Skip to main content

Metabolic Syndrome: Effect of Physical Activity on Arterial Elasticity

  • Chapter
  • First Online:
Exercise, Sports and Hypertension

Part of the book series: Updates in Hypertension and Cardiovascular Protection ((UHCP))

  • 620 Accesses

Abstract

Metabolic syndrome is a pathologic condition that has increasing prevalence in modern world and is a significant precursor of cardiovascular disease. One of the main mechanisms underlying metabolic syndrome and each of its components is the inflammatory state that favors the development of the atherosclerotic process leading to increased arterial stiffness. Indeed, a body of evidence has demonstrated a strict link between metabolic syndrome and its components with arterial stiffness. Regular physical activity represents a key strategy for antagonizing the adverse effects of metabolic syndrome including the impairment of arterial elasticity, thereby reducing the burden of cardiovascular disease. Thus, special attention should be paid by clinicians to people with metabolic syndrome in whom the untoward effects of metabolic disturbances on the arteries can be offset by a program of physical activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberti KGMM, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; National Heart, Lung, and Blood Institute; American Heart Association; world heart federation; international atherosclerosis society; and International Association for the Study of obesity. Circulation. 2009;120:1640–5. https://doi.org/10.1161/CIRCULATIONAHA.109.192644.

    Article  CAS  PubMed  Google Scholar 

  2. Beltran-Sanchez H, Harhay MO, Harhay MM, McElligott S. Prevalence and trends of metabolic syndrome in the adult U.S. population, 1999–2010. J Am Coll Cardiol. 2013;62(8):697–703. https://doi.org/10.1016/j.jacc.2013.05.064.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Aguilar M, Bhuket T, Torres S, Liu B, Wong RJ. Prevalence of the metabolic syndrome in the United States, 2003–2012. JAMA. 2015;313(19):1973–4. https://doi.org/10.1001/jama.2015.4260.

    Article  CAS  PubMed  Google Scholar 

  4. Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep. 2018;20(2):12. https://doi.org/10.1007/s11906-018-0812-z.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Alberti KG, Zimmet P, Shaw J, IDF Epidemiology Task Force Consensus Group. The metabolic syndrome—a new worldwide definition. Lancet. 2005;366:1059–62. https://doi.org/10.1016/S0140-6736(05)67402-8.

    Article  PubMed  Google Scholar 

  6. Ford ES, Giles WH. A comparison of the prevalence of the metabolic syndrome using two proposed definitions. Diabetes Care. 2003;26:575–81. https://doi.org/10.2337/diacare.26.3.575.

    Article  PubMed  Google Scholar 

  7. DeBoer MD. Assessing and managing the metabolic syndrome in children and adolescents. Nutrients. 2019;11(8):1788. https://doi.org/10.3390/nu11081788.

    Article  CAS  PubMed Central  Google Scholar 

  8. Stokes A, Preston SH. Deaths attributable to diabetes in the United States: comparison of data sources and estimation approaches. PLoS One. 2017;12(1):e0170219. https://doi.org/10.1371/journal.pone.0170219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Slivovskaja I, Ryliskyte L, Serpytis P, Navickas R, Badarienė J, Celutkiene J, et al. Aerobic training effect on arterial stiffness in metabolic syndrome. Am J Med. 2018;131:148–55. https://doi.org/10.1016/j.amjmed.2017.07.038.

    Article  PubMed  Google Scholar 

  10. Scuteri A, Najjar SS, Muller DC, Andres R, Hougaku H, Metter EJ, et al. Metabolic syndrome amplifies the age-associated increases in vascular thickness and stiffness. J Am Coll Cardiol. 2004;43:1388–95. https://doi.org/10.1016/j.jacc.2003.10.061.

    Article  PubMed  Google Scholar 

  11. Scuteri A, Cunha PG, Rosei EA, Badariere J, Bekaert S, Cockcroft JR, et al. Arterial stiffness and influences of the metabolic syndrome: a cross-countries study. Atherosclerosis. 2014;233:654–60. https://doi.org/10.1016/j.atherosclerosis.2014.01.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lopes-Vicente WRP, Rodrigues S, Cepeda FX, Jordão CP, Costa-Hong V, Dutra-Marques ACB, et al. Arterial stiffness and its association with clustering of metabolic syndrome risk factors. Diabetol Metab Syndr. 2017;9:87. https://doi.org/10.1186/s13098-017-0286-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim M, Kim M, Yoo HJ, Lee SY, Lee SH, Lee JH. Age-specific determinants of pulse wave velocity among metabolic syndrome components, inflammatory markers, and oxidative stress. J Atheroscler Thromb. 2018;25:178–85. https://doi.org/10.5551/jat.39388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bird SR, Hawley JA. Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport Exerc Med. 2017;2(1):e000143. https://doi.org/10.1136/bmjsem-2016-000143.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Joo HJ, Cho SA, Cho JY, Lee S, Park JH, Yu CW, et al. Different relationship between physical activity, arterial stiffness, and metabolic status in obese subjects. J Phys Act Health. 2017;14:716–25. https://doi.org/10.1123/jpah.2016-0595.

    Article  PubMed  Google Scholar 

  16. Ashor AW, Lara J, Siervo M, Celis-Morales C, Mathers JC. Effects of exercise modalities on arterial stiffness and wave reflection: a systematic review and meta-analysis of randomized controlled trials. PLoS One. 2014;9:e110034. https://doi.org/10.1371/journal.pone.0110034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mora-Rodriguez R, Ramirez-Jimenez M, Fernandez-Elias VE, Guio de Prada MV, Morales-Palomo F, Pallares JG, Nelson RK, et al. Effects of aerobic interval training on arterial stiffness and microvascular function in patients with metabolic syndrome. J Clin Hypertens. 2018;20:11–8. https://doi.org/10.1111/jch.13130.

    Article  CAS  Google Scholar 

  18. Donley DA, Fournier SB, Reger BL, DeVallance E, Bonner DE, Olfert IM, et al. Aerobic exercise training reduces arterial stiffness in metabolic syndrome. J Appl Physiol. 2014;116:1396–404. https://doi.org/10.1152/japplphysiol.00151.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nilsson PM. Arterial stiffness, the metabolic syndrome, and the brain. Am J Hypertens. 2017;31:24–6. https://doi.org/10.1093/ajh/hpx152.

    Article  PubMed  Google Scholar 

  20. Gong J, Xie Q, Han Y, Chen B, Li L, Zhou G, et al. Relationship between components of metabolic syndrome and arterial stiffness in Chinese hypertensives. Clin Exp Hypertens. 2020;42(2):146–52. https://doi.org/10.1080/10641963.2019.1590385.

    Article  PubMed  Google Scholar 

  21. Topouchian J, Labat C, Gautier S, Bäck M, Achimastos A, Blacher J, et al. Effects of metabolic syndrome on arterial function in different age groups: the advanced approach to arterial stiffness study. J Hypertens. 2018;36(4):824–33. https://doi.org/10.1097/HJH.0000000000001631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Saladini F, Rattazzi M, Faggin E, Palatini P, Puato M. Carotid elasticity is impaired in stage 1 hypertensive patients with well-controlled blood pressure levels. J Hum Hypertens. 2021. https://doi.org/10.1038/s41371-021-00584-7

  23. Masoura C, Pitsavos C, Aznaouridis K, Skoumas I, Vlachopoulos C, Stefanadis C, et al. Arterial endothelial function and wall thickness in familial hypercholesterolemia and familial combined hyperlipidemia and the effect of statins. A systematic review and meta-analysis. Atherosclerosis. 2011;214:129–38. https://doi.org/10.1016/j.atherosclerosis.2010.10.008.

    Article  CAS  PubMed  Google Scholar 

  24. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–95. https://doi.org/10.1056/NEJMra043430.

    Article  CAS  PubMed  Google Scholar 

  25. Puato M, Boschetti G, Rattazzi M, Zanon M, Pesavento R, Faggin E, et al. Intima-media thickness remodelling in hypertensive subjects with long-term well-controlled blood pressure levels. Blood Press. 2017;26(1):48–53. https://doi.org/10.1080/08037051.2016.1184964.

    Article  PubMed  Google Scholar 

  26. Vik A, Mathiesen EB, Brox J, Wilsgaard T, Njølstad I, Jørgensen L, et al. Relation between serum osteoprotegerin and carotid intima media thickness in a general population—the Tromso study. J Thromb Haemost. 2010;8:2133–9. https://doi.org/10.1111/j.1538-7836.2010.03990.x.

    Article  CAS  PubMed  Google Scholar 

  27. Puato M, Rattazzi M, Zanon M, Benetti E, Faggin E, Palatini P, et al. Predictors of vascular remodeling in hypertensive subjects with well-controlled blood pressure levels. J Hum Hypertens. 2015;29:561–5. https://doi.org/10.1038/jhh.2014.121.

    Article  CAS  PubMed  Google Scholar 

  28. Musialik K, Szulińska M, Hen K, Skrypnik D, Bogdański P. The relation between osteoprotegerin, inflammatory processes, and atherosclerosis in patients with metabolic syndrome. Eur Rev Med Pharmacol Sci. 2017;21:4379–85.

    CAS  PubMed  Google Scholar 

  29. Scuteri A, Stuehlinger MC, Cooke JP, Wright JG, Lakatta EG, Anderson DE, et al. Nitric oxide inhibition as a mechanism for blood pressure increase during salt loading in normotensive postmenopausal women. J Hypertens. 2003;21(7):1339–46. https://doi.org/10.1097/00004872-200307000-00023.

    Article  CAS  PubMed  Google Scholar 

  30. Chandra P, Sands RL, Gillespie BW, Levin NW, Kotanko P, Kiser M, et al. Relationship between heart rate variability and pulse wave velocity and their association with patient outcomes in chronic kidney disease. Clin Nephrol. 2014;81(01):9–19. https://doi.org/10.5414/cn108020.

    Article  CAS  PubMed  Google Scholar 

  31. Logan JG, Kim SS. Resting heart rate and aortic stiffness in normotensive adults. Korean Circ J. 2016;46(6):834–40. https://doi.org/10.4070/kcj.2016.46.6.834.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kang MK, Yu JM, Chun KJ, Choi J, Choi S, Lee N, et al. Association of female sex and heart rate with increased arterial stiffness in patients with type 2 diabetes mellitus. Anatol J Cardiol. 2017;18(5):347–52. https://doi.org/10.14744/AnatolJCardiol.2017.7773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Palatini P, Mos L, Santonastaso M, Zanatta N, Mormino P, Saladini F, et al. Resting heart rate as a predictor of body weight gain in the early stage of hypertension. Obesity (Silver Spring). 2011;19(3):618–23. https://doi.org/10.1038/oby.2010.191.

    Article  Google Scholar 

  34. Palatini P, Longo D, Zaetta V, Perkovic D, Garbelotto R, Pessina AC. Evolution of blood pressure and cholesterol in stage 1 hypertension: role of autonomic nervous system activity. J Hypertens. 2006 Jul;24(7):1375–81. https://doi.org/10.1097/01.hjh.0000234118.25401.1c.

    Article  CAS  PubMed  Google Scholar 

  35. Palatini P, Majahalme S, Amerena J, Nesbitt S, Vriz O, Michieletto M, et al. Determinants of left ventricular structure and mass in young subjects with sympathetic over-activity. The Tecumseh Offspring Study. J Hypertens. 2000;18(6):769–75. https://doi.org/10.1097/00004872-200018060-00016.

    Article  CAS  PubMed  Google Scholar 

  36. Lantelme P, Milon H, Gharib C, Gayet C, Fortrat JO. White coat effect and reactivity to stress: cardiovascular and autonomic nervous system responses. Hypertension. 1998;31:1021–9. https://doi.org/10.1161/01.hyp.31.4.1021.

    Article  CAS  PubMed  Google Scholar 

  37. Mahley RW, Weisgraber KH, Farese RV. Disorders of lipid metabolism. In: Wilson JD, editor. Williams textbook of endocrinology. Philadelphia: Saunders; 1996. p. 109–1153.

    Google Scholar 

  38. Arner P, Wahrenberg H, Lönnqvist F, Angelin B. Adipocyte beta-adrenoceptor sensitivity influences plasma lipid levels. Aterioscler Thromb Vasc Biol. 1993;13:967–72. https://doi.org/10.1161/01.atv.13.7.967.

    Article  CAS  Google Scholar 

  39. Saladini F, Palatini P. Arterial distensibility, physical activity and the metabolic syndrome. Curr Hypertens Rep. 2018;20(5):39. https://doi.org/10.1007/s11906-018-0837-3.

    Article  CAS  PubMed  Google Scholar 

  40. Van den Munckhof ICL, Holewijn S, de Graaf J, et al. Sex differences in fat distribution influence the association between BMI and arterial stiffness. J Hypertens. 2017;35:1219–25. https://doi.org/10.1097/HJH.0000000000001297.

    Article  CAS  PubMed  Google Scholar 

  41. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J. 2018;39(33):3021–104. https://doi.org/10.1093/eurheartj/ehy339.

    Article  PubMed  Google Scholar 

  42. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and Management of High Blood Pressure in adults: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Hypertension. 2018;71(6):e13–e115. https://doi.org/10.1161/HYP.0000000000000065.

    Article  CAS  PubMed  Google Scholar 

  43. American Diabetes Association. Standards of medical Care in Diabetes-2016. Diabetes Care. 2016;39(Suppl. 1):S1–S111.

    Google Scholar 

  44. Fihn SD, Blankenship JC, Alexander KP, Bittl JA, Byrne JG, Fletcher BJ, et al. 2014 ACC/AHA/AATS/PCNA/SCAI/STS focused update of the guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines, and the American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2014;64:1929–49. https://doi.org/10.1016/j.jacc.2014.07.017.

    Article  PubMed  Google Scholar 

  45. Cornelissen VA, Smart NA. Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc. 2013;2:e004473. https://doi.org/10.1161/JAHA.112.004473.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Leitzmann MF, Park Y, Blair A, Ballard-Barbash R, Mouw T, Hollenbeck AR, et al. Physical activity recommendations and decreased risk of mortality. Arch Intern Med. 2007;167:2453–60. https://doi.org/10.1001/archinte.167.22.2453.

    Article  PubMed  Google Scholar 

  47. Rossi A, Dikareva A, Bacon SL, Daskalopoulou SS. The impact of physical activity on mortality in patients with high blood pressure: a systematic review. J Hypertens. 2012;30:1277–88. https://doi.org/10.1097/HJH.0b013e3283544669.

    Article  CAS  PubMed  Google Scholar 

  48. Palatini P, Graniero G, Mormino P, Nicolosi L, Mos L, Visentin P, et al. Relation between physical training and ambulatory blood pressure in stage I hypertensive subjects. Results of the HARVEST trial. Circulation. 1994;90:2870–6. https://doi.org/10.1161/01.cir.90.6.2870.

    Article  CAS  PubMed  Google Scholar 

  49. Cornelissen VA, Fagard RH. Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension. 2005;46:667–75. https://doi.org/10.1161/01.HYP.0000184225.05629.51.

    Article  CAS  PubMed  Google Scholar 

  50. Fagard RH. Exercise therapy in hypertensive cardiovascular disease. Prog Cardiovasc Dis. 2011;53:404–11. https://doi.org/10.1016/j.pcad.2011.03.006.

    Article  PubMed  Google Scholar 

  51. Saladini F, Benetti E, Mos L, Mazzer A, Casiglia E, Palatini P. Regular physical activity is associated with improved small artery distensibility in young to middle-age stage 1 hypertensives. Vasc Med. 2014;19:458–64. https://doi.org/10.1177/1358863X14556852.

    Article  PubMed  Google Scholar 

  52. Nettlefold L, McKay HA, Naylor PJ, Bredin SS, Warburton DE. The relationship between objectively measured physical activity, sedentary time, and vascular health in children. Am J Hypertens. 2012;25:914–9. https://doi.org/10.1038/ajh.2012.68.

    Article  PubMed  Google Scholar 

  53. McGavock JM, Anderson TJ, Lewanczuk RZ. Sedentary lifestyle and antecedents of cardiovascular disease in young adults. Am J Hypertens. 2006;19:701–7. https://doi.org/10.1016/j.amjhyper.2006.01.013.

    Article  PubMed  Google Scholar 

  54. Saladini F, Mos L, Fania C, Garavelli G, Casiglia E, Palatini P. Regular physical activity prevents development of hypertension in young people with hyperuricemia. J Hypertens. 2017;35(5):994–1001. https://doi.org/10.1097/HJH.0000000000001271.

    Article  CAS  PubMed  Google Scholar 

  55. Tan I, Spronck B, Kiat H, Barin E, Resnik KD, Delhaas T, et al. Heart rate dependency of large artery stiffness. Hypertension. 2016;68:236–42. https://doi.org/10.1161/HYPERTENSIONAHA.116.07462.

    Article  CAS  PubMed  Google Scholar 

  56. Tomiyama H, Hashimoto H, Tanaka H, Matsumoto C, Odaira M, Yamada J, et al. Synergistic relationship between changes in the pulse wave velocity and changes in the heart rate in middle-aged Japanese adults: a prospective study. J Hypertens. 2010;28:687–94. https://doi.org/10.1097/HJH.0b013e3283369fe8.

    Article  CAS  PubMed  Google Scholar 

  57. Benetos A, Adamopoulos C, Bureau JM, Temmar M, Labat C, Bean K, et al. Determinants of accelerated progression of arterial stiffness in normotensive subjects and in treated hypertensive subjects over a 6-year period. Circulation. 2002;105:1202–7. https://doi.org/10.1161/hc1002.105135.

    Article  PubMed  Google Scholar 

  58. Wilkinson IB, Mohammad NH, Tyrrell S, Hall IR, Webb DJ, Paul VE, et al. Heart rate dependency of pulse pressure amplification and arterial stiffness. Am J Hypertens. 2002;15:24–30. https://doi.org/10.1016/s0895-7061(01)02252-x.

    Article  PubMed  Google Scholar 

  59. Courand PY, Lantelme P. Significance, prognostic value and management of heart rate in hypertension. Arch Cardiovasc Dis. 2014;107:48–57. https://doi.org/10.1016/j.acvd.2013.11.003.

    Article  PubMed  Google Scholar 

  60. Messerli FH, Rimoldi SF, Bangalore S, Bavishi C, Laurent S. When an increase in central systolic pressure overrides the benefits of heart rate lowering. J Am Coll Cardiol. 2016;68:754–62. https://doi.org/10.1016/j.jacc.2016.03.610.

    Article  PubMed  Google Scholar 

  61. Palatini P, Saladini F, Mos L, Fania C, Mazzer A, Casiglia E. Low night-time heart rate is longitudinally associated with lower augmentation index and central systolic blood pressure in hypertension. Eur J Appl Physiol. 2018;118:543–50. https://doi.org/10.1007/s00421-017-3789-4.

    Article  PubMed  Google Scholar 

  62. Palatini P, Canali C, Graniero GR, Rossi G, de Toni R, Santonastaso M, et al. Relationship of plasma renin activity with caffeine intake and physical training in mild hypertensive men. Eur J Epidemiol. 1996;12(5):485–91. https://doi.org/10.1007/BF00144001.

    Article  CAS  PubMed  Google Scholar 

  63. Fagard R, Grauwels R, Groeseneken D, Lijnen P, Staessen J, Vanhees L, et al. Plasma levels of renin, angiotensin II and 6-ketoprostaglandin F1 α in endurance athletes. J Appl Physiol. 1985;59:947–52. https://doi.org/10.1152/jappl.1985.59.3.947.

    Article  CAS  PubMed  Google Scholar 

  64. Jennings G, Nelson L, Nestel P, Esler M, Korner P, Burton D, et al. The effects of changes in physical activity on major cardiovascular risk factors, hemodynamics, sympathetic function and glucose utilization in man: a controlled study of four levels of activity. Circulation. 1986;73:30–40. https://doi.org/10.1161/01.cir.73.1.30.

    Article  CAS  PubMed  Google Scholar 

  65. Dao HH, McMartens F, Zaor A, de Champlain J, Moreau P. Role of endothelin in the hypertrophic remodeling of small arteries induced by exogenous norepinephrine. Arch Mal Coeur Vaiss. 1999;92:1059–62.

    CAS  PubMed  Google Scholar 

  66. Green DJ. Exercise training as vascular medicine: direct impacts on the vasculature in humans. Exerc Sport Sci Rev. 2009;37:196–202. https://doi.org/10.1097/JES.0b013e3181b7b6e3.

    Article  PubMed  Google Scholar 

  67. Maeda S, Sugawara J, Yoshizawa M, Otsuki T, Shimojo N, Jesmin S, et al. Involvement of endothelin-1 in habitual exercise-induced increase in arterial compliance. Acta Physiol (Oxf). 2009;196:223–9. https://doi.org/10.1111/j.1748-1716.2008.01909.x.

    Article  CAS  Google Scholar 

  68. Green DJ, Maiorana A, O’Driscoll G, Taylor R. Effect of exercise training on endothelium-derived nitric oxide function in humans. J Physiol. 2004;561:1–25. https://doi.org/10.1113/jphysiol.2004.068197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Taddei S, Galetta F, Virdis A, Ghiadoni L, Salvetti G, Franzoni F, et al. Physical activity prevents age-related impairment in nitric oxide availability in elderly athletes. Circulation. 2000;101:2896–901. https://doi.org/10.1161/01.cir.101.25.2896.

    Article  CAS  PubMed  Google Scholar 

  70. Eskurza I, Monahan KD, Robinson JA, Seals DR. Effect of acute and chronic ascorbic acid on flow-mediated dilatation with sedentary and physically active human ageing. J Physiol. 2004;556:315–24. https://doi.org/10.1113/jphysiol.2003.057042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tolezani EC, Costa-Hong V, Correia G, Mansur AJ, Drager LF, Bortolotto LA. Determinants of functional and structural properties of large arteries in healthy individuals. Arq Bras Cardiol. 2014;103:426–32. https://doi.org/10.5935/abc.20140124.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Pasha EP, Birdsill AC, Oleson S, Haley AP, Tanaka H. Physical activity mitigates adverse effect of metabolic syndrome on vessels and brain. Brain Imaging Behav. 2018;12(6):1658–68. https://doi.org/10.1007/s11682-018-9830-3.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Bohn L, Ramoa A, Silva G, Silva N, Abreu SM, Ribeiro F, et al. Sedentary behavior and arterial stiffness in adults with and without metabolic syndrome. Int J Sports Med. 2017;38:396–401. https://doi.org/10.1055/s-0043-101676.

    Article  PubMed  Google Scholar 

  74. Tanabe Y, Nakata Y, Zempo-Miyaki A, Hieda MY, Choi Y, Fujii N, et al. Different degree of intervention in 6-month weight-loss support and arterial stiffness: secondary analysis of a randomized controlled trial. Obes Res Clin Pract. 2021;15(1):93–5. https://doi.org/10.1016/j.orcp.2020.11.006.

    Article  PubMed  Google Scholar 

  75. Pekas EJ, Shin J, Son WM, Headid RJ 3rd, Park SY. Habitual combined exercise protects against age-associated decline in vascular function and lipid profiles in elderly postmenopausal women. Int J Environ Res Public Health. 2020;17(11):3893. https://doi.org/10.3390/ijerph17113893.

    Article  CAS  PubMed Central  Google Scholar 

  76. Hage FG. C-reactive protein and hypertension. J Hum Hypertens. 2014;28:410–5. https://doi.org/10.1038/jhh.2013.111.

    Article  CAS  PubMed  Google Scholar 

  77. Campbell PT, Campbell KL, Wener MH, Wood BL, Potter JD, McTiernan A, et al. A yearlong exercise intervention decreases CRP among obese postmenopausal women. Med Sci Sports Exerc. 2009;41:1533–9. https://doi.org/10.1249/MSS.0b013e31819c7feb.

    Article  PubMed  Google Scholar 

  78. Koskinen J, Magnussen CG, Taittonen L, Räsänen L, Mikkilä V, Laitinen T, et al. Arterial structure and function after recovery from the metabolic syndrome: the cardiovascular risk in young Finns study. Circulation. 2010;121:392–400. https://doi.org/10.1161/CIRCULATIONAHA.109.894584.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Saladini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saladini, F. (2022). Metabolic Syndrome: Effect of Physical Activity on Arterial Elasticity. In: Palatini, P., Agabiti-Rosei, E., Mancia, G. (eds) Exercise, Sports and Hypertension. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-031-07958-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07958-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07957-3

  • Online ISBN: 978-3-031-07958-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics