasanthaiah HK, Basha SM and Lu J (2010) Perspective of biotic and abiotic stress research in grapevines (Vitis sp.). Int J Fruit Sci 10(1):79–86

    Google Scholar 

  • Loveys B, Stoll M, Davies W (2004) Physiological approaches to enhance water use efficiency in agriculture: exploiting plant signalling in novel irrigation practice. In: Bacon MA (ed) Water use efficiency in plant biology. University of Lancaster, Lancaster, pp 113–141

    Google Scholar 

  • Luo S, He P, Zheng X, Zhou P (2002) Inheritance of RAPD markers in an interspecific F1 hybrid of grape between Vitis quinquangularis and V. vinifera. Scient Hortic 93(1):19–28

    Google Scholar 

  • Luo ZW, Cho JS, Lee SY (2019) Microbial production of methyl anthranilate, a grape flavor compound. Proceed National Acad Sci 116(22):10749–10756. https://doi.org/10.1073/pnas.1903875116

    Article  CAS  Google Scholar 

  • Mahanil S, Ramming D, Cadle-Davidson M, Owens C, Garris A et al (2012) Development of marker sets useful in the early selection of Ren4 powdery mildew resistance and seedlessness for table and raisin grape breeding. Theor Appl Genet 124(1):23–33

    Article  CAS  PubMed  Google Scholar 

  • Maletić E, Pejić I, Karoglan KJ, Zdunić G, Preiner D et al (2015) Ampelographic and genetic characterization of Croatian grapevine varieties. Vitis 54:93–98

    Google Scholar 

  • Malheiro AC, Santos JA, Fraga H, Pinto JG (2010) Climate change scenarios applied to viticultural zoning in Europe. Clim Res 43(3):163–177. https://doi.org/10.3354/cr00918

    Article  Google Scholar 

  • Malhotra SK (2017) Horticultural crops and climate change: a review. Indian J Agric Sci 87(1):12–22

    Google Scholar 

  • Malnoy M, Viola R, Jung MH, Koo OJ, Kim S et al (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1904. https://doi.org/10.3389/fpls.2016.01904

    Article  PubMed  PubMed Central  Google Scholar 

  • Manjunatha T, Bisht IS, Bhat KV, Singh BP (2007) Genetic diversity in barley (Hordeum vulgare L. ssp. vulgare) landraces from Uttaranchal Himalaya of India. Genet Resour Crop Evol 54:55–65. https://doi.org/10.1007/s10722-005-1884-6

    Article  Google Scholar 

  • Matus JT, Loyola R, Vega A, Pena-Neira A, Bordeu, E et al (2009) Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera. J Exp Bot 60(3):853–867

    Google Scholar 

  • Margarido GR, Souza AP, Garcia AA (2007) OneMap: software for genetic mapping in outcrossing species. Hereditas 144(3):78–79

    Article  CAS  PubMed  Google Scholar 

  • Marguerit E, Brendel O, Lebon E, Van Leeuwen C, Ollat N (2012) Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes. New Phytol 194:416–429. https://doi.org/10.1111/j.1469-8137.2012.04059.x

    Article  CAS  PubMed  Google Scholar 

  • Marrano A, Micheletti D, Lorenzi S, Neale D, Grando MS (2018) Genomic signatures of different adaptations to environmental stimuli between wild and cultivated Vitis vinifera L. Hort J 5:34. https://doi.org/10.1038/s41438-018-0041-2

    Article  CAS  Google Scholar 

  • Martin JP, Borrego J, Cabello F, Ortiz JM (2003) Characterization of Spanish grapevine cultivar diversity using sequence–tagged microsatellite markers. Genom 46:10–18

    Article  CAS  Google Scholar 

  • Martinez L, Pablo C, Masuelli R, Rodríguez J (2003) Evaluation of diversity among Argentine grapevine (Vitis vinifera L.) varieties using morphological data and AFLP markers. Electronic J Biotech 6(3):244–253. https://doi.org/10.4067/S0717-34582003000300009

  • Masehela TS, Maseko B, Barros E (2020) Impact of GM crops on farmland biodiversity. In: Chaurasia A, Hawksworth DL, de Miranda MP (eds) GMOs: implications for biodiversity conservation and ecological processes. Nature Switzerland AG, pp 21–172. https://doi.org/10.1007/978-3-030-53183-6

  • Matsumoto RK, Notsuka T, Sumi S, Shiraishi N, Hirakawa M et al (1995) New Grape Cultivar ‘Suihou’. Bull Fukuoka Agric Res Center 14:133–136

    Google Scholar 

  • McCarthy MG, Loveys BR, Dry PR, Stoll M (2002) Regulated deficit irrigation and partial rootzone drying as irrigation management techniques for grapevines. Deficit irrigation practices, 22nd edn. FAO Water Reports, Rome, pp 79–87

    Google Scholar 

  • McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little JI et al (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9:356–369

    Article  CAS  PubMed  Google Scholar 

  • Mejía N, Gebauer M, Muñoz L, Hewstone N, Muñoz C et al (2007) Identification of QTLs for seedlessness, berry size, and ripening date in a seedless x seedless table grape progeny. Am J Enol Viticul 58(4):499–507

    Article  Google Scholar 

  • Mejía N, Soto B, Guerrero M, Casanueva X, Houel C et al (2011) Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedlessness in grapevine. BMC Plant Biol 11:57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mercati F, De Lorenzis G, Brancadoro L, Lupini A, Abenavoli MR et al (2016) High-throughput 18 K SNP array to assess genetic variability of the main grapevine cultivars from Sicily. Tree Genet Genomes 12:59

    Article  Google Scholar 

  • Mezzetti B, Pandolfini T, Navacchi O, Landi L (2002) Genetic transformation of Vitis vinifera via organogenesis. BMC Biotech 2(1):1–10. https://doi.org/10.1186/1472-6750-2-18

    Article  Google Scholar 

  • Migicovsky Z, Sawler J, Money D (2016) Genomic ancestry estimation quantifies use of wild species in grape breeding. BMC Genomics 17:478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ming R, Moore PH, Zee F, Abbey CA, Ma H et al (2001) Construction and characterization of a papaya BAC library as a foundation for molecular dissection of a tree-fruit genome. Theor Appl Genet 102:892–899

    Article  CAS  Google Scholar 

  • Ministry of Agriculture Forestry and Fisheries (MAFF) (2015) Agricultural statistics. http://www.maff.go.jp/j/tokei/index.html

  • Mira de Orduna R (2010) Climate change associated effects on grape and wine quality and production. Food Res Int 43(7):1844–1855. https://doi.org/10.1016/j.foodres.2010.05.001

    Article  CAS  Google Scholar 

  • Moreira FM, Madini A, Marino R, Zulini L, Stefanini M et al (2011) Genetic linkage maps of two interspecific grape crosses (Vitis spp.) used to localize quantitative trait loci for downy mildew resistance. Tree Genet Genomes 7(1):153–167

    Google Scholar 

  • Mortensen JA, Gray DJ, Stover LH, Harris JW (1990) Elite grape selections and cultivars developed at CFREC, Leesburg between 1945 and 1990. In: Proceedings of the viticultural science symposium. A&M Univ., Cen. Vitic. Sci., Tallahassee, Fla, pp 106–112

    Google Scholar 

  • Moser C, Segala C, Fontana P, Salakhudtinov I, Gatto P et al (2005) Comparative analysis of expressed sequence tags from different organs of Vitis vinifera L. Funct Integr Genom 5(4):208–217. https://doi.org/10.1007/s10142-005-0143-4

  • Motha K, Singh SK, Singh AK, Singh R, Srivastav M et al (2018) Molecular characterization and genetic relationships of some stress tolerant grape rootstock genotypes as revealed by ISSR and SSR markers. Plant Tissue Cult Biotech 28(1):77–90

    Article  Google Scholar 

  • Moutinho-Pereira JM, Correia CM, Goncalves BM, Bacelar EA, TorresPereira JM (2004) Leaf gas exchange and water relations of grapevines grown in three different conditions. Photosyn 42(1):81–86. https://doi.org/10.1023/B:PHOT.0000040573.09614.1d

    Article  Google Scholar 

  • Mozafari AA, Ghadakchi AA, Ghaderi N (2018) Grape response to salinity stress and role of iron nanoparticle and potassium silicate to mitigate salt induced damage under in vitro conditions. Physiol Molecul Biol Plants 24(1):25–35

    Article  CAS  Google Scholar 

  • Mozell MR, Thach L (2014) The impact of climate change on the global wine industry: challenges and solutions. Wine Econ Policy 3(2):81–89. https://doi.org/10.1016/j.wep.2014.08.001

    Article  Google Scholar 

  • Mugnai S, Marras AM, Mancuso S (2011) Effect of hypoxic acclimation on anoxia tolerance in Vitis roots: response of metabolic activity and KC fluxes. Plant Cell Physiol 52:1107–1116. https://doi.org/10.1093/pcp/pcr061

    Article  CAS  PubMed  Google Scholar 

  • Myburgh P (2003) Responses of Vitis vinifera L. cv. Sultanina to water deficits during various pre-and post-harvest phases under semi-arid conditions. S Afr J Enol Vitic 24:25–33

    Google Scholar 

  • Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F et al (2011) Genetic structure and domestication history of the grape. PNAS 108:3457–3468. https://doi.org/10.1073/pnas.1009363108

    Article  Google Scholar 

  • Myles S, Chia JM, Hurwitz B, Simon Ch, Zhong GY et al (2010) Rapid genomic characterization of the genus Vitis. PLoS One 13 (5)1:e8219. https://doi.org/10.1371/journal.pone.0008219

  • Naybom H, Lacis G (2021) Recent large-scale genotyping and phenotyping of plant genetic resources of vegetatively propagated crops. Plants 10:415. https://doi.org/10.3390/plants10020415

    Article  CAS  Google Scholar 

  • Nenko NI, Ilyina IA, Kiseleva GK, Yablonskaya EK (2019) Low-temperature stress tolerance of grapevine varieties of different ecological and geographical origin. In: Proc Latv Acad Sci 73(1):56–65

    Google Scholar 

  • NHB (2017–18). http://nhb.gov.in/statistics/Publication/Horticulture%20Statistics%20at%20a%20Glance-2018.pdf

  • Nicotra AB, Leigh A, Boyce CK, Jones CS, Niklas KJ et al (2011) The evolution and functional significance of leaf shape in the angiosperms. Funct Plant Biol 38:535–552

    Article  PubMed  Google Scholar 

  • Nwosisi S, Dhakal K, Nandwani D, Raji JI, Krishnan S et al (2018) Genetic Diversity in vegetable and fruit crops. In: Nandwani, D (ed) Genetic Diversity in Horticultural Plants pp 87–125, Springer

    Google Scholar 

  • Nybom H, Lacis G (2021) Recent large-scale genotyping and phenotyping of plant genetic resources of vegetatively propagated crops. Plants 10:415. https://doi.org/10.3390/plants10020415

  • Ocete CA, Arroyo R, Lovicu G, Rodríguez-Miranda Á, Valle JM et al (2019) An inventory of the relic Eurasian wild grapevine populational nuclei in Huelva province (Andalusia, Spain). Vitis 58:53–57

    Google Scholar 

  • Ochssner I, Hausmann L, Töpfer R (2016) Rpv14, a new genetic source for Plasmopara viticola resistance conferred by Vitis cinerea. Vitis 55(2):79–81

    CAS  Google Scholar 

  • OIV (2007) OIV descriptor list for grape varieties and Vitis species, 2nd edn. Organisation Internationale de la Vigne et du Vin, Paris

    Google Scholar 

  • OIV (2015) Review document on debate on biotechnology in Vitiviniculture within OIV. pp 26.

    Google Scholar 

  • Oldenburg DJ, Bendich AJ (2004) Most chloroplast DNA of maize seedlings in linear molecules with defined ends and branched forms. J Mol Biol 335(4):953–970. https://doi.org/10.1016/j.jmb.2003.11.020

    Article  CAS  PubMed  Google Scholar 

  • Ollat N, van Leeuwen C, Garcia de Cortazar I, Touzard JM (2017) The challenging issue of climate change for sustainable grape and wine production. OENO One 51:59–60

    Article  Google Scholar 

  • Owens CL (2011) Linkage disequilibrium and prospects for association mapping in Vitis. In: Adam-Blondon, Anne-Françoise, Martínez-Zapater JM, Kole C (eds) Genetics, genomics and breeding of crop plants. Science Publishers Jersey, British Isles Enfield, New Hampshire, pp 93–110

    Google Scholar 

  • Pandey RM, Pandey SN (1996) The grape in India. ICAR, New Delhi, pp 115

    Google Scholar 

  • Pap D, Riaz S, Dry IB, Jermakow A, Tenscher AC et al (2016) Identification of two novel powdery mildew resistance loci, Ren6 and Ren7, from the wild Chinese grape species Vitis piasezkii. BMC Plant Biol 16(1):1–9

    Article  CAS  Google Scholar 

  • Papanna N, Rao V, Murthy S, Simon L (2009) Microsatellite-based genetic diversity assessment in grape (Vitis vinifera L) germplasm and its relationship with agronomic traits. Int J Fruit Sci 9(1):92–105. https://doi.org/10.1080/15538360902802047

    Article  Google Scholar 

  • Parage C, Tavares R, Rety S, Baltenweck-Guyot R, Poutaraud A et al (2012) Structural, functional, and evolutionary analysis of the unusually large stilbene synthase gene family in grapevine. Plant Physiol 160(3):1407–1419. https://doi.org/10.1104/pp.112.202705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardo E, Rico J, Gil JV, Orejas M (2015) De novo production of six key grape aroma monoterpenes by a geraniol synthase-engineered S. cerevisiae wine strain. Microbial cell factories 14(1):1–8. https://doi.org/10.1186/s12934-015-0306-5.

  • Park JY, Lim JH, Ahn JH, Kim BG (2021) Biosynthesis of resveratrol using metabolically engineered Escherichia coli. Appl Bio Chem 64(1):1–13. https://doi.org/10.1186/s13765-021-00595-5

    Article  CAS  Google Scholar 

  • Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438(7066):310–317. https://doi.org/10.1038/nature04188

    Article  CAS  PubMed  Google Scholar 

  • Pavloušek P (2003) Ampelographical description of new grapevine varieties. Acta Hortic 603:633–640. https://doi.org/10.17660/ActaHortic.2003.603.86

    Article  Google Scholar 

  • Pavloušek P (2009) Evaluation of lime-induced chlorosis tolerance in new rootstock hybrids of grapevine. Europ J Hortic Sc 74:35–41

    Google Scholar 

  • Pelsy F, Merdinoglu D (2002) Complete sequence of Tvv1, a family of Ty1 copia like reterotransposons of Vitis vinifera L., reconstituted by chromosome walking. Theor Appl Genet 105:614–621

    Article  CAS  PubMed  Google Scholar 

  • Perl A, Eshdat Y (1998) DNA transfer and gene expression in transgenic grapes. Biotechnol Genetic Eng Rev 15(1):365–386

    Google Scholar 

  • Petri C, Burgos L (2005) Transformation of fruit trees: useful breeding tool or continued future prospect? Transgenic Res 14:15–26. https://doi.org/10.1007/s11248-004-2770-2

    Article  CAS  PubMed  Google Scholar 

  • Pillet J, Berdeja M, Guan L, Delrot S (2016) Berry response to water, light and heat stresses. In: Geros H, Chaves MM, Medrano H, Delrot S (eds) Grapevine in a changing environment: a molecular and ecophysiological perspective, 1st edn. John Wiley & Sons, Chichester, UK, pp 223–257

    Chapter  Google Scholar 

  • Pillet J, Egert A, Pieri P, Lecourieux F, Kappel C et al (2012) VvGOLS1 and VvHsfA2 are involved in the heat stress responses in grapevine berries. Plant Cell Physiol 53:1776–1792. https://doi.org/10.1093/pcp/pcs121

    Article  CAS  PubMed  Google Scholar 

  • Pollastrini M, V Di Stefano M, Ferretti G, Agati D, Grifoni G et al (2011) Influence of different light intensity regimes on leaf features of Vitis vinifera L. in ultraviolet radiation filtered condition. Environ Exp Bot 73:108–115. https://doi.org/10.1016/j.envexpbot.2010.10.027

  • Popescu CF, Crespan M (2018) Combining microsatellite markers and ampelography for better management of Romanian grapevine germplasm collections. Not Sci Biol 10:193–198

    Article  Google Scholar 

  • Pouget R, Ottenwaelter M (1978) Investigations on the adaptation of new rootstock vines in soils having a very marked chlorosis action. Connaissance Vigne at Vin 12:167–175

    Google Scholar 

  • Preuten T, Cincu E, Fuchs J, Zoschke R, Liere K, Borner T (2010) Fewer genes than organelles: extremely low and variable gene copy numbers in mitochondria of somatic plant cells. Plant J 64(6):948–959. https://doi.org/10.1111/j.1365-313X.2010.04389.x

    Article  CAS  PubMed  Google Scholar 

  • Qu X, Lu J, Lamikanra O (1996) Genetic diversity in Muscadine and American bunch grapes based on randomly amplified polymorphic DNA (RAPD) analysis. J Amer Soc Hortic Sci 121(6):1020–1023

    Article  CAS  Google Scholar 

  • Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:174–180

    Article  CAS  PubMed  Google Scholar 

  • Rai MK, Shekhawat NS (2014) Recent advances in genetic engineering for improvement of fruit crops. Plant Cell Tiss Organ Cult 116(1):1–15

    Article  CAS  Google Scholar 

  • Ramos MJN, Coito JL, Fino J, Cunha J, Silva H et al (2017) Deep analysis of wild Vitis flower transcriptome reveals unexplored genome regions associated with sex specification. Plant Mol Biol 93:151–170

    Article  CAS  PubMed  Google Scholar 

  • Rao RV, Hodgkin T (2002) Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell Tiss Org Cul 68:1–19. https://doi.org/10.1023/A:1013359015812

    Article  Google Scholar 

  • Ray PK (2002) Breeding tropical and subtropical fruits. Springer science and business media

    Google Scholar 

  • Reisch BI, Owens CL, Cousins PS (2012) Grape. Fruit breeding. Springer, Boston, MA, pp 225–262

    Chapter  Google Scholar 

  • Ren C, Liu X, Zhang Z, Wang Y, Duan W et al (2016) CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Sci Rep 6(1):1–9. https://doi.org/10.1038/srep32289

  • Riaz S, Dangl GS, Edwards KJ, Meredith CP (2004) A microsatellite marker based framework linkage map of Vitis vinifera L. Theor Appl Genet 108:864–872

    Article  CAS  PubMed  Google Scholar 

  • Riaz S, De Lorenzis G, Velasco D, Koehmstedt A, Maghradze D et al (2018) Genetic diversity analysis of cultivated and wild grapevine (Vitis vinifera L.) accessions around the Mediterranean basin and Central Asia. BMC Plant Biol 18:137

    Google Scholar 

  • Rojas B, McKersie BD, Paroschy JH (1996) Agrobacterium–mediated transformation of Vitis vinifera. 4th Canadian plant tissue culture and genetic engineering workshop, Saskatoon. http://www.plant.uoguelph.ca/research/embryo/abstract.htm

  • Romon M, Soustre-Gacougnolle I, Schmitt C, Perrin M, Burdloff Y et al (2013) RNA silencing is resistant to low-temperature in grapevine. PLoS One 8(12):e82652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rooy SSB, Salekdeh GH, Ghabooli M, Gholami M, Karimi R (2017) Cold-induced physiological and biochemical responses of three grapevine cultivars differing in cold tolerance. Acta Physiol Plant 39(12):1–13

    Google Scholar 

  • Rossdeutsch L, Edwards E, Cookson SJ, Barrieu F, Gambetta GA et al (2016) ABA-mediated responses to water deficit separate grapevine genotypes by their genetic background. BMC Plant Biol 16(1):1–15. https://doi.org/10.1186/s12870-016-0778-4

    Article  CAS  Google Scholar 

  • Royo C, Torres-Pérez R, Mauri N, Diestro N, Cabezas JA et al (2018) The major origin of seedless grapes is associated with a missense mutation in the MADS-box gene VviAGL11. Plant Physiol 177(3):1234–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan J, Li H (2020) Fast and accurate long-read assembly with wtdbg2. Nat Methods 17(2):155–158

    Google Scholar 

  • Ruperti B, Botton A, Populin F, Eccher G, Brilli M et al (2019) Flooding responses on grapevine: a physiological, transcriptional, and metabolic perspective. Front Plant Sci 10:339. https://doi.org/10.3389/fpls.2019.00339

    Article  PubMed  PubMed Central  Google Scholar 

  • Sabir A, Tangolar S, Buyukalaca S, Kafkas S (2009) Ampelographic and molecular diversity among grapevine (Vitis spp.) cultivars. Czech J Genet Plant Breed 45:160–168

    Article  CAS  Google Scholar 

  • Saifert L, Sanchez-Mora FD, Assumpcao WT, Zanghelini JA, Giacometti R et al (2018) Marker–assisted pyramiding of resistance loci to grape downy mildew. Pesq Agrop Brasileira 53(5):602–610

    Article  Google Scholar 

  • Salimath SS, Bhattacharyya MK (1999) Generation of a soybean BAC library, and identification of DNA sequences tightly linked to the Rps1-k disease resistance gene. Theor Appl Genet 98:712–720

    Article  CAS  Google Scholar 

  • Salimov V, Shukurov A, Asadullayev R (2017) Study of diversity of Azerbaijan local grape varieties basing on OIV ampelographic descriptors. Annals of Agrarian Science 15(3):386–395. https://doi.org/10.1016/j.aasci.2017.08.001

    Article  Google Scholar 

  • Sancho-Galán P, Amores-Arrocha A, Palacios V, Jiménez-Cantizano A (2020) Identification and characterization of white grape varieties autochthonous of a warm climate region (Andalusia, Spain). Agronomy 10:205

    Article  CAS  Google Scholar 

  • Sanghera GS, Bhatia D, Thind KS (2015) Access and benefit sharing on the use of indigenous traditional knowledge. In: Salgotra RK, Gupta BB (eds) Plant genetic resources and traditional knowledge for food security. Springer, Singapore, pp 163–182. https://doi.org/10.1007/978-981-10-0060-7

  • Santiago JL, Boso S, Gago P, Alonso-Villaverde V, Martínez MC (2007) Molecular and ampelographic characterization of Vitis vinifera L. “Albariño”, “Savagnin Blanc” and “Caíño Blanco” shows that they are different cultivars. Spanish J Agric Res 5:333–340

    Article  Google Scholar 

  • Santiago JL, Boso S, Martin JP, Ortiz JM, Martinez MC (2005) Characterization and identification of grapevine cultivars (Vitis vinifera L.) from northwestern Spain using microsatellite markers and ampelometric methods. Vitis 44:67–72

    CAS  Google Scholar 

  • Santos TP, Lopes CMA, Rodrigues ML (2005) Effects of partial root-zone drying irrigation on cluster microclimate and fruit composition of field-grown Castelaõ grapevines. Vitis 44:117–125

    Google Scholar 

  • Sapkota S, Chen LL, Yang S, Hyma KE, Cadle-Davidson L et al (2019) Construction of a high-density linkage map and QTL detection of downy mildew resistance in Vitis aestivalis-derived ‘Norton.’ Theor Appl Genet 132(1):137–147

    Article  CAS  PubMed  Google Scholar 

  • Sato A, Yamada M, Iwanami H, Mitani N (2004) Quantitative and instrumental measurements of grape flesh texture as affected by gibberellic acid application. J Japan Soc Hort Sci 73:7–11

    Article  CAS  Google Scholar 

  • Schneider A, Torello Marinoni D, Crespan M (2008) Genetics and ampelography trace the origin of Muscat fleur d’oranger. Am J Enol Vitic 59(2):200–204

    Article  Google Scholar 

  • Schoedl K, Schuhmacher R, Forneck A (2013) Correlating physiological parameters with biomarkers for UV-B stress indicators in leaves of grapevine cultivars Pinot noir and Riesling. J Agric Sci 151:189–200

    Article  CAS  Google Scholar 

  • Schouten HJ, Krens FA, Jacobsen E (2006) Cisgenic plants are similar to traditionally bred plants: international regulations for genetically modified organisms should be altered to exempt cisgenesis. EMBO Rep 7(8):750–753. https://doi.org/10.1038/sj.embor.7400769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwander F, Eibach R, Fechter I, Hausmann L, Zyprian E et al (2012) Rpv10: a new locus from the Asian Vitis gene pool for pyramiding downy mildew resistance loci in grapevine. Theor Appl Genet 124(1):163–176

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Cur Op Plant Bio 10(3):296–302

    Google Scholar 

  • Semagn K, Bjornstad A, Ndjiondjop MN (2006) Progress and prospects of marker assisted backcrossing as a tool in crop breeding programs. African J Biotechnol 5(25):2588–2603

    CAS  Google Scholar 

  • Serra I, Strever A, Myburgh PA, Deloire A (2014) Review: the interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. J Exp Bot 20:1–14

    Google Scholar 

  • Seyedimoradi H, Talebi R, Hassani D, Karami F (2012) Comparative genetic diversity analysis in Iranian local grapevine cultivars using ISSR and DAMD molecular markers. Environ Exp Biol 10(4):125–132

    Google Scholar 

  • Shirazi Z, Abedi A, Kordrostami M, Burritt DJ and Hossain MA (2019) Genome-wide identification and characterization of the metal tolerance protein (MTP) family in grape (Vitis vinifera L.) 3 Biotech 9(5):1–7

    Google Scholar 

  • Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T et al (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using F-factor-based vector. Proc Natl Acad Sci USA 89:8794–8797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu X, Ding L, Gu B, Zhang H, Guan P, Zhang J (2021) A stress associated protein from Chinese wild Vitis amurensis, VaSAP15, enhances the cold tolerance of transgenic grapes. Scientia Hortic 285:110–147

    Article  CAS  Google Scholar 

  • Singh S, Husen A (2019) Role of nanomaterials in the mitigation of abiotic stress in plants. Nanomaterials and plant potential. Springer, Cham, pp 441–471

    Chapter  Google Scholar 

  • Small ID, Schallenberg-Rudinger M, Takenaka M, Mireau H, Ostersetzer-Biran O (2020) Plant organellar RNA editing: what 30 years of research has revealed. Plant J 101(5):1040–1056. https://doi.org/10.1111/tpj.14578

    Article  CAS  PubMed  Google Scholar 

  • Smith HM, Clarke CW, Smith BP, Carmody BM, Thomas MR et al (2018a) Genetic identification of SNP markers linked to a new grape phylloxera resistant locus in Vitis cinerea for marker-assisted selection. BMC Plant Biol 18(1):1–3

    Article  CAS  Google Scholar 

  • Smith HM, Smith BP, Morales NB, Moskwa S, Clingeleffer PR et al (2018b) SNP markers tightly linked to root knot nematode resistance in grapevine (Vitis cinerea) identified by a genotyping-bysequencing approach followed by Sequenom MassARRAY validation. PLoS One 13:1–27

    Google Scholar 

  • Souvorov A, Kapustin Y, Kiryutin B, Chetvernin V, Tatusova T et al (2010) Gnomon–NCBI eukaryotic gene prediction tool. https://www.ncbi.nlm.nih.gov/core/assets/genome/files/Gnomon-description.pdf

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: join map. Plant J 3(5):739–744

    Article  CAS  Google Scholar 

  • Stavrakaki M, Biniari K (2017) Ampelographic and genetic characterization of grapevine varieties (Vitis vinifera L.) of the “Mavroudia” group cultivated in Greece. Not Bot Horti Agrobot Cluj-Napoca 45:525–531

    Article  CAS  Google Scholar 

  • Stout AB (1936) Seedlessness in grapes. N.Y. State Agricult Expt Stat Tech Bull (Geneva) 238

    Google Scholar 

  • Striegler RK, Howell GS, Flore JA (1993) Influence of rootstock on the response of seyval grapevines to flooding stress. Am J Enol Vitic 44:313–319

    Google Scholar 

  • Su K, Xing H, Guo Y, Zhao F, Liu Z et al (2020) High-density genetic linkage map construction and cane cold hardiness QTL mapping for Vitis based on restriction site-associated DNA sequencing. BMC Genomics 21(1):1–4

    Article  Google Scholar 

  • Sunseri F, Lupini A, Mauceri A, De Lorenzis G, Araniti F et al (2018) Single nucleotide polymorphism profiles reveal an admixture genetic structure of grapevine germplasm from Calabria, Italy, uncovering its key role for the diversification of cultivars in the Mediterranean Basin. Aust J Grape Wine Res 24:345–359

    Article  CAS  Google Scholar 

  • Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci 87(21):8526–8530. https://doi.org/10.1073/pnas.87.21.8526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tajalifar M, Ahmadi J, Rasoli V, Zarrabi MM (2020) Evaluation of morphological diversity promised Russian grapevine in Iran. SM J Med Plant Stud 3:5. https://doi.org/10.36876/smjmps735041

  • Tamhankar SA, Patil SG, Rao VS (2001) Assessment of the genetic diversity of some important grape genotypes in India using RAPD markers. Vitis 40(3):157–161

    CAS  Google Scholar 

  • Tandonnet JP, Marguerit E, Cookson SJ, Ollat N (2018) Genetic architecture of aerial and root traits in field-grown grafted grapevines is largely independent. Theor Appl Genet 131(4):903–915

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, Ganal MW, Martin GB (1995) Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes. Trends Genet 11:63–68

    Article  CAS  PubMed  Google Scholar 

  • Tattersall EAR, Grimplet J, DeLuc L (2007) Transcript abundance profiles reveal larger and more complex responses of grapevine to chilling compared to osmotic and salinity stress. Funct Integr Genom 7:317–333

    Article  CAS  Google Scholar 

  • Teh SL, Fresnedo-ramírez J, Clark MD, Gadoury DM, Sun Q et al (2017) Genetic dissection of powdery mildew resistance in interspecific half-sib grapevine families using SNP-based maps. Mol Breed 37:1–16

    Article  CAS  PubMed  Google Scholar 

  • Teixeira AH, Bastiaanssen W, Ahmad MD, Bos MG (2009) Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the low-middle Saõ Francisco river basin, Brazil. Part B: application to the regional scale. Agric Forest Meteorol 149:477–490. https://doi.org/10.1016/j.agrformet.2008.09.014

    Article  Google Scholar 

  • This P, Jung A, Boccacci P, Borrego J, Botta R et al (2004) Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor Appl Genet 109:1448–1458. https://doi.org/10.1007/s00122-004-1760-3

    Article  CAS  PubMed  Google Scholar 

  • This P, Lacombe T, Thomas MR (2006) Historical origins and genetic diversity of wine grapes. Trends Genet 22:511–519. https://doi.org/10.1016/j.tig.2006.07.008

    Article  CAS  PubMed  Google Scholar 

  • This P, Lacombe T, Cadle Davidson M, Owens CL (2007) Wine grape (Vitis vinifera L.) color associates with allelic variation in the domestication gene VVmy bA1. Theor Appl Genet 114:723–730. https://doi.org/10.1007/s00122-006-0472-2

    Article  PubMed  Google Scholar 

  • Tillet RL, Wheatley MD, Tattersall EAR, Schlauch KA, Cramer GR et al (2012) The Vitis vinifera C–repeat binding protein 4 (VvCBF4) transcriptional factor enhances freezing tolerance in wine grape. Plant Biotechnol J 10:105–124. https://doi.org/10.1111/j.1467-7652.2011.00648.x

    Article  CAS  Google Scholar 

  • Tomkins JP, Peterson DG, Yang TJ, Main D, Ablett EF et al (2001) Grape (Vitis vinifera L.) BAC library construction, preliminary STC analysis, and identification of clones associated with flavonoid and stilbene biosynthesis. American J Enol Viticul 52(4):287–291

    Google Scholar 

  • Torres E, Santibanez C, Rubio F, Godoy F, Cadavid-Labrada A et al (2014) Gene silencing as a strategy to induce grapevine fan leaf virus (GFLV) resistance in grapevine rootstocks. Acta Hortic 1046:187–193. https://doi.org/10.17660/ActaHortic.2014.1046.24

  • Trenti M, Lorenzi S, Bianchedi PL, Grossi D, Failla O et al (2021) Candidate genes and SNPs associated with stomatal conductance under drought stress in Vitis. BMC Plant Biol 21(1):1–21

    Article  CAS  Google Scholar 

  • Troggio M, Malacarne G, Coppola G, Segala C, Cartwright D et al (2007) A dense single-nucleotide polymorphism based genetic linkage map of grapevine (Vitis vinifera L.) anchoring pinot noir bacterial artificial chromosome contigs. Genet Soc Am 176:2637–2650

    CAS  Google Scholar 

  • Troshin LP, Maghradze DN (2013) Ampelographical screening of the gene pool of grape. KSAU, Krasnodar (in Russian)

    Google Scholar 

  • Tu M, Wang X, Huang L (2016) Expression of a grape bZIP transcription factor, VqbZIP39, in transgenic Arabidopsis thaliana confers tolerance of multiple abiotic stresses. Plant Cell Tiss Organ Cult 125:537–551. https://doi.org/10.1007/s11240-016-0969-6

    Article  CAS  Google Scholar 

  • Upadhyay A, Aher LB, Shinde MP, Mundankar KY, DatreA et al (2013) Microsatellite analysis to rationalize grape germplasm in India and development of a molecular database. Plant Genet Resources 11(03). https://doi.org/10.1017/S1479262113000117

  • Upadhyay A, Gaonkar T, Upadhyay AK, Jogaiah S, Shinde MP et al (2018) Global transcriptome analysis of grapevine ( Vitis vinifera L.) leaves under salt stress reveals differential response at early and late stages of stress in table grape cv. Thompson seedless. Plant Physiol Biochem 129:168–179

    Google Scholar 

  • Upadhyay A, Saboji MD, Reddy S, Deokar K, Karibasappa GS (2007) AFLP and SSR marker analysis of grape rootstocks in Indian grape germplasm. Scientia Hortic 112(2):176–183

    Article  CAS  Google Scholar 

  • Urso S, Zottini M, Ruberti C, Schiavo FL, Stanca AM et al (2013) An Agrobacterium tumefaciens-mediated gene silencing system for functional analysis in grapevine. Plant Cell Tissue Organ Cult 114(1):49–60

    Article  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A et al (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2:e1326. https://doi.org/10.1371/journal.pone.0001326

  • Van Heerden CJ, Burger P, Prins R (2018) Microsatellite-based DNA fingerprinting of selected grapevine cultivars. South Afr J Enol Viticul 39 (1). https://doi.org/10.21548/39-1-2053

  • Van Heerden CJ, Burger P, Vermeulen A, Prins R (2014) Detection of downy and powdery mildew resistance QTL in a ‘Regent’בRedGlobe’population. Euphytica 200(2):281–295

    Article  CAS  Google Scholar 

  • Van Ooijen JW (1994) DrawMap: a computer program for drawing genetic linkage maps. J Hered 85:66

    PubMed  Google Scholar 

  • Van Ooijen JW, Jansen J (2013) Genetic mapping in experimental populations. Cambridge University Press, Cambridge

    Google Scholar 

  • Van Os H, Stam P, Visser RG, van Eck HJ (2005) SMOOTH: a statistical method for successful removal of genotyping errors from high-density genetic linkage data. Theor Appl Genet 112(1):187–194

    Google Scholar 

  • Vanblaere T, Szankowski I, Schaart J, Schouten H, Flachowsky H et al (2011) The development of a cisgenic apple plant. J Biotechnol 154(4):304–311. https://doi.org/10.1016/j.jbiotec.2011.05.013

    Article  CAS  PubMed  Google Scholar 

  • Verma MK, Singh SK, Patel VB, Kumar C (2019) Grape improvement. In: Singh SK, Patel VB, Goswami AK, Prakash Jai and Kumar C (eds) Breeding of perennial horticultural crops. Biotech Books, New Delhi

    Google Scholar 

  • Vezzulli S, Doligez A, Bellin D (2019) Molecular mapping of grapevine genes. In: Cantu D, Walker MA (eds) The grape genome, compendium of plant genomes. Springer Nature, Switzerland, pp 103–136. https://doi.org/10.1007/978-3-030-18601-2_5

  • Vezzulli S, Troggio M, Coppola G, Jermakow A, Cartwright D et al (2008) A reference integrated map for cultivated grapevine (Vitis vinifera L.) from three crosses, based on 283 SSR and 501 SNP-based markers. Theor Appl Genet 117(4):499–511

    Google Scholar 

  • Vierling E, Kimpel JA (1992) Plant responses to environmental stress. Curr Opin Biotechnol 3(2):164–170. https://doi.org/10.1016/0958-1669(92)90147-b

    Article  CAS  PubMed  Google Scholar 

  • Vignani R, Bowers JE, Meredith CP (1996) Microsatellite DNA polymorphism analysis of clones of Vitis vinifera ‘Sangiovese’. Scientia Hortic 65:163–169. https://doi.org/10.1016/0304-4238(95)00865-9

    Article  CAS  Google Scholar 

  • Vlad D, Kierzkowski D, Rast MI, Vuolo F, Ioio RD et al (2014) Leaf shape evolution through duplication, regulatory diversification, and loss of a homeobox gene. Science 343:780–783. https://doi.org/10.1126/science.1248384

    Article  CAS  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    Article  CAS  PubMed  Google Scholar 

  • Walenz BP, Koren S, Berlin K, Miller JR, Bergman NH et al (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27(5):722–736. https://doi.org/10.1101/gr.215087.116

  • Wang B, Ding H, Chen Q, Ouyang L, Li S et al (2019) Enhanced tolerance to methyl viologen-mediated oxidative stress via AtGR2 expression from chloroplast genome. Front Plant Sci 10:1178. https://doi.org/10.3389/fpls.2019.01178

  • Wang GL, Holsten TE, Song WY, Wang HP, Ronald PC (1995) Construction of a rice bacterial artificial chromosome library and identification of clones linked to the Xa-21 disease resistance locus. Plant J7:525–533

    Google Scholar 

  • Wang J, Su K, Guo Y, Xing H, Zhao Y et al (2017) Construction of a high-density genetic map for grape using specific length amplified fragment (SLAF) sequencing. PLoS One 26 12(7):e0181728

    Google Scholar 

  • Wang L, Wei J, Zou Y, Xu K, Wang Y et al (2014) Molecular characteristics and biochemical functions of VpPR10s from Vitis pseudoreticulata associated with biotic and abiotic stresses. Int J Mol Sci 15:19162–19182. https://doi.org/10.3390/ijms151019162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Jiang N, Jia T, Leach L, Cockram J et al (2012) Genome-wide association mapping of agronomic and morphologic traits in highly structured populations of barley cultivars. Theor Appl Genet 124:233–246

    Article  PubMed  Google Scholar 

  • Wang P, Su L, Gao H, Jiang X, Wu X et al (2018a) Genome-wide characterization of bHLH Genes in grape and analysis of their potential relevance to abiotic stress tolerance and secondary metabolite biosynthesis. Front Plant Sci 9:64. https://doi.org/10.3389/fpls.2018.00064

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Pan Q, He F, Akhunova A, Chao S et al (2018b) Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. CRISPR J 1(1):65–74. https://doi.org/10.1089/crispr.2017.0010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Tu M, Wang D, Liu J, Li Y et al (2018c) CRISPR/Cas9–mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechn J 16(4):844–855

    Article  CAS  Google Scholar 

  • Wang Y, Zhang R, Liang Z, Li S (2020) Grape-RNA: a database for the collection, evaluation, treatment, and data sharing of grape RNA-Seq datasets. Genes 11(3):315. https://doi.org/10.3390/genes11030315

    Article  CAS  PubMed Central  Google Scholar 

  • Weeden NF, Hemmat M, Lawson DM, Lodhi M, Reisch BI et al (1994) Development and application of molecular marker linkage maps in woody fruit crops. Progress in temperate fruit breeding. Springer, Dordrecht, pp 269–227

    Chapter  Google Scholar 

  • Weihl T, Dettweiler E (2000) Differentiation and identification of 500 grapevine (Vitis) cultivars using notations and measured leaf parameters. Acta Hortic 528:39–46. https://doi.org/10.17660/ActaHortic.2000.528.3

    Article  Google Scholar 

  • Williams LE, Grimes DW, Phene CJ (2010) The effects of applied water at various fractions of measured evapotranspiration on reproductive growth and water productivity of Thompson Seedless grapevines. Irrig Sci 28:233–243. https://doi.org/10.1007/s00271-009-0173-0

    Article  Google Scholar 

  • Wong DC, Sweetman C, Drew DP, Ford CM (2013) VTCdb: a gene co-expression database for the crop species Vitis vinifera (grapevine). BMC Genomics 14(1):1–7

    Article  CAS  Google Scholar 

  • Wong DCJ, Schlechter R, Vannozzi A, Höll J, Hmmam I et al (2016) A systems-oriented analysis of the grapevine R2R3-MYB transcription factor family uncovers new insights into the regulation of stilbene accumulation. DNA Res Int J Rapid Publ Rep Genes Genomes 23(5):451–466. https://doi.org/10.1093/dnares/dsw028

  • Woo SS, Jiang J, Gill BS, Paterson AH, Wing RA (1994) Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Res 22:4922–4931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin H, Zhu W, Wang L (2013) Genome wide transcriptional profile analysis of Vitis amurensis and Vitis vinifera in response to cold stress. PLoS One 8:e58740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada M, Sato A (2016) Advances in table grape breeding in Japan. Breed Sci 66:34–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamane H (1996) Grape variety developed in Japan. In: Horiuchi S, Matsui H (eds) Nihon Budougaku. 561 p Yokendo, Tokyo, pp 371–383

    Google Scholar 

  • Yamane HA, Kurihara TR (1978) Studies on polyploidy breeding in grapes. 1. Chromosome numbers of large-berried grape varieties grown in Japan. Bull Fruit Tree Res Stn e. 2:1–8

    Google Scholar 

  • Yang J, Xiao YY (2013) Grape phytochemicals and associated health benefits. Crit Rev Food Sci Nutr 53(11):1202–1225. https://doi.org/10.1080/10408398.2012.692408

  • Yang S, Fresnedo-Ramírez J, Sun Q, Manns DC, Sacks GL et al (2016) Next generation mapping of enological traits in an F2 interspecific grapevine hybrid family. PLoS One 14 11(3):e0149560

    Google Scholar 

  • Young PR, Lashbrooke JG, Alexandersson E, Jacobson D, Moser C et al (2012) The genes and enzymes of the carotenoid metabolic pathway in Vitis vinifera L. BMC Gen 13(1):1–17

    Article  CAS  Google Scholar 

  • Yu JM, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160

    Article  CAS  PubMed  Google Scholar 

  • Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

  • Zahedi SM, Karimi M, Teixeira da Silva JA (2020) The use of nanotechnology to increase quality and yield of fruit crops. J Sci Food Agric 100(1):25–31

    Article  CAS  PubMed  Google Scholar 

  • Zeinali R, Rahmani F, Abaspour N, Doulati H (2012) Molecular and morphological diversity among grapevine (Vitis vinifera L.) cultivars in Iran. Int J Agric Res Rev 2:735–743

    Google Scholar 

  • Zendler D, Schneider P, Topfer R, Zyprian E (2017) Fine mapping of Ren3 reveals two loci mediating hypersensitive response against Erysiphe necator in grapevine. Euphytica 213(3):68–91. https://doi.org/10.1007/s10681-017-1857-9

    Article  CAS  Google Scholar 

  • Zhang H, Liu Z, Fan X, Zhang C, Cui L et al (2017) Genome-wide association mapping of berry shape traits via the reduced representation sequencing in grape. Acta Hortic Sinica 44(10):1959–1968

    Google Scholar 

  • Zhang J, Hausmann L, Eibach R, Welter LJ, Töpfer R et al (2009) A framework map from grapevine V3125 (Vitis vinifera ‘Schiava grossa’בRiesling’)× rootstock cultivar ‘Börner’ (Vitisriparia × Vitis cinerea) to localize genetic determinants of phylloxera root resistance. Theor Appl Genet 119(6):1039–1051

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Schurr U, Davies WJ (1987) Control of stomatal behaviour by abscisic acid which apparently originates in the roots. J Exp Bot 38:1174–1181. https://doi.org/10.1093/jxb/38.7.1174

    Article  CAS  Google Scholar 

  • Zhang J, Wu X, Niu R, Liu Y (2012a) Cold-resistance evaluation in 25 wild grape species. Vitis –Geilweilerhof. 51(4):153–160

    Google Scholar 

  • Zhang Y, Gao M, Singer SD, Fei Z, Wang H et al (2012b) Genome-wide identification and analysis of the TIFY gene family in grape. PlosOne 7(9):e44465

    Article  CAS  Google Scholar 

  • Zhang PF, Dong YM, Wen HY, Liang CM, Niu TQ, Gao Y et al (2019) Knockdown of VvMYBA1 via virus-induced gene silencing decreases anthocyanin biosynthesis in grape berries. Canadian J Plant Sci 100(2):175–184

    Article  CAS  Google Scholar 

  • Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C et al (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet 3:e4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao YH, Guo YS, Lin H, Liu ZD, Ma HF et al (2015) Quantitative trait locus analysis of grape weight and soluble solid content. Genet Mol Res 14(3):9872–9881

    Article  CAS  PubMed  Google Scholar 

  • Zheng T, Zhang K, Zhu X, Jiu S, Dong T et al (2020) Genome wide identification and functional analysis of chitinase gene family in grapes. Research Square Preprint. https://doi.org/10.21203/rs.2.22693/v1

  • Zhou Y, Massonnet M, Sanjak JS, Cantu D, Gaut BS (2017) Evolutionary genomics of grape (Vitis vinifera ssp. vinifera) domestication. Proc Natl Acad Sci USA 114:11715–11720. https://doi.org/10.1073/pnas.1709257114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Minio A, Massonnet M, et al (2018) Structural variants, clonal propagation, and genome evolution in grapevine (Vitis vinifera). bioRxiv 508119. https://doi.org/10.1101/508119

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genom 1(1):5–20

    Article  CAS  Google Scholar 

  • Zhu J, Guo Y, Su K, Liu Z, Ren Z et al (2018a) Construction of a highly saturated genetic map for Vitis by next-generation restriction site-associated DNA sequencing. BMC Plant Biol 18:347. https://doi.org/10.1186/s12870-018-1575-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167(2):313–324. https://doi.org/10.1016/j.cell.2016.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu P, Gu B, Li P, Shu X, Zhang X et al (2019) New cold–resistant, seedless grapes developed using embryo rescue and marker–assisted selection. Plant Cell Tiss Org Cult 140(3):551–562

    Article  CAS  Google Scholar 

  • Zhu X, Li X, Jiu S, Zhang K, Wang C et al (2018b) Analysis of the regulation networks in grapevine reveals response to waterlogging stress and candidate gene-marker selection for damage severity. R Soc Open Sci 5:172253. https://doi.org/10.1098/rsos.172253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimorski V, Ku C, Martin WF, Gould SB (2014) Endosymbiotic theory for organelle origins. Curr Opin Microbiol 22:38–48. https://doi.org/10.1016/j.mib.2014.09.008

    Article  CAS  PubMed  Google Scholar 

  • Zohary D (1996) The mode of domestication of the founder crops of the Southwest Asian agriculture. In: Harris DR (ed) The origin and spread of agriculture and pastoralism in Eurasia. University College London Press, London, pp 142–158

    Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the old world, 3rd edn. Oxford University Press, New York. https://doi.org/10.1006/anbo.2001.1505

    Book  Google Scholar 

  • Žulj Mihaljević M, Maletić E, Darko P, Zdunic G, Bubola M, Eva Z, Pejić I (2020) Genetic diversity, population structure, and parentage analysis of Croatian grapevine germplasm. Genes 11(7):737. https://doi.org/10.3390/genes11070737

    Article  CAS  PubMed Central  Google Scholar 

  • Zyprian E, Ochßner I, Schwander F, Šimon S, Hausmann L, Bonow-Rex M, Moreno-Sanz P, Grando MS, Wiedemann-Merdinoglu S, Merdinoglu D, Eibach R (2016) Quantitative trait loci affecting pathogen resistance and ripening of grapevines. Mol Genet Genomics 291(4):1573–1594

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S.K. et al. (2022). Development of Abiotic Stress Resistant Grapevine Varieties. In: Kole, C. (eds) Genomic Designing for Abiotic Stress Resistant Fruit Crops. Springer, Cham. https://doi.org/10.1007/978-3-031-09875-8_4

Download citation

Publish with us

Policies and ethics